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The treatment and prevention of hypertension has been a worldwide medical challenge.
The key pathological hallmark of hypertension is altered arterial vascular structure and
function, i.e., increased peripheral vascular resistance due to vascular remodeling. The
aim of this review is to elucidate the molecular mechanisms of vascular remodeling
in hypertension and the protective mechanisms of aerobic exercise against vascular
remodeling during the pathological process of hypertension. The main focus is on
the mechanisms of oxidative stress and inflammation in the pathological condition of
hypertension and vascular phenotypic transformation induced by the trilaminar structure
of vascular endothelial cells, smooth muscle cells and extracellular matrix, and the
peripheral adipose layer of the vasculature. To further explore the possible mechanisms
by which aerobic exercise ameliorates vascular remodeling in the pathological process
of hypertension through anti-proliferative, anti-inflammatory, antioxidant and thus
inhibiting vascular phenotypic transformation. It provides a new perspective to reveal
the intervention targets of vascular remodeling for the prevention and treatment of
hypertension and its complications.
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INTRODUCTION

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the
number one cause of death worldwide. The number of deaths due to CVDs is expected to rise
to approximately 23.2 million in 2030, with cardiovascular deaths accounting for 31% of all global
deaths. Hypertension increases patient’s risk of cardiovascular, brain, kidney, and other diseases.
WHO recommends 25% relative reduction in prevalence of hypertension in public health targets
by 2020 to reduce global disease burden (Diem et al., 2016). Hypertension endangers the health of
the vascular system, as evidenced by vascular pathological remodeling. A characteristic pathological
alteration of hypertension is augmented vasoconstrictor and attenuated vasodilator responses to
various physiological stimuli, resulting in elevated vascular tone in arteries and arterioles that are
exposed to persistent high blood pressure. Initially, the vascular remodeling caused by increased
blood pressure allows the vasculature to adapt to short-term hemodynamic changes. However,
sustained increases in blood pressure leads to chronic vascular maladaptation and dysfunction. This
is manifested by structural and functional changes in the vascular endothelium, smooth muscle cells
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(VSMCs), extracellular matrix (ECM), and perivascular
adipose tissue (PVAT) (Figure 1; Ghaffari et al., 2015;
Wang and Khalil, 2018).

Hypertension damages blood vessels, which in turn leads to
pathological changes in blood vessels—vascular remodeling. In
1994, Gibbons and Dzau introduced the concept of vascular
remodeling, which is characterized by vascular dysfunction,
vessel wall thickening, and increased wall-to-lumen ratio
(Gibbons and Dzau, 1994). Angiotensin II (Ang II), endothelin
(ET), nitric oxide (NO), local growth factors (fibroblast growth
factor, platelet-derived growth factor, and transforming growth
factor beta), and metalloproteinases have been shown to be
closely involved in the regulation of hypertension (Brown et al.,
2018). Excessive activation of the renin-angiotensin system (RAS)
causes diseases such as hypertension. AngII and aldosterone
levels lead to vascular fibrosis, inflammation and proliferation.
The interaction of oxidative stress and inflammation also
leads to vascular remodeling (Schiffrin and Touyz, 2004).
United States and European hypertension guidelines encourage
regular aerobic exercise in hypertensive patients because of
its effectiveness in improving hypertension (Mancia et al.,
2007). Aerobic exercise significantly reduces systolic 24-h blood
pressure, systolic systemic vascular resistance, and small artery
elasticity index (Pagonas et al., 2017). This review summarizes the
molecular mechanisms of changes in vascular endothelial cells,
smooth muscle cells, extracellular matrix, and vascular peripheral
fat during pathological alterations. And further explored the
molecular mechanism of aerobic exercise to improve vascular
remodeling for the prevention and treatment of hypertension,
providing a theoretical basis for the prevention and treatment of
hypertension (Figure 2).

ENDOTHELIAL CELLS AND THE
AREOBIC EXERCISE ON VASCULAR
REMODELING

Endothelial injury is a critical early step in the development
and progression of hypertension. Endothelial damage/repair
imbalance causes endothelial dysfunction which in turn
induces hypertension. In addition, endothelial cells
(ECs) signaling disorders lead to endothelial dysfunction,
which is characterized by arterial vascular remodeling
(Konukoglu and Uzun, 2017).

