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Circadian clocks orchestrate a variety of physiological and behavioural functions
within the 24-h day. These timekeeping systems have also been implicated in
developmental and reproductive processes that span more (or less) than 24 h.
Whether natural alleles of cardinal clock genes affect entire sets of life-history
traits (i.e., reproductive arrest, developmental time, fecundity), thus providing a
wider substrate for seasonal adaptation, remains unclear. Here we show that
natural alleles of the timeless (tim) gene of Drosophila melanogaster, previously
shown to modulate flies’ propensity to enter reproductive dormancy, differentially
affect correlated traits such as early-life fecundity and developmental time.
Homozygous flies expressing the shorter TIM isoform (encoded by the s-tim
allele) not only show a lower dormancy incidence compared to those
homozygous for ls-tim (which produce both the short and an N-terminal
additional 23-residues longer TIM isoform), but also higher fecundity in the first
12 days of adult life. Moreover, s-tim homozygous flies develop faster than ls-tim
homozygous flies at both warm (25°C) and cold (15°C) temperatures, with the gap
being larger at 15°C. In summary, this phenotypic analysis shows that natural variants
of tim affect a set of life-history traits associated with reproductive dormancy in
Drosophila. We speculate that this provides further adaptive advantage in temperate
regions (with seasonal changes) and propose that the underlying mechanisms might
not be exclusively dependent on photoperiod, as previously suggested.
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Introduction

Maximising survival and reproductive success require synchronization of physiological and
metabolic processes with environmental conditions that change in a rhythmic fashion, the day/
night cycle representing the most prominent example. As the ability to anticipate such
predictable environmental changes is likely to be adaptive, organisms have evolved time-
keeping systems which allow better physiological, metabolic and behavioural preparation for
the upcoming changes, and the opportunities and challenges that accompany them. These
endogenous entrainable circadian clocks consist of molecular oscillators located in many cells
and coordinated in animals bymaster clocks residing in the brain (Peschel andHelfrich-Förster,
2011; Takahashi, 2017). In commonly utilised animal models, from insects to mammals, the
genetic architecture of the circadian clocks is well understood, as are the molecular dynamics
coordinating a variety of fundamental biological processes with a ~24 h periodicity (Peschel and
Helfrich-Förster, 2011; Takahashi, 2017). However, a growing body of evidence shows how
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elements of the circadian clock machinery also play a role in
orchestrating rhythmic processes with periods shorter or longer
than 24 h, such as circatidal and circalunar/circannual ones,
respectively (Reppert et al., 2015; Andreatta and Tessmar-Raible,
2020; Saunders, 2020). Moreover, circadian clocks – or some of
their specific components – have been linked to the timing of egg-
to-adult development in different experimental setups and organisms,
includingD. melanogaster and Caenorhabditis elegans (Kyriacou et al.,
1990; Banerjee et al., 2005; Edelman et al., 2016; Olmedo et al., 2017;
Srivastava et al., 2018). For instance, Drosophila period mutants with
19 h and 28 h circadian free-running periods (called perS and perL)
show shorter and longer pre-adult development, respectively
(Kyriacou et al., 1990; Srivastava et al., 2018). In turn, artificial
selection for short and long pre-adult developmental time in the
melon fly Bactrocera cucurbitae resulted in circadian periods of
~22.5 h and up to ~31 h, respectively, indicating the existence of a
relationship between developmental time and circadian periodicity
(Shimizu et al., 1997). Also supporting a connection between the
circadian clock and developmental processes, the duration of pre-adult
development under LL and short light/dark (LD) cycles (LD 10:10) is
shorter compared to longer LD cycles (LD 12:12, LD 14:14) and DD
(Yadav et al., 2014). In line with this, selection for early or late eclosion,
which is also modulated by the circadian clock (Myers et al., 2003;
Mark et al., 2021), results in flies with faster and slower pre-adult
development, respectively (Kumar et al., 2006). Finally, circadian clock
genes and neurons are pivotal for the regulation of reproductive
features such as fecundity (Beaver et al., 2003) and dormancy in
Drosophila (Saunders et al., 1989; Sandrelli et al., 2007; Tauber et al.,
2007; Nagy et al., 2019).

