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Introduction: Representation learning allows artificial intelligence (AI) models to learn
useful features from large, unlabelled datasets. This can reduce the need for labelled
data across a range of downstream tasks. It was hypothesised that wave segmentation
would be a useful form of electrocardiogram (ECG) representation learning. In addition
to reducing labelled data requirements, segmentation masks may provide a mechanism
for explainable AI. This study details the development and evaluation of a Wave
Segmentation Pretraining (WaSP) application.

Materials and Methods: Pretraining: A non-AI-based ECG signal and image simulator
was developed to generate ECGs and wave segmentation masks. U-Net models
were trained to segment waves from synthetic ECGs. Dataset: The raw sample files
from the PTB-XL dataset were downloaded. Each ECG was also plotted into an
image. Fine-tuning and evaluation: A hold-out approach was used with a 60:20:20
training/validation/test set split. The encoder portions of the U-Net models were
fine-tuned to classify PTB-XL ECGs for two tasks: sinus rhythm (SR) vs atrial
fibrillation (AF), and myocardial infarction (MI) vs normal ECGs. The fine-tuning was
repeated without pretraining. Results were compared. Explainable AI: an example
pipeline combining AI-derived segmentation masks and a rule-based AF detector was
developed and evaluated.

Results: WaSP consistently improved model performance on downstream tasks for
both ECG signals and images. The difference between non-pretrained models and
models pretrained for wave segmentation was particularly marked for ECG image
analysis. A selection of segmentation masks are shown. An AF detection algorithm
comprising both AI and rule-based components performed less well than end-to-
end AI models but its outputs are proposed to be highly explainable. An example
output is shown.
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Conclusion: WaSP using synthetic data and labels allows AI models to learn useful
features for downstream ECG analysis with real-world data. Segmentation masks
provide an intermediate output that may facilitate confidence calibration in the context of
end-to-end AI. It is possible to combine AI-derived segmentation masks and rule-based
diagnostic classifiers for explainable ECG analysis.

Keywords: artificial intelligence, electrocardiogram (ECG), machine learning, explainable AI, representation
learning

INTRODUCTION

Artificial Intelligence for
Electrocardiography
Overview
Correct electrocardiogram (ECG) interpretation is key to the
diagnosis and treatment of myocardial infarction (MI) and
life-threatening arrhythmias, among many other conditions
(Macfarlane et al., 2010). Computerised ECG analysers have
been in existence for over 50 years (Rautaharju, 2016). However,
semantic interpretation of ECG data requires the identification of
subtle patterns from a complex signal. It is challenging to describe
this process in conventional computer code.

Artificial intelligence (AI) can perform strongly in this field
because it does not rely on the ability of human experts to
expound process knowledge. AI-enabled analysis has led to state-
of-the-art performance across a range of ECG interpretations
tasks (Kashou et al., 2020).

Types of Artificial Intelligence for Electrocardiogram
Interpretation
Machine learning (ML)-based AI refers to a set of automated
statistical modelling techniques. AI models learn through trial
and error. At each step of the learning process, the model makes
a prediction. An error is calculated based on a loss function.
A new set of model parameters is discerned using an optimisation
function. Further steps are taken until some endpoint is reached
(Svensén and Bishop, 2007).

Deep learning (DL) is the frontier of modern AI. DL arose
from the study of artificial neural networks (ANNs) (Goodfellow
et al., 2016). ANNs are computational graphs comprising
densely interconnected multi-layer perceptrons (MLPs). They are
inspired by the biological brain.

The difference between “classical” ML and DL is often
summarised thus: ML techniques generally rely on prior
processing of input data to extract key features using expert
domain knowledge; DL techniques learn end-to-end processing,
which includes feature extraction (Rusk, 2016). In practice, this
results in a trade-off: DL techniques are able to detect more
complex patterns in higher dimensional data compared with ML
approaches, and can function with lower signal-to-noise ratios
(SNRs), but at the cost of being less explainable.