Endothelial Dysfunction
Endothelial cells are seen as the first line of defense between risk
factors and vascular disease. Endothelial cells are thought to play
an important role in the regulation of local vascular tone. In
1980, Furchgott and Zawadzki (1980) discovered endothelium-
derived relaxing factor (EDRF). EDRF is chemically identified as
endogenous nitric oxide (NO) (Ignarro et al., 1987). Since then,
endothelial dysfunction has become synonymous with reduced
NO bioactivity. Furthermore, hemodynamics is ubiquitous and
essential physiological stimulus for vascular cells and is thought
to exert an important influence on the pathological course of
hypertension by regulating endothelial cell function. Shear stress

plays a role in the control of endothelial cell proliferation and
apoptosis; for example, stable flow reduces EC proliferation,
whereas disturbed flow increases EC turnover and stimulates
apoptosis (Davies et al., 1986; Akimoto et al., 2000). An increase
in shear stress usually causes vasodilation, mostly mediated
by an increase in endothelial nitric oxide synthase (eNOS)
activity and NO production (Rubanyi et al., 1986; Redmond
et al., 1998). Indeed, shear stress is thought to be the primary
physiological stimulus for this potent vasodilator molecule.
Other endothelium-derived vasoactive substances altered by
shear stress include PGI2 (Redmond et al., 1998; Hendrickson
et al., 1999) and endothelin-1 (ET-1) (Kuchan and Frangos, 1993;
Malek et al., 1993).

Hypertension is associated with endothelial dysfunction
(Konukoglu and Uzun, 2017). The main factors of endothelial
dysfunction are reduced bioavailability of NO, increased
sensitivity of ECs to vasoconstrictors, increased production
of vasoconstrictor substances and elevated shear stress (Zhou
et al., 2014; Cyr et al., 2020).Bone marrow secretes and
releases endothelial progenitor cells (EPCs), which migrate to
the peripheral circulation and differentiate into mature vascular
endothelial cells (VECs) to maintain vascular integrity. EPC
levels are a risk factor for cardiovascular disease and are
associated with endothelial endothelium-dependent vasodilation
(Vasa et al., 2001). VECs secretes active substances such as
NO and ET to maintain vascular homeostasis. In moderate
and severe hypertension, VECs damage and imbalance of
reactive substances result in decreased NO secretion, increased
ET vasoconstrictor, decreased diastolic system function, and
vasoconstriction (Iwakiri and Groszmann, 2007).

The nitric oxide synthase (NOS) enzyme catalyzes the eventual
production of NO from L-arginine. Mammals have three NOS
isoforms: neuronal (nNOS), endothelial (eNOS), and inducible
(iNOS). Infection and chronic inflammation induce increased
NO production by iNOS. Under hypertensive pathology,
increased NO concentration generates reactive nitrogen oxides
(RNOS) with oxygen radicals, which indirectly cause apoptosis
and tissue damage. In contrast, eNOS, a calcium-dependent
protein, has a diastolic effect. Shear stress, acetylcholine,
bradykinin, and histamine stimulate eNOS activity and NO
production through calcium-dependent and non-dependent way
(Zhao et al., 2015). In addition, NO channels are present
in the myoendothelial junction (MEJ), a cellular extension
that promotes crosstalk connections between endothelial cells
and vascular smooth muscle in small arteries and arterioles.
eNOS expression in the MEJ limits long-distance diffusion of
NO and reduces the scavenging of NO by reactive oxygen
species (ROS) (Shu et al., 2019). In addition to targeting
eNOS to the MEJ, hemoglobin-α (Hb-α) is enriched in the
MEJ by unbiased proteomic screening. Functionally, Hb-α
acts as a “NO uptake pool” by buffering NO diffusion from
endothelium to smooth muscle cells through the formation of
a dioxygenation reaction between nitrate and methemoglobin-
α, which further regulates NOS-mediated signaling to control
vascular remodeling (Straub et al., 2012). Disruption of eNOS
and Hb-α binding with Hb-α mimetic peptide enhances NO
signaling and lowers blood pressure in vivo. Thereby identifying
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FIGURE 1 | When hypertension occurs, the continuous increase of blood pressure leads to chronic poor vascular adaptation and dysfunction. The specific
manifestations are changes in the structure and function of vascular endothelial cells, smooth muscle cells, extracellular matrix, and perivascular adipose tissue. ECs,
endothelial cells; VSMCs, vascular smooth muscle cells; ECM, extracellular matrix; PVAT, perivascular adipose tissue.