Despite advances in the understanding of the circadian implications
of developmental and reproductive phenotypes, whether natural
variants of core clock genes affect specific life-history traits or
modulate developmental/reproductive trajectories remains unclear.
Reproductive dormancy represents an interesting case study as: 1) it
involves complex endocrine and organ crosstalk (Richard et al., 2001;
Kubrak et al., 2014; Schiesari et al., 2016; Andreatta et al., 2018; Nagy
et al., 2019), and 2) its incidence has been shown to co-vary with other
life-history traits in natural populations (Schmidt et al., 2005a; 2005b;
Schmidt and Paaby, 2008). In Drosophila, this overwintering strategy
implies the arrest (or slowing) of gonads maturation (Saunders et al.,
1989; Kubrak et al., 2016; Schiesari et al., 2016; Zonato et al., 2017),
which ultimately postpones reproduction. Interestingly, two natural
alleles at the timeless (tim) locus, one of the core circadian clock genes
(Sehgal et al., 1994), have been shown to differentially affect dormancy
incidence in populations across Europe (Tauber et al., 2007).
Homozygous individuals for the ls-tim variant exhibit higher
propensity to enter reproductive dormancy compared to their
counterparts carrying the s-tim allele (Tauber et al., 2007). The ls-tim
allele, which has originated more recently (300–3000 years ago) and
spread by directional selection (Zonato et al., 2018), generates both a
long (L-TIM1421) and a shorter protein (S-TIM1398), whereas the only
TIM product of s-tim flies is the shorter isoform. The two isoforms are
created by an insertion of a G nucleotide in position 294 of the ls-tim
sequence that leads to the synthesis of L-TIM from an upstream AUG.
Absence of thisG, generates a stop codon 19 codons after the first AUG,
but a second downstream AUG generates S-TIM (Rosato et al., 1997;
Tauber et al., 2007). Thus, L-TIM and S-TIMdiffer by the presence of an
additional N-terminal 23 amino acids. Mechanistically, this additional
portion of the TIM protein seems to reduce the affinity for

CRYPTOCHROME (CRY, which mediates the light-dependent
degradation of TIM), thus resulting in dampened photosensitivity of
the circadian clock in ls-tim flies (Sandrelli et al., 2007; Deppisch et al.,
2022). Recent evidence shows how ls-tim flies (but not s-tim flies) can
still synchronize to temperature cycles in constant light, a condition
reminiscent of the extremely long photoperiods characterizing Summer
at Northern latitudes (Lamaze et al., 2022). In this paper we provide
robust phenotypic evidence indicating that the presence of s-tim or ls-
tim alleles not only affects the propensity to enter reproductive
dormancy (Tauber et al., 2007) but also several life-history traits
such as early-life fecundity and developmental time. This suggests
that the polymorphism at the tim locus could influence the entire
Drosophila developmental trajectory, providing a powerful hub for
seasonal adaptation.

Materials and methods

Fly stocks and maintenance

Fly stocks were maintained at 23°C in a 12:12 h light/dark (LD)
cycle prior to the experiments. For both stock maintenance and the
experimental setups described below, a standard yeast-sucrose-
cornmeal diet was used (Andreatta et al., 2018). An isofemale line
derived from a population collected in Houten, the Netherlands, was
selected as our study model (Tauber et al., 2007). Using PCR
genotyping combined with classical genetic crossing methods, the
ls-tim and s-tim alleles segregating within this isofemale line were
made homozygous in separate fly stocks (Gesto, 2010). By using this
strategy, the resulting genetic background of the two homozygous ls-
and s-tim flies is expected to be highly homogeneous.

