
TREK-1 in the heart: Potential
physiological and
pathophysiological roles

Emilie Bechard, Jamie Bride, Jean-Yves Le Guennec,
Fabien Brette* and Marie Demion*

PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, Montpellier, France

The TREK-1 channel belongs to the TREK subfamily of two-pore domains

channels that are activated by stretch and polyunsaturated fatty acids and

inactivated by Protein Kinase A phosphorylation. The activation of this

potassium channel must induce a hyperpolarization of the resting

membrane potential and a shortening of the action potential duration in

neurons and cardiac cells, two phenomena being beneficial for these tissues

in pathological situations like ischemia-reperfusion. Surprisingly, the

physiological role of TREK-1 in cardiac function has never been thoroughly

investigated, very likely because of the lack of a specific inhibitor. However,

possible roles have been unraveled in pathological situations such as atrial

fibrillation worsened by heart failure, right ventricular outflow tract tachycardia

or pulmonary arterial hypertension. The inhomogeneous distribution of TREK-1

channel within the heart reinforces the idea that this stretch-activated

potassium channel might play a role in cardiac areas where the mechanical

constraints are important and need a particular protection afforded by TREK-1.

Consequently, the main purpose of this mini review is to discuss the possible

role played by TREK -1 in physiological and pathophysiological conditions and

its potential role in mechano-electrical feedback. Improved understanding of

the role of TREK-1 in the heart may help the development of promising

treatments for challenging cardiac diseases.
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1 Introduction

In cardiomyocytes, excitation-contraction coupling, the process that links electrical

activity to cell contraction, is well established. On the contrary, the mechano-electric

feedback (MEF) mechanism that can be summarized by how mechanical stimulation can

modulate action potential (AP) shape is less understood. Such a feed-back mechanism

must involve mechanosensitive signals, mainly stretch, especially via mechano-gated

ionic channels.

K2P channels are modulators of cardiac repolarization and within this family of

channels, TREK-1 is the most abundant channel expressed in the human heart

(Wiedmann et al., 2021). The mechano-gated TREK-1 channel is differentially
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expressed in regions of the heart participating in electrical

heterogeneity within specific areas (Tan et al., 2004). TREK-1

is 17 time more express at the mRNA level in the endocardium

when compared to epicardium, and 3-fold at the functional

(current) level (Kelly et al., 2006).

2 TREK-1 and mechano-electrical
feedback

As well as TREK-1 channel expression is heterogenous in

ventricle, MEF differs regionally. In 1999, it was demonstrated

that, in response to stretch, canine AP was shortened at the

endocardial level but not in the epicardium leading to ventricular

arrhythmias (Takagi et al., 1999). Such stretch-induced

arrhythmias were sensitive to gadolinium, a non-specific

stretch-activated channel blocker. In 2006, Kelly and

collaborators demonstrated that in Langendorff perfused rat

isolated heart, increasing intraventricular pressure by inflation

of a balloon, induced a shortening of the AP both in subepicardial

and subendocardial zones (Kelly et al., 2006). However, AP

shortening was more pronounced in the endocardium than in

the epicardium at all repolarization levels. This suggests that the

spatial variation of TREK-1 channel expression may influence

regionally the MEF altering in turn the dispersion of AP

repolarization and induces disturbances in repolarization in

several models including human (Sarubbi et al., 2004). Such

repolarization dispersion (i.e. AP at different part of the ventricle

repolarizing at different times) is arrhythmogenic (Roden and

Woosley, 1985) and is normally reduced under physiological

conditions. The different AP durations (APD) in the

myocardium finally synchronize their repolarization along the

wall despite an asynchronous depolarization time (Volders et al.,

2000).

However, in several cardiac pathologies, both TREK-1

channel expression and MEF are modified. In pathological

conditions where mechanical properties are altered, such as

fibrosis, a slowed AP propagation may induce a dispersion of

repolarization and thus arrhythmias, altering both MEF and

APD regulation.

For example, in rat, TREK-1 channel expression is increased

by cardiac hypertrophy induced by isoproterenol and this is

associated with an amplified transmural gradient (endocardium

vs. epicardium) of TREK-1 channel (Wang et al., 2013). This up-

regulation might be linked to reexpression of fetal genes,

characteristic finding of pressure overload–induced cardiac

hypertrophy, however to the best of our knowledge there is

no information about a possible developmentally regulated

expression of TREK-1 gene. In mammals, global deletion of

TREK-1 induces an exaggerated concentric hypertrophy in

response to pressure overload, but protects from the

development of systolic and diastolic dysfunction. As TREK-1

is present in cardiac fibroblasts and modulates their function, its

specific deletion in fibroblasts reduces fibrosis development.