FIGURE 2 | Aerobic exercise improves molecular changes in vascular remodeling of hypertension. NO, nitric oxide; ROS, reactive oxygen species; eNOS,
endothelial nitric oxide synthase; OPN, osteopontin; α-SMA, α-smooth muscle actin; NLRP3, NOD-like receptor thermal protein domain associated protein 3; ANG,
angiotensin; MMP-9, matrix metallopeptidase 9; MMP-2, matrix metallopeptidase 2; IL-6, interleukin-6; TNF-α, tumor necrosis factor-α; Adiponectin; Leptin.

new targets for the treatment of hypertensive vascular remodeling
(Straub et al., 2014).

Reactive Oxygen Species
Impaired endothelium-dependent vasodilatory function in
hypertension is associated with oxidative stress and ROS
together with other pathways reduce NO bioavailability
(Virdis et al., 2013).

Reactive oxygen species alter gene expression by regulating
the activation of transcription factors, with subsequent effects
on downstream target proteins, and also regulate the production
and degradation of extracellular matrix, inactivate NO function,
and stimulate the expression of multiple kinases and pro-
inflammatory genes (Monteiro et al., 2019).

Elevated levels of oxidative stress in hypertensive patients
lead to an imbalance in the production/accumulation of ROS
(Montezano et al., 2015). Nicotinamide adenine dinucleotide
phosphate oxidase (Nox) is a major source of ROS in the
vascular wall and has been identified as playing a key role

in the pathogenesis of hypertension (Magnani and Mattevi,
2019). NOx induces increased ROS production in response to
inflammation. In ECs, superoxide reacts with NO to generate
peroxynitrite to inhibit oxidative capacity leading to oxidative
stress. This further leads to vascular inflammation, fibrosis and
remodeling in hypertension (Lopes et al., 2015). In addition,
the mechanical forces on the vessel wall are altered in patients
with hypertension. Increased stretch leads to endothelial cell
proliferation and the release of Interleukin-6 (IL-6), Interleukin-
8 (IL-8), ROS, ET, and other pro-inflammatory mediators also
contribute to impaired endothelial cell function in hypertensive
vessels (Jufri et al., 2015).

Aerobic Exercise Improves Vascular
Remodeling Through Endothelial Cell
Regulation
The effect of aerobic exercise on the maintenance of endothelial
barrier function is due to the increased heart rate, blood flow
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and shear stress associated with aerobic exercise, which in turn
releases vascular protective molecules, such as NO (Laughlin
et al., 2008). This immediately leads to a downregulation of
endothelial angiotensin II type 1 receptor expression, which leads
to a decrease in nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase activity and superoxide anion production,
thereby reducing ROS production and maintaining endothelial
NO bioavailability (Ramkhelawon et al., 2009). This ultimately
allows vasodilation and slows down the vascular remodeling of
the hypertensive pathological process.

Aerobic exercise for 16 weeks reduced blood pressure and
promoted eNOS expression in 29-week-old rats. And exercise
also reduced protein levels of insulin-like growth factor-1
(IGF-1), PI3K, and phosphorylated protein kinase B (p-Akt)
(Jufri et al., 2015). Long-term aerobic exercise promotes eNOS
expression and reduces hypertension via IGF-1/PI3K/p-Akt
pathway (Zhang et al., 2018).