Reproductive dormancy assays

To test the incidence of reproductive dormancy in the two lines,
we used a previously published protocol (Schiesari et al., 2016;
Andreatta et al., 2018; Nagy et al., 2019). Briefly, larvae were reared
under standard conditions at 23°C and LD 12:12 until eclosion. Newly
eclosed virgin flies were collected (~60 females and 60 males per
replicate) within 5 h of eclosion, and rapidly exposed to low
temperature (12°C) and short (LD 8:16) or long (LD 16:8)
photoperiods for 11 days. Reproductive dormancy was defined as
the complete absence of vitellogenesis (i.e. all oocytes at stages ≤7),
examining all ovarioles in both ovaries of each specimen (Saunders
et al., 1989; Tauber et al., 2007; Schiesari et al., 2016). Five biological
replicates (~60 females each, ~300 flies in total) were analysed for
every homozygous genotype (s-tim and ls-tim) and experimental
condition (LD 8:16 and LD 16:8). Dormancy levels are presented
as percentage of dormant females. Percentage data were arcsine
square-root transformed to be analysed by one-way ANOVA (post
hoc: Tukey test) (Tauber et al., 2007; Schiesari et al., 2016; Andreatta
et al., 2018) using GraphPad Prism 9.0.0.

Early-life fecundity assessment

Female fecundity was measured as the number of eggs laid.
Eleven virgin females for each genotype were collected and
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individually placed in vials, where they were allowed to mate with
two males each for the following 2 days. Then, females were
isolated from males and the number of eggs laid recorded for
the following 12 days, changing the food medium (standard yeast-
sucrose-cornmeal) every day. The entire experiment was
conducted at 23°C and under LD 12:12. Data are presented as
number of eggs laid/day, as well as total number. Statistical
significance was assessed using the Kolmogorov-Smirnov and
t test, respectively.

Developmental time analysis

To assess the developmental time of Hu s-tim and ls-tim wild-
type homozygous flies we used the protocol described in
(McBrayer et al., 2007). Fertilized eggs were collected on peach
juice agar plates. Prior to the collection of suitable eggs, females
were allowed to lay potentially held eggs for 1 h. Then, females
were allowed to lay eggs in 2 h intervals for 6 h in total
(3 biological replicates). From each of these three egg
deposition series, 20 first-instar larvae were collected and
placed into each of 10 vials with 2.5 ml of standard yeast-
sucrose-cornmeal food (~200 individuals for each of the three
biological replicates, and for both genotypes). Larvae were raised
in a dedicated incubator set at 25°C and LD 12:12. Larvae
development was monitored till pupariation with 2 h intervals.
For the second set of experiments, we used the same procedure
described above, except that the incubator temperature was set at
15°C, and pupariation scored every 6 h. We opted for 15°C as
pupal mortality increases dramatically at temperatures lower than
15°C (David and Clavel, 1967). Data are shown as 1) % of
pupariated larvae over time; 2) number of pupariating
individuals at each timepoint; 3) average hour after egg
deposition (hours AED); 4) % increase in egg-to-adult
developmental time. To calculate the % increase in ls-tim
developmental time, the timespan of biological replicate one
from s-tim homozygous flies, at 25°C and 15°C, respectively,
was used as reference. Comparisons between developmental
times (hours after egg deposition, hours AED) and relative %
were performed by the Mann-Whitney U and t test, respectively.

Fly weight

Fly weight was assessed in flies emerging from the
developmental time experiment performed at 15°C, in which
the quantified developmental delay of ls-tim flies was larger
(36.36 h) than that at 25°C (13.52 h). A ~30 h developmental
delay has been previously shown to associate with a detectable
increase in fly weight (Layalle et al., 2008). Thus, based on this
piece of literature, we expected the effect on weight, if any, to be
more obvious at 15°C than at 25°C. Twenty first-instar larvae were