In the domain of ECG processing, it is the feature extraction
step that presents the greatest challenge for conventional (non-
AI) applications. Filtering noise and other electrical artefact from
ECG signals, then identifying key features such as the primary
waves, has been a major research theme in automated ECG

analysis for decades (Luo and Johnston, 2010) but is by no
means a solved problem. This limits the utility of ML algorithms
(Ribeiro et al., 2020), where knowledge-based feature extraction
remains an important part of the pipeline. It is here that DL
algorithms can excel.

Convolutional neural networks (CNNs) are a variant of ANNs,
and a form of DL. They leverage large numbers of learnable
convolutional filters to detect important signals within high-noise
data (Goodfellow et al., 2016). They were developed primarily
for semantic analysis of real-world images (Krizhevsky et al.,
2012), but the technology transfers well to ECG signals and
has been applied to a broad range of clinical problems (Lopez-
Jimenez et al., 2020; Makimoto et al., 2020; Siontis et al., 2021).
This includes a landmark 2019 study by Hannun et al. (2019)
that claimed “cardiologist level” diagnosis of atrial fibrillation
(AF), and even a study later that year by Attia et al. (2019) that
described a DL algorithm able to detect incipient AF. It is likely
that convolutional filters in the earlier layers of a CNN learn
filtering methods to deal with common ECG noise and artefact,
such as baseline wander, powerline interference and non-cardiac
muscle activity. This reduces or negates the need for traditional
filtering methods (Arsene et al., 2019).

Transformer neural networks emerged from the field
of natural language processing (NLP). They use attention
mechanisms to parallelise sequential data processing. Attention
mechanisms can evaluate the relative importance of distant
features within data, whereas CNNs have a limited capacity for
this. This can be advantageous when relationships between non-
local features are important, such as in multi-clauses sentences
or even entire documents (Vaswani et al., 2017). However, it has
recently been shown that transformer models can scale to sizes
up to hundred of billions of trainable parameters with a relatively
linear improvement in performance (Korngiebel and Mooney,
2021). The sheer power of these “mega-AI models” means that
they are beginning to attain state-of-the-art performance in
domains where CNNs have traditionally dominated, such as
image processing (Dosovitskiy et al., 2020). Transformers for
ECG signal analysis is an active research area (Yan et al., 2019;
Natarajan et al., 2020), and it may be that this is the place to look
for the next wave of breakthroughs in this field.

Challenges
Data Paucity
As AI models grow larger and more sophisticated, they need
more data to maximise their learning potential. This challenge
is being actively addressed by the creation of large public datasets
such as PhysioNet’s PTB-XL (Wagner et al., 2020). However, large
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transformer models can require billions of training samples to
reach their full potential, which is orders of magnitude beyond
the largest public databases at present. In rarer ECG conditions,
data paucity remains a bottleneck to training even small AI
models. It is also a challenge for ECG image analysis, where SNR
is much lower than in raw signal format, and where more training
data are needed to compensate for this (Brisk et al., 2019).

Explainable Artificial Intelligence
Elucidating the process logic encoded by networks comprising
millions of parameters is extremely difficult. This is often referred
to as the “black box effect,” and has given rise of a field of
study known as explainable AI (Samek et al., 2019). The black
box effect can make it difficult for humans to exercise oversight
of an AI system’s decision logic. Without this oversight, it is
challenging to calibrate one’s confidence in the outputs of an AI
systems. Confidence calibration is known to play a key role in
ECG interpretation (Bond et al., 2018).

Related Work
Overcoming Data Paucity
Representation learning (RL) lessens the need for labelled
training data. In RL, an AI model is trained for a task that
forces it to learn useful “latent representations” of the data
without manually assigned labels. This can be hard to intuit for
non-data scientists, and a full explanation is beyond the scope
of this article. Interested readers are directed to an excellent
review by Bengio et al. (2013). RL is used for some of the
most sophisticated AI models in existence today (Vaswani et al.,
2017). Models pre-trained using RL and then fine-tuned for
specific tasks using labelled training data, which is to say that
they undergo a further training period for a specific task with
constraints placed upon the rate at which they learn (Komodakis
and Gidaris, 2018). The constrained learning rate means that
the fine-tuning period serves to refine the latent representations
acquired during pretraining, rather than simply overwriting
previous representations with new ones. This latter phenomenon
is known as “catastrophic forgetting” (Kirkpatrick et al., 2017).