Melatonin (MT) acts as an antioxidant and anti-hypertensive.
By activating melatonin receptor 2 (MT2). It can increase
ca2+ levels in endothelial cells, which in turn plays a key
role in activating eNOS to increase NO production and
NO bioavailability. Studies have shown that exercise can
increase MT levels (Escames et al., 2012). In addition, skeletal
muscle hypertrophy induced by exercise training increases
the production of follicle-stimulating hormone 1 (Follistatin1,
Fstl1) (Escames et al., 2012), which improves the repair of
vascular endothelial cell damage and reduces the expression
of inflammatory cytokines (Miyabe et al., 2014). Aerobic
exercise also induces an increase in eNOS expression and
thus improves vascular function by increasing shear force
(Suvorava and Cortese-Krott, 2018).

AEROBIC EXERCISE IMPROVES THE
EFFECT OF VSMCs ON VASCULAR
REMODELING

Vascular remodeling in hypertension is manifested in the
midmembrane by a shift from contractile phenotype to synthetic
phenotype in VSMCs, which is a hallmark of vascular dysfunction
in hypertension (Touyz et al., 2018). Multiple factors such as
growth factors, ROS, and mechanical injury have been shown to
be involved in VSMCs growth and phenotype conversion (Nishio
and Watanabe, 1997; Luo et al., 2012; Hald and Alford, 2014).

Effects of VSMC-Specific Factors and
Signaling Pathway Modulation on
Vascular Phenotype Transformation
Vascular endothelium, smooth muscle cells phenotypic transition
is regulated by specific factors and signaling pathways such as
phosphatidylinositol kinase signaling pathway (PI3K/Akt/eNOS)
and mitogen-activated protein kinase cascade reaction (MAPK).
VSMC phenotypic features perform functions by virtue
of different proteins, such as α-SMA, calreticulin, smooth
muscle myosin heavy chain, and SM22α (Zhang et al., 2019).
Osteopontin (OPN) and epithelial regulatory proteins are

associated with cell growth, synthesis, proliferation, and
migration (Seo et al., 2015). Vasoactive stimulation, growth
factors and epidermal growth factors are involved in VSMC
phenotypic conversion through activation of membrane
receptors and intracellular and extracellular signaling pathways
(Kennedy et al., 2016). Platelet-derived growth factor-BB
(PDGF-BB) binds to PDGF receptors and subsequently
activates intracellular signaling cascades such as the protein
kinase B (Akt), extracellular signal-regulated kinase (ERK),
and p38MAPK pathways (Chen et al., 2015). Akt is a major
downstream target of phosphatidylinositol 3-kinase (PI3K).
MAPK contains three major members: ERK, p38 MAPK, and
c-Jun N-terminal kinase (JNK), of which ERK and p38MAPK are
involved in VSMCs phenotype conversion (Ma and Wells, 2014).

Inflammation Is Involved in VSMCs
Phenotype Conversion
Increased concentrations of pro-inflammatory cytokines were
observed in smooth muscle cells of hypertensive patients (Chi
et al., 2019). Nucleotide-binding oligomerization domain-like
receptor protein 3 (NLRP3) inflammatory vesicles activate
caspase-1 and thus induce inflammation, thus becoming another
new focus for triggering hypertension (Sun et al., 2017).

Nucleotide-binding oligomerization domain-like receptor
protein 3forms a complex with atypical squamous cells (ASC)
prompting the conversion of procaspase-1 to active caspase-1.
Activated caspase-1 prompts the conversion of pro interleukin-
1beta (IL-1β) to mature IL-1β ultimately inducing inflammation.
Elevated levels of the pro-inflammatory cytokine IL-1β in
the vasculature under hypertensive pathology suggest that
inflammation is highly associated with hypertensive vascular
remodeling (Slaats et al., 2016). Multiple signaling and metabolic
dysregulation cause NLRP3 inflammasome activation, such as
ca2+, ROS, NO, Ang II, and endoplasmic reticulum stress
and mitochondrial dysfunction (He et al., 2016). NLRP3
inflammasome activation leads to nuclear factor-kappaB (NF-
κB) signaling activation involved in the development and
progression of hypertension. NLRP3 gene deletion attenuates
Ang II-induced inflammation, VSMC phenotypic transformation
and proliferation, and Ang II-induced hypertension and vascular
remodeling (Ren et al., 2017).