FIGURE 1
ls-tim homozygous females show reduced early-life fecundity
compared to their s-tim homozygous counterparts. The lines
used in this study are called Houten (Hu) s-tim and ls-tim, from the
location in the Netherlands where the natural population of
origin was collected. (A) Proportions (±SEM) of s-tim (black) and ls-
tim (red) homozygous females in reproductive dormancy after
11 days at 12°C under both short (LD 8:16) and long (LD 16:8)
photoperiods. Statistical analysis was performed using one-
way ANOVA (post hoc: Tukey test), df = 19, ****p < 0.0001. (B)
Average number of eggs laid daily (±SEM) by s-tim and ls-tim
homozygous females at 23°C (LD 12:12) during the first 12 days of
adult life. Statistical analysis was performed using the Kolmogorov-

(Continued )

FIGURE 1 (Continued)
Smirnov test, ****p < 0.0001. (C) Total number of eggs laid (±SEM)
by s-tim and ls-tim homozygous females during the 12 days
considered. Statistical analysis was performed by t test, df = 20, ****p <
0.0001.
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reared in every vial with standard yeast-sucrose-cornmeal food.
Flies were collected over a 24 h timespan and weighted in batches
of 10 (3 biological replicates and 30 individuals per genotype and
sex, with 120 flies in total), and the average weight per fly
determined (McBrayer et al., 2007). Data are reported as
average weight (mg), and % increase in adult weight. In the
latter case, to calculate the % increase in weight in ls-tim
homozygous flies, the weight of biological replicate one from
s-tim homozygous males and females, respectively, was used as
reference.

Results

Drosophila females homozygous for the ls-
tim allele exhibit higher dormancy propensity
and reduced early-life fecundity

Under both short (LD 8:16) and long (LD 16:8) photoperiods -
mimicking winter- and summer-like light conditions, respectively - the
ls-tim homozygous flies showed a significantly higher proportion of

dormant females compared to the s-tim homozygous flies (one-way
ANOVA, post hoc: Tukey test, df = 19, p < 0.0001) (Figure 1A), as
expected (Tauber et al., 2007). Interestingly, both s-tim and ls-tim flies
exposed to short photoperiods exhibited a slightly higher propensity to
enter dormancy (+4.8% and +8.6%, respectively) compared to their
counterparts exposed to long photoperiods, although no significant
difference was observed (Figure 1A). In Drosophila, reproductive
dormancy implies an arrest/slowing of ovarian development (Saunders
et al., 1989; Schiesari et al., 2016; Zonato et al., 2017). We thus wondered
whether s-tim and ls-tim homozygous females showed signs of distinct
reproductive profiles even in conditions that do not elicit dormancy. Egg
laying was therefore monitored for the first 12 days after mating of newly
eclosed flies reared and maintained at 23°C and LD 12:12, and the number
of eggs laid was determined daily. Overall, s-tim females were found to lay a
higher number of eggs compared to ls-tim females (Kolmogorov-Smirnov
test, p < 0.0001) (Figure 1B). While egg laying started synchronously in
s-tim and ls-tim females, it then showed larger peaks around days 2–4 and
9–12 in s-tim flies (Figure 1B). Finally, the overall number of eggs laid by ls-
tim homozygous females was significantly reduced compared to their s-tim
counterparts over the time span considered (t test, df = 20, p < 0.0001)
(Figure 1C).

FIGURE 2
ls-tim homozygous flies’ egg-to-adult development is delayed compared to that of s-tim homozygous flies at 25°C. (A) Pupariation curves of s-tim
(black) and ls-tim (red) homozygous larvae, pupariating over time at 25°C (LD 12:12). The interval between the time of egg deposition and pupariation was used
to quantify developmental time. Log-rank (Mantel-Cox) test, p < 0.0001. AED: After Eggs Deposition. The number of residual, non-pupariated larvae from
each genotype at different timepoints is reported below the graph. (B) Average number (±SEM) of pupariating s-tim and ls-tim homozygous larvae at
25°C over-time. (C) Egg-to-adult developmental time of s-tim and ls-tim homozygous flies at 25°C. Statistical analysis of developmental time (hours after egg
deposition, AED) was performed by Mann-Whitney U test, ****p < 0.0001. (D) % increase in the developmental time of ls-tim flies at 25°C compared to their
s-tim counterpart used as reference (t test, df = 4, **p < 0.01).
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Timeless alleles differentially affect
developmental time at different temperatures