Representation learning has been investigated in the domain
of ECG interpretation by a small number of studies. A recent
example is from Sarkar and Etemad (2020). They tasked a
model with identifying which augmentations had been applied
to ECG signals, such as addition of Gaussian noise or signal
flipping. This reduced the need for labelled data when fine-
tuning for downstream tasks. However, this is a sparsely
explored topic to date.

Explainable Electrocardiogram Artificial
Intelligence
Several approaches to explainable AI-enabled ECG analysis have
been investigated. A recent paper by Maweu et al. (2021) infers
the relative importance of key ECG waves with respect to an
AI model’s output (Dosovitskiy et al., 2020). This approach
of retrospectively interrogating trained models to infer logic
processes is widely used. Our group has previously explored one
such technique known as saliency mapping. It was found that the
outputs provided false reassurance, in that they appeared to show

that the AI model was leveraging the ST segment to diagnose
acute myocardial ischaemia. This supported the idea that the
model was leveraging features in the input data known to relate
closely to the target label, whereas is was later discovered that this
was not the case (Maweu et al., 2021).

A study by Jo et al. (2021) prioritises explainable outputs
at the algorithm design stage. They detect AF by using two
linked AI models. One is for detecting the presence or absence
of P waves. The other is for detecting regular or irregular
R–R intervals. This follows the established decision logic of
clinical experts and results in relatively interpretable outputs. It is
unclear that this approach would generalise well to more complex
diagnostic patterns.

Focus of This Work
Wave identification is a fundamental step for any ECG analysis by
a human expert. Therefore, it was hypothesised that an AI model
pretrained to segment key waves from ECG signals will:

1. Learn useful representations of ECG data and train more
efficiently for downstream tasks, minimising the need for
manually labelled data.

2. Provide a human-readable intermediate output that may
facilitate confidence calibration.

3. Facilitate a choice between using DL technology as a feature
extractor for explainable downstream analysis, or using DL
for end-to-end ECG analysis by fine-tuning the pretrained
models.

The challenge was that manual segmentation of waves within
12-lead ECGs is very laborious. This is particularly true of
ECG images, which the authors have previously proposed as an
important modality that has been under-represented within ECG
AI research to date, and which was to be used in this study
along with raw sample data. RL approaches generally leverage
self- or semi-supervised methods to make pretraining on large
datasets practical, and manual wave segmentation was not felt to
be practical for this experiment.

This led to a further hypothesis, whose evaluation is proposed
as the most significant contribution of this study to the field:

1. Representations learned from pretraining on synthetic data
and labels will transfer to downstream tasks using real ECG
data.

MATERIALS AND METHODS

Overview
The following approach was designed to test the hypotheses
described above. Steps 2–7 were repeated for raw sample and
image formats. Steps 8 and 9 were only undertaken for the
image-based experiment.

1. Develop an ECG and segmentation mask generator.
2. Train an AI model to predict segmentation masks using

a synthetised dataset: referred to hereafter as Wave
Segmentation Pretraining or WaSP.
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3. Predict segmentation masks for a database of real ECGs
(for analysis at step 7).

4. Fine-tune the model for downstream diagnostic tasks using
database of labelled real ECGs.

5. Re-initialise the model with pre-WaSP weights and train
this model for downstream diagnostic tasks using database
of labelled real ECGs.

6. Compare the results from steps 4 and 5 to
test hypothesis (1).

7. Undertake a qualitative analysis of segmentation masks
from step 3 to test hypothesis (2).

8. Develop and evaluate a rule-based diagnostic pipeline to
evaluate hypothesis (3).

9. Train a “mixed modality” model for diagnostic tasks,
whereby an ECG signal is read back from the predicted
segmentation mask and fed into a 1D AI model.

