AUTHOR=Su Yan , Xu Jiani , Gao Rufei , Liu Xiaoli , Liu Taihang , Li Cong , Ding Yubin , Chen Xuemei , He Junlin , Liu Xueqing , Li Chunli , Qi Hongbo , Wang Yingxiong TITLE=The Circ-CYP24A1-miR-224-PRLR Axis Impairs Cell Proliferation and Apoptosis in Recurrent Miscarriage JOURNAL=Frontiers in Physiology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2022.778116 DOI=10.3389/fphys.2022.778116 ISSN=1664-042X ABSTRACT=Aim

Recurrent miscarriage (RM) is associated with numerous clinical factors. However, some RM occurred without specific factors. It has been revealed that some molecules such as hormones, miRNAs, and transcription factors are involved in RM by regulating proliferation, apoptosis, etc. However, the mechanism of RM has yet to be identified clearly. Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs that often act as sponges for miRNAs or binds to proteins involved in biological processes. However, the functional role of circRNAs in the uterine decidua of patients with early RM is still unclear. In this study, we aimed to investigate the mechanisms of circ-CYP24A1 in RM.

Methods

The Dual-Luciferase Activity Assay was designed to analyze the bonding between circ-CYP24A1 and miR-224, and miR-224 and prolactin receptor (PRLR) mRNA 3′UTR. In situ hybridization (ISH) and immunohistochemistry (IHC) were used to observe the expression of circ-CYP24A1 and PRLR in the decidua. Rescue experiments were performed to investigate the regulating effects of circ-CYP24A1, miR-224, and PRLR. Western blotting was conducted to test the expression level of PRLR. The proliferation and apoptosis-related markers in Ishikawa cells were analyzed using CCK8, immunofluorescence staining, and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay.

Results

In this study, based on the microarray analysis data, we identified a high level of circ-CYP24A1 and PRLR in the decidua of patients with early RM. Based on the bioinformatics prediction, the binding relationship between circ-CYP24A1 and miR-224, as well as miR-224 and PRLR, were verified. Functional experiments demonstrated that circ-CYP24A1 regulated proliferation and apoptosis by binding to and inhibiting miR-224, resulting in increased PRLR expression. Taken together, this study provides new insights into the mechanism of RM.

Conclusion

In this study, we found that circ-CYP24A1 plays a role in RM by impairing the balance of cell proliferation and apoptosis by sponging miR-224, thereby regulating PRLR.