The time from egg to pupariation was monitored in individuals
reared in density-controlled conditions at 25°C and LD 12:12. s-tim

homozygotes developed significantly faster compared to ls-tim
homozygotes [Log-rank (Mantel-Cox) test, p < 0.0001]
(Figure 2A). The pupariation profiles showed similar dynamics, but
were shifted later in ls-tim flies, with a longer tail of the pupariation
curve (Figure 2B). The number of individuals reaching pupariation

FIGURE 3
Differences in developmental time between s-tim and ls-tim homozygous flies increase at lower temperature and lead to changes in the size of
emerging flies. (A) Pupariation curves of s-tim (black) and ls-tim (red) homozygous larvae pupariating over time at 15°C (LD 12:12). The time spanning between
egg deposition and pupariation was defined as developmental time. Log-rank (Mantel-Cox) test, p < 0.0001. AED: After Eggs Deposition. The number of
residual, non-pupariated larvae from each genotype at different timepoints is reported below the graph. (B) Average number (±SEM) of pupariating s-tim
and ls-tim homozygous larvae at 15°C over time. (C) Egg-to-adult developmental time of s-tim and ls-tim homozygous flies at 15°C. Statistical analysis of
developmental time (hours after egg deposition, AED) was performed byMann-Whitney U test, ****p < 0.0001. (D)% increase in the developmental time of ls-
tim flies at 15°C compared to s-tim individuals used as reference (t test, df = 4, **p < 0.01. (E) Adult weight of s-tim and ls-tim homozygous males and females
emerging in a 24 h window. For every biological replicate, flies were weighted in batches of 10, and the average weight (±SD) of each fly determined and
plotted. Statistical analysis was performed by t test, df = 4, ***p < 0.001. (F) Increase in adult weight in ls-tim homozygous males and females expressed as %
(±SD) of the weight of their s-tim counterparts. Statistical analysis was performed by t test, ***, df = 4, p < 0.001.
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peaked at 104 h from egg deposition in ls-tim flies compared to
92–98 h in s-tim flies (Figure 2B). The average difference in
developmental time between the two homozygous genotypes was
quantified as 13.52 h (Mann-Whitney U test, p < 0.0001)
(Figure 2C), with a significant % increase in ls-tim flies
developmental time of ~14% (t test, df = 4, p < 0.01) (Figure 2D).

The hypothesis that different developmental times in s-tim and ls-
tim homozygous flies are modulated by lower temperatures (15°C),
which resemble more closely those triggering dormancy (12°C–14°C),
was tested. We opted for 15°C as below this temperature pupal
mortality increases dramatically (David and Clavel, 1967). Even at
low temperatures, ls-tim flies developed significantly slower from egg
to pupariation compared to their s-tim counterparts [Log-rank
(Mantel-Cox) test, p < 0.0001] (Figure 3A). However, the average
gap between the two homozygous genotypes, quantified as 13.52 h at
25°C, increased to 36.36 h at 15°C (Mann-Whitney U test, p < 0.0001)
(Figure 3C). In spite of the observed temperature-dependent effect, the
average % increase in the developmental time of ls-tim flies was 10% (t
test, df = 4, p < 0.01), thus proportional to the increase at 25°C
(Figure 3D). As observed at warmer temperatures, the pupariation
profiles of s-tim and ls-tim lines were similar at 15°C, although in this
case the former showed a slightly longer tail, with peaks occurring at
354 h and 402 h after egg deposition (AED), respectively (Figure 3B).
These data suggest that the difference in developmental time of flies
bearing different tim alleles is more prominent at lower temperatures.
A prolonged larval development is known to cause an increase in fly
size and weight (Layalle et al., 2008), whichmay have an adaptive value
at higher latitudes for species experiencing colder temperatures,
including diapausing/dormant ones (Chown and Gaston, 2010;
Stillwell, 2010; Hahn and Denlinger, 2011). Also, in line with this
hypothesis, both ls-tim homozygous males and females developing at
15°C showed a significant increase in weight compared to their s-tim
homozygous counterparts (t test, df = 4, p < 0.001) (Figure 3E), with a
~20% gain in both sexes (t test, df = 4, p < 0.001) (Figure 3F).