Terminology
A segmentation mask is a set of labels that overlays some
input data, denoting the semantic category to which each datum
belongs. In the case of image data, the segmentation mask has
the same height and width as the pixel array of the original
image. Where the original image contains colour channel values
at each position in the pixel array, however, the segmentation
mask contains an integer value. This value denotes the semantic
class to which each pixel belongs. In the case of a single-class
segmentation task – for example, segmenting human faces from
photographs – all pixels belonging to a face will be represented
by a 1, whereas all other pixels will be considered as background
and will be assigned a 0. For the purposes of this experiment, the
following target classes were defined:

0 = background
1 = P wave
2 = P-R interval
3 = QRS complex
4 = ST segment
5 = T wave
6 = T-P segment
7 = T/P overlap
Downstream tasks can be any task for which a pretrained AI

model is subsequently re-trained. In the case of this experiment,
these tasks are described in section “Fine-Tuning for Diagnostic
Classification.”

Synthetic Electrocardiogram Generation
Rob Brisk developed an application to simulate 12-lead ECG
signals. The Python programming language was used. The aim of
the simulator development was to produce a broad spectrum of
realistic ECG phenotypes. The parameters determining rhythm
and morphology of ECGs were governed by pseudo-random
number generation to ensure each ECG was unique. Random
noise and baseline wander were added to each signal. Voltages
were scaled randomly.

In effect, the simulator was a form of expert system (Jackson,
1986) informed by key works in the field such as Macfarlane et al.
(2010), in addition to the author’s own experience as a practising

cardiologist. The ECG signals were optionally plotted into 12-
lead ECG images. Segmentation masks were generated for each
ECG signal and image.

Wave Segmentation Pretraining
Model Architecture
U-Net model architectures were used for ECG segmentation.
The U-Net is a popular CNN-based architecture for image
segmentation. It comprises two halves: an encoder and a decoder.
The encoder abstracts high level features from the input image.
The decoder generates a segmentation mask based on the encoder
feature map (Ronneberger et al., 2015). See Figure 1 for a
visual depiction.

The encoder used for each model was based on the SEResNet
architecture (Hu et al., 2018). This is one of many permutations
of the “vanilla” CNN. A full review of CNN types is beyond
the scope of this work, though such reviews exist (Khan et al.,
2020). SEResNet was felt to represent a demonstrably performant
architecture that would fit with the compute constraints of the
experiment. The signal-based model used a 1D U-Net with a
SEResNet encoder. The image-based model used a 2D U-Net with
a SEResNet152 encoder.

The 1D models were initialised with random parameter
values (commonly known as model weights). The 2D
models were initialised with weights derived from real-
world image classification training with the ImageNet database
(Deng et al., 2009).

Training Protocol
For the self-supervised pretraining, 32,000 ECGs and
segmentation masks were synthesised. The segmentation
models were trained during a single pass through the dataset
(known as an epoch). A dice loss function was use with Jaccard
smoothing (Bertels et al., 2019). Hyperparameters (parameters
that control the training process, rather than forming part of the
model itself) were manually tuned based on the training loss,
training F1 score (see Equation 1) and a visual inspection of
segmentation masks at the end of each training cycle.

2 × Sensitivity × PPV
Sensitivity × PPV

(1)

F1 score (PPV, positive predictive value).
An enhanced pretraining step was undertaken as an additional

experiment. A further 12,000 ECGs and segmentation masks
were synthesised. Each ECG showed either sinus rhythm (SR) or
AF. Each ECG also showed one of six morphological phenotypes:
normal, left anterior hemiblock, left posterior hemiblock, high
take-off, left bundle branch block, or anterior ST-elevation.
A classification head was added to the model encoder to predict
the rhythm and morphological phenotype of each ECG. The
model was simultaneously trained for both segmentation and
classification using a multi-task learning approach.

Fine-Tuning for Diagnostic Classification
The PhysioNet PTB-XL database was downloaded, along with
the label files (Wagner et al., 2020). This is one of the largest
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FIGURE 1 | Illustration of how a 2D U-Net model can be applied to segmentation and classification tasks.

publicly available repositories of labelled ECG signals, comprising
21,837 ECGs from 18,885 subjects. The labels for each ECG
include one or more of 71 ECG-SCP statements, and each ECG
is assigned one of five diagnostic superclasses. The raw samples
were converted to NumPy arrays. They were also plotted into
ECG images using the software developed for this experiment.

Two diagnostic classification tasks were undertaken: SR vs
AF and normal morphology vs MI. For each of these tasks, the
signals were divided into training, validation and test sets using a
60:20:20 split. A hold-out test set approach was used.

