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Editorial on the Research Topic

Nanodomain Regulation ofMuscle Physiology and Alterations in Disease

Introduction

Cardiac, skeletal and smooth muscle are vastly different in their function and

structure. However, in all three types of muscle, calcium ions (Ca2+) serve as the

primary second messenger controlling contraction, and this function is modulated by

the autonomic nervous system. Disruption of Ca2+ signalling and muscle function are

evident in pathologies linked to both inherited and acquired conditions, including

hypertension, diabetes, muscular dystrophy, and heart disease. Evidence has shown

that remodelling of Ca2+ signalling nanodomains, as well as other signalling cascades,

contribute to these pathological changes. However, our understanding of these

mechanisms remains in its infancy. More information is needed to further our

comprehension of nanoscale cellular physiology and develop treatments to counteract

the changes that occur in disease. This Research Topic has collected 11 high-quality

papers from authors focusing on nanodomains and alterations in disease.
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The dyadic space

Early electron microscopy (EM) measurements described the

existence of a ~12–15 nm gap between the sarcolemmal (SL) and

sarcoplasmic reticulum (SR) membrane in cardiac and skeletal

myocytes called the dyad or triad, respectively (Page and

Niedergerke, 1972; Franzini-Armstrong et al., 1999). In

healthy ventricular myocytes, most of the estimated

~20,000 clusters of Ca2+ release channels (Ryanodine

Receptors, RyRs) are coupled to invaginations of the

membrane called transverse(t)-tubules. A sparser network of

t-tubules has been observed in atrial myocytes.

Dyadic remodelling in heart failure

The dyadic space is maintained by junctophilin-2 (JPH2),

which spans both SR and SL membranes, and maintains the

two membranes in functional dyads. Remodelling of the

cardiac dyad has been observed in a host of animal models

of heart disease (Heinzel et al., 2002; Quinn et al., 2003; Louch

et al., 2004; Song et al., 2006; du Sert et al., 2020) with a loss or

remodelling, resulting in an increase in non-coupled (Dries

et al., 2013) or orphaned (Song et al., 2006) RyR clusters. Non-

coupled RyRs rely on diffusion to trigger Ca2+ release resulting

in reduced efficiency of Ca2+ release. New evidence on

nanoscale organisation on JPH2 by Hou et al. shows

remodelling of the t-tubule with an increased thickening

into branched t-tubule structures called T-sheets, similar to

those seen in patient samples observed in block section EM

(Pinali et al., 2013), but with no evidence of reduced

JPH2 expression. Smaller RyR clusters and reduced RyR

expression were also observed, which may contribute to

reduced E-C coupling efficiency in heart failure

(Beuckelmann et al., 1992; Gómez et al., 2001).

A lack of consensus on correlations of JPH2 expression with

t-tubule morphology shows that more work is needed to fully

understand the role of this protein in t-tubule sustainment.

Indeed, amphiphysin-II (Bin1) is recognised as being an

important structural modulator of t-tubule formation and

maintenance. Zhou et al. showed the importance of

phosphatidylinositol-4,5-bisphosphate (PIP2) in this process.

Depletion of PIP2 caused a loss of t-tubules and a reduction

of E-C coupling. New therapies targeting these processes could

reverse changes in heart disease.

One observation that does show consistency is the loss of

t-tubules in heart failure with reduced ejection fraction.

Increasing evidence demonstrates that this subcellular

remodelling results in a larger percentage of uncoupled RyRs,

with subsequent loss of Ca2+ synchrony (Louch et al., 2006).

Further ramifications of this form of remodelling are observed

through altered regulation of orphaned RyR clusters by kinases

and reactive oxygen species (ROS) (Dries et al., 2013; Dries et al.,

2018). Indeed, in this issue, Belevych et al. show that detubulated

myocytes have a reduced response to sympathetic stimulation

upon cholinergic activity. This is the first report of this type of

regulation; further work could shed light on a new cholinergic-

sympathetic signalling nexus in the ventricular myocyte.

The remodelling of RyR clusters themselves has been

reported in cardiac pathologies including heart failure

(Kolstad et al., 2018) and atrial fibrillation (Macquaide et al.,

2015). Indeed, new imaging information shows altered nanoscale

orientation of neighbouring RyRs during acute phosphorylation

(Asghari et al., 2020), while chronic phosphorylation during

chronic β-adrenergic stimulation leads to RyR dispersion

(Shen et al., 2022). These observations have ramifications for

heart failure, where chronic β-adrenergic stimulation and

CaMKII activation are well described (Swaminathan et al.,

2012). Interestingly, similar remodelling of RyRs was observed

in the cerebral microvasculature in Duchenne muscular

dystrophy (Pritchard et al., 2018). While Bin1 has been

implicated in the recruitment of phosphorylated RyRs to the

t-tubules during acute β-adrenergic stimulation (Fu et al., 2016),

it is unclear whether this protein plays a role in the dispersion of

RyRs during longer-term stimulation.