Discussion

By comparing the early-life fecundity and developmental time
correlates of s-tim and ls-tim homozygous flies, we have documented a
profound impact of natural tim alleles on Drosophila life-history. ls-
tim homozygous females not only showed higher propensity to enter
reproductive dormancy (Tauber et al., 2007) but also reduced early-life
fecundity, which suggests a dampened pace of gonadal maturation
even in environmental conditions that do not elicit dormancy.
Moreover, ls-tim homozygous flies show a slower developmental
progression from eggs to pupariation compared to s-tim flies, with
the gap increasing when the lower temperature is closer to that
inducing dormancy. While the strategy utilised to obtain the two
homozygous ls- and s-tim line is expected to result in a highly
homogeneous genetic background, flies from the two lines could
still carry some genetic variability. Thus, it cannot be excluded that
residual polymorphisms, in particular in linkage disequilibrium with
the alleles at the tim locus, could have affected the investigated
phenotypes.

Under the experimental conditions used in previous studies of
ours (Schiesari et al., 2016; Andreatta et al., 2018), the effects of the
s-tim - ls-tim polymorphism were stronger than those potentially
linked to the couch potato (cpo) gene, where distinct alleles have been

associated with dormancy incidence in D. melanogaster populations
from North America (Schmidt et al., 2008). Moreover, cpo variants
show negligible effects on dormancy inducibility in European
populations, in which the In(3R)Payne inversion (where cpo lies) is
rare and not clinally distributed (Zonato et al., 2016). For these
reasons, we focused exclusively on the s-tim - ls-tim polymorphism.
Several lines of evidence suggest that TIM is key to the interface
between environmental cues (such as photoperiod and temperature),
clock functioning and seasonal adaptation (Majercak et al., 1999;
Wijnen et al., 2006; Boothroyd et al., 2007; Montelli et al., 2015;
Anduaga et al., 2019; Foley et al., 2019; Abrieux et al., 2020; Lamaze
et al., 2022). For instance, the different propensity to undergo
dormancy of homozygous flies for one of the two variants (s-tim
and ls-tim) (Tauber et al., 2007) has been linked to the different affinity
of S-TIM and L-TIM for CRY, the blue-light photoreceptor, which
mediates TIM light-dependent degradation and, in turn, clock
resetting (Sandrelli et al., 2007; Damulewicz and Mazzotta, 2020).
In this context, the reduced photosensitivity of ls-tim flies has been
interpreted as a light-buffering system, which protects the clock from
the considerable increase in summer day length at Northern latitudes
(Pittendrigh and Takamura, 1989; Pittendrigh et al., 1991; Sandrelli
et al., 2007). Along the same lines, ls-tim homozygous flies have
recently been shown to be more rhythmic than s-tim homozygous
flies under constant light conditions, and still able to synchronize
locomotor activity with temperature cycles in LL. These data support
the contention that ls-tim has an adaptive value in more seasonal
environments, potentially explaining its Northern spread by
directional selection (Tauber et al., 2007; Zonato et al., 2018;
Deppisch et al., 2022; Lamaze et al., 2022).