To fine-tune the models for diagnostic classification, average
pooling was applied to the output of the final convolutional
filter of the U-Net encoder. Two densely connected layers were
appended, and a sigmoid activation function applied to the
output nodes. See Figure 1 for a visual representation.

Rule-Based Atrial Fibrillation Detector
To create the rule-based AF detector, segmentation masks were
predicted for ECG images using the pretrained 2D U-Net model.
A rule-based algorithm was used to determine the locations
of QRS complexes, based on clusters of pixels assigned to the
QRS class. The standard deviation of the R–R intervals was
calculated. The area approximately 250 mS prior to each QRS
complex was evaluated for the presence of a P wave, based on
cluster of pixels assigned to the P wave class. See Figure 2 for
a visualisation.

If the number of QRS complexes preceded by a P wave was
less than threshold X, and the standard deviation of R–R intervals
was greater than threshold Y, the ECG was classified as AF.
Thresholds X and Y were set using a brute force search on

the validation set, where the combination maximising the F1
score was selected.

Mixed Modality Model
Segmentation masks were predicted for ECG images using the
pretrained 2D U-Net model. A rule-based algorithm was used
to read back the ECG signal. This employed a grid search
method described by this group in a previous paper (Brisk et al.,
2019). The extrapolated ECG signal was fed into a 1D ResNet
encoder which made a diagnostic prediction. See Figure 3 for
a visualisation.

Analysis
Sensitivity, specificity, positive predictive value and F1 score were
calculated with respect to the AF and MI classes. The F1 score was
used as the primary metric for comparing the models and testing
hypothesis (1). Training loss curves were plotted. No additional
statistical analysis was undertaken.

This experiment resulted in three sets of results for each of the
two diagnostic tasks for the raw samples dataset:

1. Results from the non-pretrained model.
2. Results from the model pretrained using

wave segmentation.
3. Results from enhanced pretraining.

For the ECG image dataset, three additional sets of results were
produced:

1. Results from a model initiated with random weights (as
opposed to ImageNet weights) without WaSP.

Frontiers in Physiology | www.frontiersin.org 5 March 2022 | Volume 13 | Article 760000

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-760000 March 12, 2022 Time: 15:11 # 6

Brisk et al. WaSP-ECG: An ECG Pretraining Toolkit

FIGURE 2 | Visualisation of the rule-based AF detector.

FIGURE 3 | Visualisation of the mixed modality analyser.

2. Results from the mixed modality model.
3. Results from the rule-based AF detector.

Segmentation masks for selected ECGs from the PTB-XL
dataset were predicted at the end of pretraining. Another set
of masks were predicted after fine-tuning the models. The
segmentation masks predicted by the raw samples model were
transposed into images for manual inspection.

A small subset of ECG images were printed and either
photographed or scanned. Segmentation masks were predicted

using the pretrained 2D U-Net model to evaluate robustness to
real-world image artefact.

RESULTS

Data
Electrocardiogram Generator
The source code for the ECG generator can be found here: https:
//github.com/docbrisky/WaSP-ECG
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Synthetic Dataset
Examples of ECGs and segmentation masks produced by the
ECG generator can be seen in Figure 4.

Real Dataset
Characteristics of the PTB-XL database are described by Wagner
et al. (2020).

Segmentation Pretraining
Examples of predicted segmentation masks for real ECGs
can be seen in Figures 5A–E. This includes predicted
segmentation masks for ECG images that were printed and
either photographed or scanned, some with additional artefact
added. The models pretrained exclusively on synthetic data were
felt to generalise well to real-world ECG data. Robustness to
image artefact was variable.

Fine Tuning
Loss curves for 1D and 2D models can be seen in Figure 6A–D.
Across modalities, models with randomly initialised weights
converged more slowly than pretrained models. Among the
2D models, those with weights derived from non-enhanced
WaSP converged more slowly than either models that had
undergone enhanced pretraining or models that were initialised
with ImageNet-derived weights.

Diagnostic Classification
The sensitivity, specificity, positive predictive value, and F1 scores
for the diagnostic tasks can be seen in Table 1.