Thus, cardioprotective effects of TREK-1 loss of function are

driven by cardiac fibroblasts (Abraham et al., 2018).

TREK-1 activity can also be changed during pathology since

the activation of TREK-1 by Polyunsaturated fatty acids like

arachidonic acid might occur in pathophysiological situations

like ischemia when ATP cause the release of this fatty acid

(Aimond et al., 2000).

However, the transmural variation of TREK-1 expression

cannot explain by itself all the MEF variability. Indeed, the

cellular strain and forces are locally different from the

endocardial to epicardial cells when the ventricle is deformed.

This was first shown at the cellular level (Cazorla et al., 2000) and

more recently in living individuals cardiac layers (Pitoulis et al.,

2020). For example, during end-diastolic relaxation, significant

circumferential stretch, wall thinning, and in-plane and

transverse shear were observed. Left ventricular mechanics

during the early relaxation phase involves substantial

deformation of fiber and sheet structures with significant

transmural heterogeneity. A significant epicardial stretch along

myofibers was observed during early relaxation when compared

to endocardial fibers (Ashikaga et al., 2004).

3 Physiological role of TREK-1

While some changes in the expression of TREK-1 might

appear in pathological circumstances, a putative physiological

role of TREK-1 has never been shown. Knowing its

electrophysiological properties, channel open at rest and

outwardly rectifying current, led to the inference that this

channel must hyperpolarize the resting membrane potential

and/or shorten the APD of cardiac cells but this has never

been shown (Benoist et al., 2014; Kelly et al., 2006). The

reason for this is probably that there is no specific

pharmacology for TREK-1 and that TREK-1 blockers are

often other potassium conductance blockers (Wiedmann et al.,

2021). It has to be underlined that the co-expression of KIR2.1,

the molecular identity responsible for the current responsible of

the cardiac resting membrane potential IK1, and TREK-1 shows

that TREK-1 influences slightly the resting membrane potential

(Decher et al., 2017b). Also, there are many cases of mutations in

channels carrying the rapid and slow delayed-rectifier and basal

inward-rectifier potassium currents (IKr, IKs and IK1,

respectively), involved in the reserve of repolarization, that

lead to long QT syndrome (Crotti et al., 2020). To the best of

our knowledge, such mutations have never been described for

TREK-1. This does not mean that ITREK-1 is not involved in

ventricular repolarization, since such mutations can be lethal or

induce other kind of adaptation.

Interestingly, it has been observed that TREK-1 channel is

mainly expressed in the more mechanical constrained area of the

heart. For example, TREK-1 is more abundant in endocardial
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cells than in epicardial cells (Tan et al., 2004; Kelly et al., 2006).

Hence, the effects on AP shortening of inflating a balloon in the

left ventricle are more pronounced in the endocardium than in

the epicardium. Besides these observations, endocardial cells are

known to be more rigid than epicardial cells (Cazorla et al., 1997,

1999). In addition, Gannier et al. (1994), observed that stretching

single cells can induce a large increase in diastolic calcium. This

phenomenon can occur for small sarcomere lengthening that is

coherent with stiff endocardial cells. This phenomenon is

accompanied by a stable membrane depolarization that is at

the origin of the diastolic calcium increase (White et al., 1993;

Gannier et al., 1996). Thus, this phenomenon, linked to the

presence of inward stretch-activated current, must be prevented

by the presence of TREK-1 that would compensate the inward

current, especially in cells more prone to present this

phenomenon, i.e., stiffer cells, endocardial cells.

The right ventricular outflow tract (RVOT) is also a region of

the heart with high physical strain. This might explain, in part at

least, that the RVOT is a region of the heart where arrhythmic

syndromes and the majority of idiopathic ventricular

arrhythmias are found in the absence of any structural

modifications and without any known etiology (Srivathsan

et al., 2005). It has been noted that in rat ventricle, the RVOT

APD was shorter than in the other part of the right ventricle even

though there was no evidence that it was due to an

overexpression or overactivity of TREK-1 (Benoist et al., 2014).

However, there are some evidences of the role of TREK-1

remodeling in the development of some arrhythmias (Benoist

et al., 2014; Kamatham et al., 2019).

4 TREK-1 and pathological condition

While the physiological role of TREK-1 has not been proven

formally, some cardiac diseases have been shown to be associated

with changes in TREK-1 expression and the implication of

TREK-1 can be inferred based on its electrophysiological

properties or even proved by restoration of the initial

expression (Zhao et al., 2011; Benoist et al., 2014; Lugenbiel

et al., 2017; Kamatham et al., 2019; Dragasis et al., 2022).