Renin-Angiotensin System-Induced
Vascular Remodeling in Hypertension
The renin-angiotensin system (RAS) regulates vascular tone and
plays a key role in vascular remodeling (Schiffrin, 2012). The
RAS consists of series of enzymatic reactions culminating in the
generation of AngII in plasma as well as in cardiovascular system.
The Ang II/AT1 signaling has been shown to be aberrantly
activated in vascular hypertrophy and remodeling by promoting
VSMC growth, transdifferentiation and proliferation, eliciting
a variety of biological actions of the RAS in the vascular
homeostasis (Thomas et al., 2005; Mehta and Griendling, 2007;
Zhong et al., 2010; Jin et al., 2012). As a specific Ang II-
degredating enzyme, ACE2 suppresses VSMC proliferation and
vascular hypertrophy. Loss of ACE2 led to vascular proliferation
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and elevated migration of SMC while ACE2 overexpression
inhibited vascular proliferation and hypertrophy by preventing
aortic wall thickening (Strawn et al., 1999; Landon and Inagami,
2005; Ferreira et al., 2009; Zhang et al., 2009; Zhong et al., 2011;
Jin et al., 2012; Patel et al., 2012).Excessive activation of RAS
under hypertensive pathology causes upregulation of the classical
pathway action of the Ang-converting enzyme ACE/Ang II/Ang
type I receptor (AT1R) and impairs the protective effect of the
ACE2/Ang 1–7/Mas receptor (MasR) pathway.

Patients with hypertension present with locally or systemically
elevated Ang II levels, i.e., excessive activation of the
classical pathway. Renin released from the kidney converts
angiotensinogen (AGT) produced by the liver to Ang I, which
is converted to Ang II by the action of Ang converting enzyme
(ACE) (Li et al., 2017). Other enzymes may also be involved
in Ang II production, such as histones, chymotrypsin, etc.
(Passos-Silva et al., 2013). ACE also inactivates bradykinin,
which has a vasodilatory effect. The physiological effects of
Ang II are mediated by the G protein-coupled receptor family,
whose types are type 1 (AT1R) and type 2 (AT2R) (Zhang
et al., 2017). Activation of the ACE/Ang II/AT1R pathway
stimulates vasoconstriction, sympathetic activation and ROS
production, and triggers harmful effects such as endothelial
dysfunction, inducing vascular inflammation, thrombosis,
proliferation, and fibrosis (Kawai et al., 2017). In contrast,
AT2R exerts histoprotective effects, including vasodilatation,
anti-inflammatory, and anti-proliferative (Santos et al., 2018).

ACE2 hydrolyzes AngI to produce Ang1-9, which is cleaved
by ACE to produce Ang 1–7 (Santos et al., 2018). Ang 1–7 mainly
acts through ACE2. Ang 1–7 binds to the specific receptor MasR,
a G protein-coupled receptor that triggers anti-inflammatory,
anti-fibrotic and anti-proliferative and produces protective effects
(Rodrigues Prestes et al., 2017).

ROS Participates in the Phenotypic
Transition of Hypertensive VSMCs
Disruption of ROS signaling leads to the development of
several diseases, such as hypertension. In hypertension, Ang
II, NE, and ET-1 activate receptors located on the cell
membrane, namely AT1, α-AR, and ET receptors. These
receptors are coupled to G proteins and activate NADPH oxidase.
Activated NADPH oxidases produce ROS, which in turn activate
cellular phosphorylation pathways: MAPK, PI3K/Akt. Activated
phosphorylation pathways activate transcription factors, such as
activator protein-1 (AP-1), p53, NF-κB, and nuclear E2-related
factor 2 (Nrf2), which promote post-entry gene transcription
into the nucleus of the cell. These target genes encode proteins
that subsequently mediate changes in cellular phenotypes,
such as hypertrophy, inflammation, necrosis, and apoptosis
(Das et al., 2018).