Several studies, including the present one, also point to s-tim - ls-
tim effects that are independent of photoperiodic mechanisms. Firstly,
the clear photoperiodic effect on dormancy induction reported in
Tauber et al., 2007 for both s-tim and ls-tim Houten lines was not
reproduced in our experimental setting, where mild to no
photoperiodism was observed. While the reason for this
discrepancy remains unclear, the experimental paradigm used to
assess dormancy in the two studies was similar but not identical.
More specifically, in the present study a slightly lower temperature, a
narrower post-eclosion collection window of adult flies and a shorter
timespan at cool temperature were utilised. Moreover, in this study,
for example, ls-tim homozygous flies showed lower early-life fecundity
and delayed egg-to-adult development at 25°C and under LD 12:12.
Further, transgenic lines which differ primarily for the s-tim or ls-tim
allele have been shown to exhibit circadian periods of locomotor
activity of 24.2 h and 26.2 h, respectively, in LL (Peschel et al., 2006).
Similarly, the overexpression of l-tim or s-tim variants leads to longer
and shorter periods of locomotor activity, respectively, under DD at
both 18°C and 25°C (Anduaga et al., 2019). Taken together, these data
suggest that the different reproductive and developmental profiles of
ls-tim flies may result from dampened clock oscillations – a default
state even in constant conditions - and are amplified by secondary
light/photoperiod-dependent mechanisms. Similarly, per mutants
with shorter or longer circadian free-running periods (perS and
perL) exhibited faster and slower egg-to-adult development,
respectively (Kyriacou et al., 1990; Srivastava et al., 2018).
However, perS and perL mutant flies showed comparable
photoperiodic response curves for dormancy induction (Saunders
et al., 1989), and negligible photoperiodic effects in cold-induced
coma recovery time (Pegoraro et al., 2014).
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The Northward spread of the ls-tim allele in Europe has been
suggested to be driven by directional selection, as buffering light-
sensitivity of the endogenous oscillator would protect the clock itself
from the dramatic changes in day length that characterise summer at
high latitudes (Sandrelli et al., 2007; Tauber et al., 2007; Deppisch et al.,
2022; Lamaze et al., 2022). While the adaptive value of such effects on
the robustness of behavioural rhythms is clear (Deppisch et al., 2022;
Lamaze et al., 2022), understanding how these dynamics translate into
higher levels of reproductive dormancy under both short and long
photoperiods is more difficult (Tauber et al., 2007). Long photoperiods
have been shown to inhibit dormancy (Saunders and Gilbert,
1990). However, in D. melanogaster reproductive dormancy is
thought to be induced primarily by a reduction in temperature
(Emerson et al., 2009). This notion is supported by studies carried
out in laboratory conditions, which have documented negligible
photoperiodic responses in dormancy induction under simple
rectangular light-dark cycles (Schiesari et al., 2016; Andreatta
et al., 2018; Nagy et al., 2019). Yet, flies exposed to simulated
late autumn and summer natural lighting conditions, which better
approximate the setting in the wild, showed higher and lower
proportions of dormancy compared to individuals subjected to
corresponding rectangular profiles, respectively. This suggests
that a photoperiodic component of dormancy induction exists
also in Drosophila (Nagy et al., 2018).

However, it should be highlighted that core clock components –
including TIM – are not solely expressed in tissues which are directly
light- or temperature-sensitive. For instance, TIM and PERIOD (PER)
have been found to be constitutively expressed in the follicle cells of
Drosophila ovaries, as part of non-circadian processes (Beaver et al.,
2003). Interestingly, mutants for these genes have been associated with
a significant decline in fertility (number of offspring) and reduced/
slowed oocyte maturation, a phenotype which recapitulates some
aspects of dormancy (Beaver et al., 2003). Recently, Drosophila
dormancy has been defined as a more general stress response to
cold temperatures, as oogenesis arrest at previtellogenic stages is a
common hallmark of responses to other stressors (Lirakis et al., 2018).
Moreover, impairment in circadian clock functioning has been shown
to significantly impinge on reproductive success in both flies and
mammals (Beaver et al., 2002; Ratajczak et al., 2009; Garmier-Billard
et al., 2019; Horn et al., 2019). In addition, tim and per knockdown in
the prothoracic gland (PG) - which is implicated in pre-adult
developmental progression - resulted in reduced steroidogenesis
and developmental failure (Di Cara and King-Jones, 2016). Finally,
flies overexpressing tim in the skeletal muscle showed extended
lifespan (Hunt et al., 2019), a trait which is often associated with
reduced early-life fecundity and high dormancy incidence (Schmidt
et al., 2005b; Schmidt and Paaby, 2008). Thus, while the effects of TIM
variants on reproductive dormancy have been linked to the different
stability of TIM-CRY interactions (Sandrelli et al., 2007), any impact
of S-TIM or L-TIM expression in peripheral tissues cannot be
excluded and deserves further investigation.