4.1 RVOT

The RVOT is the area of the right ventricle through which

blood flows in to be expulsed in the pulmonary artery. The RVOT

is under a high physical strain and is known to express TREK-1.

A significant proportion of ventricular extrasystoles originate

from the outflow tracts, left or right (Dragasis et al., 2022).

There are at least two kinds of tachycardia that have the

RVOT as the locus for arrhythmias.

4.1.1 Mutated leaky TREK-1 channel
RVOT ventricular tachycardia (RVOT-TC) is a common

form of monomorphic ventricular tachycardia without any

structural disease and without any explanation. 10% of

ventricular tachycardia are idiopathic and interestingly 70%

of these arrhythmias originate in the RVOT (Goldstein, 2017).

While they are considered as benign, it has been shown that

they can degenerate in ventricular fibrillation, often preceded

by episodes of syncope (Noda et al., 2005). Decher et al.

(2017b) identified a patient with a point mutation in

TREK-1, I267T, located directly before the selectivity filter

of the second pore loop. This mutation, that might be

dominant-negative, makes TREK-1 permeable to sodium.

Also, TREK-1 has an increased sensitivity to stretch

accompanied by a reduced desensitization of the channel.

Episodes of RVOT-TC are generally observed in situations

where the sympathetic system is activated and thus normally

TREK-1 is more or less inhibited. Decher et al. (2017b)

showed that the activation of ß1-receptors, co-expressed in

oocytes with TREK-1I267T, induces a larger depolarizing

inward sodium current and thus a larger depolarization

that must participate as such to the development of

arrhythmias. Indeed, the increased entry of sodium leads to

an increased entry of calcium through the sodium-calcium

exchanger that in turn produces arrhythmias due to the

FIGURE 1
Schematic representation of TREK-1 involvement in cardiac
physiology and pathology. Left, in the heart, there is a gradient of
TREK-1 expression (hence current) between endocardium (endo)
and epicardium (epi). Right, TREK-1 is a potassium channel
and this physiological role is unclear. It may be involved in resting
membrane potential (RMP) stabilization, action potential duration
(APD) shortening. Decrease expression has been observed in
several pathologies: pulmonary arterial hypertension (PAH),
myocardial infarction (MI) and atrial fibrillation (AF). TREK-1 can be
linked to arrhythmia via mutations. See text for details.
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transient inward current ITI (Lederer and Tsien, 1976). It has to be

noted that another gene modification, an alternative translation

initiation, leads to an increased sodium permeability (Thomas et al.,

2008). However, the normal and pathological expression of this

variant is not known as well as the physiological sodium

permeability (Decher et al., 2017b; 2017a). Interestingly, the

I267T mutant can recover its potassium selectivity thanks to BL-

1249, a TREK-1 channel activator, opening hopes in the treatment of

such a rare disease.

4.1.2 Pulmonary arterial hypertension
Pulmonary arterial hypertension (PAH) is a cardiac

disease resulting from to a vasoconstriction and/or cell

proliferation in the pulmonary circulation. The main

consequences of PAH are right ventricular hypertrophy,

arrhythmias and failure. A rat model of PAH has been

developed by injecting monocrotaline, a plant alkaloid.

Benoist et al. (2014) used that model to understand the

evolution of remodeling associated with heart failure and

the occurrence of arrhythmias. They found that while the

APD in the RVOT is shorter than in the rest of the right

ventricle in healthy animals, this APD increased more in the

RVOT with PAH. The authors showed thus that remodeling is

more important in the RVOT than in the other areas of the

right ventricle and that such changes in APD in adjacent part

of the ventricle can be responsible of arrhythmias due the

dispersion of repolarization. While there was no functional

analysis performed to explain such a lengthening of the AP,

(Benoist et al., 2014), showed that the level of mRNA coding

for TREK-1 decreased only in the right ventricle, even though

there was no particular focus on the RVOT. By correlating this

decrease in TREK-1 gene expression, and the associated

decrease in TRPC1 and increase in TRPC6 expression

(Benoist et al., 2014), to the channel conductance’s, they

showed that the increase in APD can be explained.

These findings are of great interest since they were counter-

intuitive knowing that an acute stretch induces an increase of the

TREK-1 protein (Zhao et al., 2007). A possible explanation might

be that initially the acute strain induces an increase of TREK-1 to

compensate and, with time, there is the installation of a chronic

strain that induces a decompensation linked to, at least, a

remodeling of TREK-1 expression.