Similar detail is beginning to emerge regarding the plasticity

of modular arrangement on the other side of the dyad; i.e., the

positioning of L-type Ca2+ channels. Clusters of these

channels have been reported to increase by 20% in size

upon β-adrenergic stimulation (del Villar et al., 2021),

resulting in increased inter-channel cooperativity in these

“superclusters.” These exciting data appear to recapitulate

findings from human disease, where increased channel

activity and density are observed in human dilated

cardiomyopathy patients. This remodelling may be linked

to increased CaMKII expression and activity during heart

failure (Anderson et al., 2011). Interestingly, Bin1 has also

been implicated in the organisation of the L-type Ca2+ channel

in t-tubules (Hong et al., 2012), although the role of

phosphorylation in this process has not been investigated.

Na+ gradients in the dyad

The importance of dyadic Na+ ion concentration is

highlighted in the review by Skogestad and Aronsen who

explore the subcellular localisation and function of the

sodium-potassium-ATPase (NKA) in cardiomyocytes.

Specifically, they review data indicating that the presence of

the alpha-2 isoform (NKAα2) in the dyad vs. NKAα1 outside

the dyad may set up subcellular Na+ and Ca2+ gradients within

the myocyte; findings which have implications for the role of

NKAα2 in triggering cardiac hypertrophy and arrhythmia. These

processes may be important to set the scene for further dyadic

remodelling that occurs in disease and may augment the

increased NCX activity that is often observed.
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Ageing effects on cAMP
microdomains

In the sinoatrial node, pacemaker cells utilise L-type Ca2+

signalling as part of the Ca2+ clock mechanism, which regulates

heart rate. Choi et al. have presented elegant work to correlate

nanostructural alterations in aged mice, which leads to declining

β-adrenergic responsiveness. It appears that fewer β-

adrenenergic receptors colocalise with L-type Ca2+ channels in

ageing myocytes, with possible roles for caveolin-3 and

AKAP150. This observation highlights that the location of

both inside caveolae nanosignalling domains is of utmost

importance for their effective interaction.

New insights from computational
modelling and superresolution
imaging

In the current Research Topic, the nanoscale structures of ion

channel clusters, including RyR and L-type Ca2+ channel clusters,

are elegantly reviewed by Dixon, with a presented relevance to

disease and physiological β-adrenergic agonism. Interesting

future directions are highlighted, leveraging new super-

resolution imaging methods. Indeed, these new imaging

technologies have yielded unprecedented levels of structural

detail informing present and future modelling endeavours, as

reviewed by Louch et al.

Here, new paradigms with high spatial detail are explored

with ramifications in disease. The scale of modelling from sub-

sarcomere to whole organ is explored in the review by Colman

et al. This article highlights the utility and perils of spatial

computational modelling in interpreting and scaling up this

cellular information to a full organ model with realistic

anatomy. The paper by Iaparov et al. is an original model

incorporating coupled gating of realistic-sized RyR clusters to

explore how Mg2+ affects the sensitivity of RyR and how this

affects Ca2+ release events. This work may provide new

information on how drugs requiring Mg2+ for their action can

be better understood and to produce more realistic models of

RyR cluster behaviour.

Neurohormonal inputs influence
muscle nanodomains

A number of our submissions discuss the consequences of

sympathetic activity of RyR and L-type Ca2+ channel clusters and

activity. In Franzoso et al., the role of localised neurotransmitter

release from sympathetic nerves is explored in the context of a

neuro-cardiac junction akin to the neuro-muscular junction in

skeletal muscle. These nerves appear to be very densely

distributed, effectively innervating single myocytes, with some

myocytes receiving multiple inputs. Ramifications for disease are

discussed, introducing interesting new paradigms of localised

hyper-adrenergic activation increasing cellular cAMP acting as a

trigger for arrhythmic Ca2+ release.

Another form of cardiovascular neurohormonal activation is

discussed in Salazar-Enciso et al. , where new research shows that

upregulation of Ca2+ signalling channels and pumps (Cav1.2 and

SERCA2) occurs in the plasmalemmal-SR nanodomain in the

vascular smooth muscle of mesenteric arteries in response to

aldosterone signalling. This increase in SERCA expression

importantly occurs in concert with an increased Cav1.

2 expression, to modulate Ca2+ cycling and prevent

vasoconstriction and enhance vasorelaxation.

Summary

In conclusion, the scientific work presented in this Research

Topic has provided intriguing new insight into structure-

function relationships within nanosignalling domains. This

understanding is expected to provide new avenues for

research in cardiovascular disease to facilitate novel, targeted

approaches. Indeed, the increasing array of druggable targets

offers new hope for tackling complex cardiovascular disease

phenotypes. Nevertheless, given the analogies described here,

caution must be taken, and an integrative approach should be

considered when coordinating the effects of these drugs across

multiple organ systems.
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