Although cells of different systems perform different
functions, redox signaling is very similar. NADPH oxidase is
a major source of ROS in endothelial cells, vascular smooth
muscle cells, cardiomyocytes, renal cells, and cardiovascular
neurons (Nowak et al., 2018). Ang II is an important activator
of NADPH oxidase and a stimulator of ROS (Kang et al., 2019).

ROS are produced through mechanical stress stimulation of
vascular smooth muscle cells, and ROS act through MAPK
production to cause cell proliferation, hypertrophy and apoptosis
(Gusan and Anand-Srivastava, 2013).

Aerobic Exercise Improves Smooth
Muscle Vascular Remodeling
The powerful stimuli generated by aerobic exercise are associated
with vascular remodeling (Green, 2009; Green et al., 2017).
Small arteries are the main resistance vessels that regulate
flow to different tissues of the body and control blood
pressure. Phenotypic conversion of VSMC in these vessels
plays an important role in structural remodeling and can
lead to various cardiovascular diseases, including hypertension
(Owens et al., 2004).

Exercise induced the VSMCs of SHR to maintain a more
contractile phenotype, with differentiation protein α-SM-actin
and OPN, which is involved during VSMC migration and
proliferation and as dedifferentiation marker being inhibited
(Chaulet et al., 2001; Speer et al., 2002; Ye et al., 2009;
Jiang et al., 2014).

After 8 weeks of aerobic exercise, the phenotype of
spontaneously hypertensive rats was reversed, showing an
increase in contractile protein expression and a decrease in
synthetic protein expression. 12-week aerobic exercise increased
the expression of eNOS protein in 3-month-old hypertensive
rats, and decreased the expression of ERK and p38, thereby
improving VSMC function. Aerobic exercise has a beneficial
effect on vascular phenotyping by regulating the balance of Akt
and MAPK signal pathways in VSMC. Aerobic exercise enhances
the effect of PI3K/Akt/eNOS signaling pathway in normal rats,
and maintains a good contractile phenotype of normal rat VSMC
(Zhang et al., 2019). Aerobic exercise moves the role of RAS
to the protective pathway in several disease models such as
hypertension (ACE2/Ang 1–7/MasR) (Frantz et al., 2017). Eight
weeks of aerobic exercise inhibits the activity of NF-κB p65,
reduces the increase of norepinephrine, epinephrine and the
expression of IL-1β and TNF-α in plasma (Qi et al., 2019).

Therefore, aerobic exercise is an effective intervention for
hypertensive vascular remodeling. Aerobic exercise is involved
in improving the vascular remodeling caused by vascular media
injury in many aspects, such as reducing inflammation and
activating the protective pathway of RAS from the specific
signaling pathway.

HYPERTENSIVE EXTRAVASCULAR
MEMBRANE AND THE AMELIORATIVE
EFFECT OF AEROBIC EXERCISE

Adventitial fibroblast (AF) is the main cellular component
of the adventitia of blood vessels. Under the pathology of
hypertension, the ability of proliferation and migration is
enhanced, and a variety of cytokines are secreted, which
participates in inflammation and vascular remodeling (Qi et al.,
2019). When adventitia fibroblasts are pathologically damaged,
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ECM is secreted to participate in vascular remodeling. Excessive
accumulation of collagen will increase the stiffness of blood
vessels and accelerate the development of hypertension. In
addition, ECM induces cell signals to regulate cell adhesion,
proliferation, migration, and differentiation, and participates in
the remodeling of hypertensive blood vessels, among which
matrix metalloproteinases (MMPs) are the key factors leading to
vascular maladaptation (Castro and Tanus-Santos, 2013; Hua and
Nair, 2015). Gelatinase MMP-2 and MMP-9 are vascular disease-
related proteins, which are involved in oxidative stress and
cause cardiovascular dysfunction, and are involved in vascular
remodeling in chronic maladaptive hypertension (Belo et al.,
2015; Han et al., 2019).