For the ECG images, the models that underwent enhanced
pretraining achieved the highest F1 score in both AF and MI
detection. For the raw samples, the enhanced pretrained model
scored highest for MI detection. The unenhanced pretrained
model scored highest for AF detection.

For the ECG image set, the non-pretrained models predicted
all samples as normal. Consequently, the sensitivity and positive
predictive value for both models was zero. The rule-based AF
detector scored lower than any pretrained model, although the F1
scores for the rule-based detector and the unenhanced pretrained
model were close at 0.52 and 0.53, respectively. The mixed
modality model outperformed the rule-based and unenhanced
pretrained models, but underperformed the enhanced pretrained
and ImageNet-trained models.

Confidence Calibration and Explainable
Outputs
In addition to Figures 5A–E, which show examples of
segmentation masks, Figure 7 shows an example output from
the rule-based AF classifier. Figure 8 shows a segmentation
mask produced by a model that has been newly initialised
with ImageNet weights. This model can be assumed to have
no diagnostic capabilities with respect to ECG analysis. It is
proposed that this segmentation mask would cause a clinician
to place low confidence in the model’s outputs, whereas the
segmentation masks shown in Figures 5A,B may warrant relative
high confidence. The segmentation masks in Figures 5C–E may

alert the clinician to some issues caused by image artefact, and
trigger additional caution when considering the model’s final
diagnostic output.

DISCUSSION

Key Conclusions
This study shows that WaSP using a synthetic dataset can
improve training efficiency for downstream ECG tasks with
real ECG data. The impact of pretraining was particularly
marked with ECG image analysis. WaSP also enables meaningful
intermediate output from the AI model.

The rule-based AF detection algorithm demonstrated a novel
approach to ECG image analysis that benefits from advances in
modern AI but is proposed to be highly explainable. Accuracy
was limited but refinement of the technique may result in
performance improvements.

Reading back signals from ECG image segmentation masks
allowed a 1D classifier to detect both MI and AF with moderate
accuracy. This shows that the SNR within the extrapolated data
is high enough to facilitate some degree of downstream analysis.
The motivation for investigating this is discussed in section
“Future Work.”

Limitations
The diagnostic tasks chosen for this study are not representative
of the spectrum of clinical ECG phenotypes encountered
in real-world practice. Two relatively easy diagnostic tasks
were chosen to minimise confounding factors and facilitate a
head-to-head comparison of different pretraining approaches.
The absolute results from these tasks add little to the field;
rather, it is intended that the relative results serve as an
early evaluation of WaSP and of pretraining with synthetic
ECG data. More work is needed to determine whether the
findings of this study would generalise to a wider range of
diagnostic problems.

One of the stated motivations for investigating WaSP was
that it may facilitate clinician confidence calibration. The figures
shown in this study may enable readers to begin forming their
own conclusions on this matter. However, this hypothesis was not
formally evaluated and can be considered unproven to date.

This study was undertaken in a retrospective observational
setting. A single dataset was used for training, testing and
validation. There is an increased risk of over-fitting a particular
data distribution in this context. Results shown here may not
generalise to other datasets or populations.