4.2 Atrial fibrillation

Atrial fibrillation (AF), the most common arrhythmia, is

associated with both structural and electrical remodeling that

cause disturbance in repolarization and conduction and

contribute to arrhythmogenesis (Schmidt et al., 2011; Wakili

et al., 2011; Dobrev et al., 2012). TREK-1 expression in human

atrium displays a relevant level that suggests functional and

potential therapeutic roles (Schmidt et al., 2017).

Indeed, a down-regulation of TREK-1mRNA expression and

protein level in atrium were observed in patients with AF

complicated by heart failure (Schmidt et al., 2013, 2017;

Lugenbiel et al., 2017). Down-regulation of TREK-1 was

similarly observed in a tachypacing pig model of AF with

reduced left ventricular ejection fraction. This downregulation

of TREK-1 expression is consistent with a prolonged APD and

effective refractory periods (ERP) but also with an increased

susceptibility to experience extrasystoles. The downregulation of

TREK-1 mRNA in neonate ventricular cardiomyocytes from rat

under mechanical stretch suggests that dilation of atria observed

in AF patients may directly contribute to TREK-1 remodeling

(Lugenbiel et al., 2017). Then, restoring TREK-1 expression in

pig with AF using gene therapy was followed by a recovery of

sinus rhythm and prolongation of the ERP was attenuated

(Lugenbiel et al., 2017). Moreover, overexpressing TREK-1 by

gene therapy enhances TREK-1 current and results in APD

shortening in mouse cardiomyocytes (Lugenbiel et al., 2017).

TREK-1 channel downregulation is clearly involved in the

development of AF and this suggests a potential therapeutic

significance of TREK-1 gene therapy to manage AF complicated

by heart failure.

4.3 Myocardial infarction

Post-myocardial infarct arrhythmias are a major risk factor

of sudden cardiac death. After myocardial infarction (MI), an

electrical remodeling occurs, increasing the electrical instability

of the post-MI heart (Huang et al., 2001). In 2002, Barrabés et al.

(2002) demonstrated that MEF can be enhanced in postinfarcted

myocardium when compared with normal cardiac muscle,

leading to mechano-induced ventricular arrhythmias and

consequently ventricular fibrillation (Barrabés et al., 2002).

Zhao et al. (2011) showed that TREK-1 channel remodeling

occurs after MI in both endocardium and epicardium. TREK-1

expression decreased in the infarcted region while it is increased

in the infarcted border region as a compensatory mechanism.

This remodeling of TREK-1 expression in infarcted border

region, positively correlated with outward TREK-1 current,

could be responsible of the post-MI arrhythmogenesis by

inducing a dispersion of effective refractory periods in

adjacent cardiac areas. A more recent study, using TREK-1

invalidated model, demonstrated that following coronary

artery ligation, the infarct size was increased in TREK-1

knock-out mice, associated with higher systolic dysfunction

when compared to wild-type mice (Kamatham et al., 2019).

This study suggests that TREK-1 expression could be

protective during ventricular remodeling by regulating

membrane potential and thus calcium homeostasis.

During the process of cardiac work after an infarction, the

effects of mechanical stretch on myocardium in different regions

may produce an altered electrical activity, inducing disturbances
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in repolarization and electrical instability that is a critical factor

for arrhythmogenesis.

In conclusion, the ventricle preload and wall thickness

modifications are able to alter the electrical signal induced by

the MEF. This signal provides the trigger and/or the substrate to

ventricular arrhythmias.

5 Future directions

To summarize our knowledge about the functional role of

TREK-1 (Figure 1), it can be: 1/putative physiological roles are

possible based on the electrophysiological properties of ITREK-

1. 2/there are some changes in the expression of TREK-1 with

some chronic disease that are involved in the development of

the disease but the mechanisms are not understood. Different

hypothesis can be put forward to explain this situation. The

first is the lack of a selective blocker for TREK-1. Spadin is

given as such a selective blocker, but its practical use is limited

since the channel first has to be activated by arachidonic acid

to be sensitive to spadin (Hivelin et al., 2016; Djillani et al.,

2017; Djillani et al., 2019; Ma and Lewis, 2020). The second

aspect is the pronounced species differences in K+ channel

expression which provide an additional challenge for the

elucidation of the role of TREK-1 in the heart. Finally,

another aspect that has not been explored is the potential

non-conducting properties of TREK-1. Indeed, in pathologies

like breast cancer, such non-ionic properties of ion channels

are well-known (Forzisi and Sesti, 2022). Whatever the

explanation, it appears more and more obvious that TREK-

1 plays a role in cardiac physiology and it represents a new

target in cardiology.
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