Biologically active peptides, hemodynamics and reactive
oxygen species regulate the expression and activity of MMP-2.
Increased MMP-2 can cause poor vascular adaptability due to
hypertension (Hardy et al., 2018). MMP-2 stimulates VSMC to
interact with the newly formed ECM. ECM triggers intracellular
signal transduction through integrin to induce phenotypic
transition and continuous migration. VSMC changes from a
contractile phenotype to a synthetic phenotype, leading to
vascular remodeling under the pathology of hypertension. The
tissue matrix metalloproteinase inhibitor TIMP is a secreted
protein that can inhibit the activity of MMPs. AF-derived TIMP1
acts on the smooth muscle cells and inflammatory cells in
the vascular part through paracrine, inhibiting the enzymatic
activity of MMP-9, leading to increased synthesis and secretion
of collagen in blood vessels. The expression of Ang II increases
during hypertension. Ang II induces the expression and secretion
of type I collagen in cultured adventitia fibroblasts (Somanna
et al., 2016; Fu et al., 2018). Ang II regulates the expression of
MMP-2 and TIMP1 in adventitia fibroblasts, and the changes
in the expression of MMP-2 and TIMP1 are involved in the
secretion of collagen by adventitia fibroblasts to participate in the
process of vascular remodeling.

ROS Is Involved in the Regulation of
Matrix Metalloproteinases
Researches have shown that ROS can regulate the activity
of MMPs. Pro-MMP-2 and pro-MMP-9 secreted by VSMC
are activated by ROS (Prado et al., 2018). The expression
of MMPs genes is also regulated by ROS. When VSMCs
are mechanically stretched, NAD(P)H oxidase-derived ROS
increases the expression of MMP-2 mRNA (Yue et al., 2018).
The strategy of adjusting the bioavailability of ROS can
reverse vascular remodeling, effectively prevent vascular damage
and reduce hypertension and its related end-organ damage
(Prado et al., 2018).

Ameliorative Effect of Aerobic Exercise
Twelve weeks of exercise training increased collagen deposition
in hypertensive rats, and reduced the size of pores in the
intima, which explained the beneficial effects of exercise on
vascular remodeling and vasodilation, especially the pressure
exerted by elastin protein at low positions. The latest research
on the aorta of hypertensive rats also shows that exercise

training can normalize changes in the deposition of elastic
components (Moraes-Teixeira Jde et al., 2010). The imbalance
between synthesis and degradation of ECM protein can affect
vascular remodeling. Sports training affects the expression of
MMP to varying degrees. Under pathological conditions, ROS
production will increase ECM proteins, such as collagen and
fibronectin (Lee and Griendling, 2008). In addition, the reduction
of oxidative stress in hypertension is related to the normalization
of vascular remodeling and collagen deposition observed in
arteries (Zhang et al., 2016).

PERIVASCULAR ADIPOSE TISSUE AND
THE AMELIORATIVE EFFECT OF
AEROBIC EXERCISE

PVAT Adipose Tissue Is Involved in
Vascular Remodeling of Hypertension
Perivascular adipose tissue secretes a large number of
metabolically vasoactive adipokines (e.g., lipocalin, leptin,
resistin, endolipin, etc.) that exert endocrine and paracrine
effects (Saxton et al., 2019). Vascular injury, infection leads to
abnormal PVAT and inflammatory cell infiltration and imbalance
in the release of harmful and beneficial adipokines. This is usually
manifested by increased levels of leptin and decreased levels
of adiponectin (Zhang et al., 2016). This in turn accelerates
inflammation, oxidative stress causing endothelial dysfunction
and VSMC proliferation.