For the diagnostic classification evaluation, ECG images
were plotted directly from the signals in silico. In a
clinical setting, ECG images would be printed and either
scanned or photographed. This would introduce image
artefact that may alter the accuracy of downstream tasks,
as illustrated in Figure 5. For any future work aiming to
establish whether the novel image-based techniques described
here are useful for downstream clinical applications, it is
likely that the full evaluation would need to be conducted
with paper ECGs.
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FIGURE 4 | (A) Synthetic ECG showing SR with anterior ST elevation. (B) The same image with the ground truth wave segmentation mask superimposed.
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FIGURE 5 | (Continued)
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FIGURE 5 | (Continued)
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FIGURE 5 | (A) A segmentation mask for a randomly selected ECG signal from the PTB database. This mask was predicted for the raw ECG signal using a 1D
U-Net. Both the raw signal and the segmentation mask were subsequently plotted into an image file. The model that predicted this mask was pretrained exclusively
on synthetic ECG signals. (B) Segmentation mask for a randomly selected PTB signal that was (i) plotted into an ECG image using the software developed for this
experiment; (ii) printed using a standard desktop printer (HP Envy 4520 series); photographed using a Samsung Galaxy S10 mobile phone (flash off, bright daylight).
The mask was then predicted by a 2D U-Net model that had been pretrained exclusively on synthetic data. (C) This segmentation was produced using the same
process as (B), except that the photograph was taken in more challenging lighting conditions (at night, flash off, xenon strip lighting with shadows on image). (D)
This segmentation was produced using the same process as (B), except that the printed ECG was (i) crumpled up; (ii) sprinkled with coffee; (iii) smeared with tomato
sauce; (iv) scanned using an HP Envy 4520 desktop scanner (at 600 DPI). This process was the result of a discussion about how to recreate a level of image artefact
that might represent real-world clinical practice. David J. McEneaney noted that he is regularly asked to review ECGs that have been stained with blood or coffee,
and occasionally ECGs that have been thrown in the bin and subsequently retrieved. (E) This segmentation was produced using the same process as (B), except
that manual annotation artefact was added and the image was scanned using an HP Envy 4520 series scanned (at 600 DPI).

The rule-based AF detector was not evaluated with the
1D signals as this would have required a substantial re-write
of the application, which was not felt to be warranted as
there are already many rule-based AF detection algorithms for
raw sample data.

Comparison With Existing Approaches
As discussed during the “Introduction” section, approaches to
both pretraining and explainable DL for ECG analysis have been
explored by other groups. To the best of our knowledge, however,
this is the first demonstration that pretraining with synthetic
data is effective.

This has potentially significant implications for the fast-
growing field of ECG AI. The increasing number of large
public ECG databases like PTB-XL is helping to drive research
in this field. However, such databases are finite and may be
subject to bias: centres with the expertise and resources to
produce such datasets tend to exist in more affluent global
regions and may over-represent certain demographic groups; rare
diseases and paediatric conditions are often under-represented
in such biobanks (reference); studies from patients suffering

with emerging diseases that may have cardiac involvement (e.g.,
COVID-19) may take some time to reach these datasets.

Knowledge-based engineering of synthetic datasets allows
much greater control over the distribution of covariates-of-
interest within the training data. This can help to counterbalance
bias and to increase the occurrence of rare but important
features. It can also facilitate the creation of much larger datasets
than would be possible using real patient data. Historically,
supplementing labelled datasets with synthetic samples for task-
specific training has been problematic (Sankaranarayanan et al.,
2018). For learning general representations during pretraining,
however, we propose that a lower fidelity is acceptable: the model
will learn additional or altered features that occur in real-world
datasets during fine-tuning.

Additional Points of Interest
Electrocardiogram image models pretrained on ImageNet
performed significantly better than models initialised with
random weights. This implies that some features learned
from analysing photographs of real-world scenes transfer well
to ECG analysis.
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Performance worsened when the ImageNet-trained models
underwent non-enhanced WaSP. A possible explanation for this
is that WaSP caused catastrophic forgetting. It may be possible
to overcome this issue by freezing early convolutional layers and
reducing the learning rate (Shmelkov et al., 2017).

Enhanced WaSP involved the addition of a diagnostic
labelling task in addition to wave segmentation; the model was
asked to output both types of label for each sample using
an approach known as “multi-task learning.” This seemed to
improve performance significantly compared with non-enhanced
WaSP. The same black box nature of AI that was one of the
motivating factors for this study makes it difficult to ascertain
exactly why this was the case. However, the authors posit that the

addition of a diagnostic label for the whole ECG forced the model
to learn about relationship between more distant parts of the ECG
(for example, the diagnosis of left bundle branch block requires
that the model evaluate the QRS-T morphology in multiple leads
simultaneously), whereas wave segmentation can be achieved by
leveraging only very local parts of the data.

Relevance of This Work to the Wider
Field
As state-of-the-art AI models grow in size and complexity, more
training data is required to capitalise on their increased pattern
recognition capabilities (Li et al., 2019). In this study, WaSP
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FIGURE 6 | (A,B) Training losses for 1D models on diagnostic classification tasks with PTB ECGs. Each training run comprised a single epoch. WASP, WaSP. (C,D)
Training losses for 2D models on diagnostic classification tasks with PTB ECGs.

expedited convergence during fine-tuning and produced higher
results after a single training epoch. Therefore, WaSP can reduce
the need for labelled training to produce equivalent results.
This approach may allow larger AI model architectures to be
used for ECG tasks where there would otherwise be insufficient
labelled training data.