Clock neurons and core clock components control fundamental
hormonal mechanisms involved in growth, development and
reproduction, such as steroidogenesis and insulin signalling (Di
Cara and King-Jones, 2016; Nagy et al., 2019). Thus, it is
plausible that S-TIM and L-TIM isoforms may differentially affect
such processes, in a tissue-specific manner. This would, in turn,
affect (or sensitize to certain environmental conditions)
developmental and reproductive aspects controlled by these

endocrine pathways. Interestingly, Drosophila natural populations
with higher dormancy propensity show reduced early-life fecundity
and longer egg-to-adult development (Schmidt et al., 2005b). This is
in line with our findings of reduced fecundity and extended
developmental time in high-dormancy ls-tim homozygous flies,
and suggests that the genetic background at the tim locus might
alter the flies’ developmental and reproductive trajectories. Whether
the first aspect is the result of impaired/delayed gonadal
development or defects in mating behaviour remains to be tested.
However, the association between reduced fecundity, severe arrest/
delay of ovarian growth, and prolonged developmental time
observed in this study and in Schmidt et al. (2005b), possibly
support the first hypothesis. We found the developmental delay
characterizing ls-tim flies to increase from ~13 h at 25°C to ~36 h at
15°C. Although the temporal extension of ls-tim flies development
can be considered temperature-dependent, it is interesting to note
that it is proportional to the developmental time at the two different
temperatures, resulting in a comparable % increase at 25°C and 15°C.
This might suggest that the allele-specific effects on this phenotype
are not temperature-dependent per se. On the other hand, it is worth
highlighting that these data refer to pupariation time, and not
eclosion. Thus, it is still possible that both s-tim and ls-tim
homozygous flies maintain a circadian rhythm in eclosion,
differentially regulating the timing of the final steps of
metamorphosis and/or circadian gating of eclosion (Varma et al.,
2019; Mark et al., 2021). Further, we hypothesize that the identified
delay might be instrumental to prolong larval feeding and thus the
growth phase, resulting in larger flies, a trait which is strongly
selected at higher latitudes (Chown and Gaston, 2010; Stillwell,
2010), and is a feature of diapause-destined individuals in several
insect species (Hahn and Denlinger, 2011). In this context, the
reported ~20% increase in weight in both male and female ls-tim
homozygous adult flies at 15°C is likely to be the result of the ~36 h
extension in larval development. These findings are consistent with
the observation that flies in which the PG (and thus the release of the
hormone ecdysone) has been genetically manipulated are
characterized by a ~30 h developmental delay and a parallel
increase in body weight of ~25% (Layalle et al., 2008). It remains
to be determined whether the faster development of s-tim
homozygous flies contributes, despite the lower dormancy
propensity, to the counterintuitive cline of tim alleles in Italy and
Central Europe, with the s-tim allele being more abundant at
Northern latitudes (Pegoraro et al., 2017). However, this seems
unlikely given the inverted cline described in both Eastern
United States and Spain (Pegoraro et al., 2017; Zonato et al.,
2018). Given its association with the distance from the
hypothesized site of origin rather than latitude (Zonato et al.,
2018) ls-tim frequency is likely to be the product of directional
and not balancing selection, at least in Europe.

In conclusion, our data show that s-tim - ls-tim natural alleles
influence sets of intertwined life-history traits, possibly contributing to
potentiate the effects of specific seasonal adaptation in temperate
zones.
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