The adipokines produced by PVAT are more likely to
cause inflammation, proliferation, and then cause vascular
remodeling (Schlich et al., 2013; Nosalski and Guzik, 2017).
PVAT dysfunction activates the NLRP3/IL-1 signaling pathway
after early vascular injury, leading to increased proliferation
and differentiation of AF, thereby aggravating vascular adventitia
remodeling. PVAT causes endothelial dysfunction by increasing
the oxidative stress derived from NADPH oxidase and increasing
the production of pro-inflammatory adipokines (such as leptin)

FIGURE 3 | Aerobic exercise improves hypertension by reducing
inflammation, reducing fibrosis and proliferation, mediating vasodilation, and
reducing perivascular adipose tissue.
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(Gil-Ortega et al., 2014). The increase of tumor necrosis factor-α
(TNF-α) gene expression in PVAT under hypertension is related
to the increase of ET-1 and endothelin receptors. Increased
TNF-α gene expression is related to NOS uncoupling and
reduced NO release (Virdis et al., 2015). Under the pathology
of hypertension, PVAT secretes a large amount of adipokines to
accelerate inflammation and oxidative stress, aggravate vascular
endothelial dysfunction and VSMC proliferation to accelerate
vascular remodeling. Adipose tissue contains AGT and ACE,
and the gene expression of AT1 receptor in PVAT is higher
(Mikolajczyk et al., 2019). Systemic infusion of Ang II can cause
local PVAT inflammation and participate in vascular remodeling
of hypertension. Adiponectin induces AMP-activated protein
kinase (AMPK) phosphorylation, inhibits the migration of mouse
outer membrane fibroblasts and inhibits the expression of nitric
oxide synthase (Ghantous et al., 2020).

Aerobic Exercise Regulating Vascular
Remodeling by Ameliorating PVAT
Aerobic exercise can significantly reduce the serum leptin
level in PVAT in patients with hypertension and improve
leptin resistance, and the adiponectin content increases. Aerobic
exercise can improve the low-grade inflammation in obese
people and reduce the level of plasma inflammatory cytokines
(Sousa et al., 2019).

The activation of endothelial cell mechanical sensors during
aerobic exercise stimulates the production of eNOS and
NO, reduces vascular oxidative stress, increases antioxidant
response and improves NO bioavailability (Sponton et al., 2017;
Ruegsegger and Booth, 2018). In addition, aerobic exercise
changes the metabolic phenotype of adipose tissue and inhibits
the expression of inflammatory markers (Boa et al., 2017).
Aerobic exercise is beneficial to restore eNOS activation or
reduce iNOS protein expression, both of which are related to
the normalization of contractile vascular reactivity in obese rats
(Araujo et al., 2018).

Exercise training reduces PVAT inflammation (Lee et al.,
2016). Aerobic exercise training stimulates angiogenesis in
adipose tissue, improves blood flow and reduces hypoxia and
macrophage infiltration (You et al., 2013). It can also prevent
or weaken the infiltration of immune cells into PVAT, thereby
improving blood vessel function (Boa et al., 2017). At the
same time, mechanical stimulation of exercise plays a basic role
in preventing endothelial dysfunction by reducing ROS and
increasing the bioavailability of NO. Exercise training increases
the expression of eNOS protein in the aorta and prevents the up-
regulation of iNOS in PVAT. Aerobic exercise also increases the

expression of Mn-SOD protein in PVAT and reduces tissue ROS
production (Huang et al., 2018).

CONCLUSION

To sum up, the pathological changes of the three-layer membrane
structure of blood vessels and the increase of perivascular adipose
tissue are the factors that lead to the development of hypertensive
vascular remodeling. At present, clinically, antihypertensive
drugs that may have a beneficial effect on vascular remodeling
are being explored, such as neutral lysozyme inhibitors related
to angiotensin receptor blockers, aldosterone synthase inhibitors,
and renal denervation and baroreceptors Stimulate and other
new drugs. In terms of exercise, it has been proven that aerobic
exercise can improve vascular remodeling by improving the
tunica intima, media, and adventitia thickening and fibrosis
under the pathology of hypertension (Figure 3). Based on a
large number of previous studies, the future research direction
of aerobic exercise and hypertension can be as follows: (1)
To further accurately grasp the exercise intensity and exercise
time of people of different ages, races and degrees of vascular
remodeling. (2) Regular aerobic exercise can reduce ROS in cells
and increase the bioavailability of NO, but the mechanism of
endothelial function improvement during exercise has not been
fully elucidated. Or the protective effect of aerobic exercise in
regulating DNA methylation on the cardiovascular system can be
used as a further research direction.
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