Explainable AI is an active research topic in healthcare
(Amann et al., 2020). Mechanisms by which clinicians can
calibrate confidence or review decision logic may provide key
to adoption of AI in practice. The work undertaken for this
study may catalyse future research into segmentation masks as

a mechanism for confidence calibration in ECG analysis, and
mixed AI and rule-based analysis as a mechanism for explainable
ECG image analysis.

The code base for this experiment has been published under
a permissive open source licence. The application has been
named WaSP-ECG. The intention is to facilitate reproduction
of results and accelerate future research in the field. The
inclusion of Zero optimisation functionality in the code base
(Rajbhandari et al., 2020) allows researchers to train larger models
on their existing infrastructure than would have otherwise been
possible, or to use higher resolution input data. This may
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TABLE 1 | Test set results for the two diagnostic classification tasks.

MI detection 1D Random weights WASP Enhanced WASP

Sensitivity 0.906077 0.955801 0.909761

Specificity 0.840292 0.83142 0.914927

PPV 0.762791 0.762675 0.858384

F1 0.828283 0.848386 0.883326

AF detection 1D Random weights WASP Enhanced WASP

Sensitivity 0.658537 0.764228 0.853659

Specificity 0.989232 0.996874 0.991316

PPV 0.723214 0.912621 0.807692

F1 0.689362 0.831858 0.83004

MI detection 2D Random weights Imagenet weights WASP Enhanced WASP Mixed modality model

Sensitivity 0 0.824125 0.513812 0.848066 0.667587

Specificity 1 0.950939 0.964509 0.935282 0.950418

PPV 0 0.904954 0.891374 0.88134 0.884146

F1 0 0.862651 0.651869 0.864383 0.760756

AF detection 2D Random weights Imagenet weights WASP Enhanced WASP Mixed modality model Rule-based model

Sensitivity 0 0.798611 0.395833 0.801105 0.657459 0.53125

Specificity 1 0.987541 0.991991 0.947808 0.968163 0.957876

PPV 0 0.845588 0.808511 0.896907 0.92129 0.518644

F1 0 0.821429 0.531469 0.846304 0.767329 0.524871

Highest and lowest F1 scores for each set of results are highlighted in green and yellow, respectively.

FIGURE 7 | Output of the rule-based AF detection algorithm. The authors propose that this is highly explainable compared with end-to-end AI analysis.
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FIGURE 8 | Segmentation mask produced by a 2D model initiated with ImageNet weights, but not having undergone any further training on ECG segmentation nor
classification tasks.

allow researchers to extend existing AI techniques and improve
model performance.

Future Work
Only two rhythm types and six morphological phenotypes were
simulated during the enhanced pretraining phase of this study.
Given the performance improvement observed with enhanced
pretraining over non-enhanced WaSP in the context of ECG
images, it may be that a wider repertoire of simulated ECG
phenotypes would further improve downstream performance.

The robustness of AI techniques to image artefact (see
Figure 5) was felt by the authors to be limited. The ability to
photograph ECG images on a mobile phone and upload for
cloud-based analysis is proposed to be a worthwhile goal, as it
would decrease the dependence on hardware-bound analysers.
This, in turn, would allow for more agile development of
novel ECG applications and easier integration with multi-
model clinical data, such as symptomatology, biochemical
results, cardiac imaging, etc. There is an emerging body of
evidence that fusing multi-modal data leads to improved
performance of medical AI systems (Huang et al., 2020). For this
reason, investigating approaches to improve robustness to image
artefact, challenging lighting conditions, etc., may be a valuable
research avenue.

Evaluating WaSP for diagnostic tasks more representative of
real-world clinical problems would be a key next step for the
line of investigation presented in this study. The use of data
from additional patient populations and evaluation of diagnostic

capabilities in a prospective setting would help to establish the
generalisability of the results presented here.
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