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EEG phase-amplitude coupling (PAC), the amplitude of high-frequency oscillations
modulated by the phase of low-frequency oscillations (LFOs), is a useful biomarker to
localize epileptogenic tissue. It is commonly represented in a comodulogram of
coupling strength but without coupled phase information. The phase-amplitude
coupling is also found in the normal brain, and it is difficult to discriminate
pathological phase-amplitude couplings from normal ones. This study proposes a
novel approach based on complex-valued phase-amplitude coupling (CV-PAC) for
classifying epileptic phase-amplitude coupling. The CV-PAC combines both the
coupling strengths and the coupled phases of low-frequency oscillations. The
complex-valued convolutional neural network (CV-CNN) is then used to classify
epileptic CV-PAC. Stereo-electroencephalography (SEEG) recordings from nine
intractable epilepsy patients were analyzed. The leave-one-out cross-validation is
performed, and the area-under-curve (AUC) value is used as the indicator of the
performance of different measures. Our result shows that the area-under-curve
value is .92 for classifying epileptic CV-PAC using CV-CNN. The area-under-curve
value decreases to .89, .80, and .88 while using traditional convolutional neural
networks, support vector machine, and random forest, respectively. The phases of
delta (1–4 Hz) and alpha (8–10 Hz) bands are different between epileptic and normal
CV-PAC. The phase information of CV-PAC is important for improving classification
performance. The proposed approach of CV-PAC/CV-CNN promises to identify
more accurate epileptic brain activities for potential surgical intervention.
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1 Introduction

Epilepsy is the most common chronic disease in neurology. About 70% of patients with
epilepsy can be cured by taking antiepileptic drugs, and other patients may develop drug-
resistance epilepsy (DRE) (Kwan and Brodie, 2000). The epileptogenic zone (EZ) is the brain
region responsible for seizure generation (Rosenow and Luders., 2001). Some patients with DRE
can be treated by surgical intervention on EZ (Engel, 2019). Scalp electroencephalography
(EEG) is one of these techniques which is fundamental for defining the EZ, frequently as a
precursor to invasive recordings. Intracranial EEG (iEEG) signal provides anatomically precise
information about the selective engagement of neuronal populations at the millimeter scale and
about the temporal dynamics of their engagement at the millisecond scale (Parvizi and Kastner,
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2018). Stereo-electroencephalography (SEEG) is one kind of iEEG and
is widely used to study the spatiotemporal oscillatory dynamics of
brain networks engaged in epileptogenic processes (Bartolomei et al.,
2017). Some EEG features provide promise biomarkers for EZ, such as
phase-amplitude coupling (PAC) (Weiss et al., 2015; Amiri et al., 2016;
Jiang et al., 2019; Liu et al., 2021), and high-frequency oscillations
(Worrell and Gotman, 2011). Currently, there is still a gap between
those studies and their applications in the clinical setting. Machine
learning can be used to close the gap in supporting clinical
applications.

EEG PAC, where the amplitude of high-frequency oscillations
(HFOs) is modulated by the phase of low-frequency oscillations
(LFOs), is a useful biomarker to identify the activities of
epileptogenic tissue (Guirgis et al., 2015). Cross-frequency push-
pull dynamics contributed to the secondary generalization of focal
seizures and potentially reflected impaired excitation-inhibition
interactions of the epileptic network (Jiang et al., 2019). PAC
feature of ictal EEG is used to determine the region of interest in
epilepsy (Guirgis et al., 2015). The coupling phase was suggested as an
interictal marker of the seizure-onset zone (SOZ) (Amiri et al., 2016).
The PAC in the inter- and pre-seizure periods was weak and
paroxysmal, and strong PAC channels were confined more to the
SOZ and resection region (Ma et al., 2021). The theta—gamma PAC
within the electrodes in the seizure region increased during the ictal
period (Liu et al., 2021). In Parkinson’s disease, the HFO (100–300 Hz)
was found modulated by beta (13–30 Hz), and beta and gamma
amplitudes were further modulated by their low-frequency
components (Jin et al., 2022). Some studies have shown that
cross-frequency coupling (CFC) plays a functional role in
physiological functions, such as memory, and task performing
(Lisman and Idiart, 1995; Canolty and Knight, 2010). It is
difficult to apply those coupling patterns for identifying
pathological brain tissues. To identify pathological PAC is critical
for further applications in the clinical setting (von Ellenrieder et al.,
2016). A multistage classifier based on the random forest was applied
to classify CFC features and it successfully predicted seizures (Jacobs
et al., 2018). Different kinds of algorithms have been applied in
investigating epileptic EEG, such as principal component analysis
(PCA) (Villar et al., 2017), Wavelet analysis (Wang et al., 2018),
support vector machines (SVM), fuzzy logic systems (Jiang et al.,
2016), and connectivity (Qin et al., 2020).

Convolutional neural networks (CNN) becomes more popular in
neuroscience research after its success in some other fields, such as
image recognition (Krizhevsky et al., 2012) and EEG analysis (Pan
et al., 2022). CNN achieves automatic extraction of local features
through its key component convolutional kernel and obtains high-
level abstract features after a series of hierarchical processing. It may
also avoid the problems of manual optimizing of traditional signal
processing algorithms. In our preliminary study, a three-layer CNN
was trained to identify pathological PAC in SEEG recordings (Wang
and Li, 2020). The result showed that the area-under-curve (AUC)
value reached .88 for classifying pathological PACs from normal ones
(Wang and Li, 2020). However, the representation and operation of
CNN in real values limit their applications in the field of complex-
valued datasets. Complex-valued CNN (CV-CNN) has been
developed and applied to various fields (Hirose, 2013; Tygert et al.,
2016). Some studies have demonstrated that CV-CNN outperforms
real-valued CNN after making full use of phase information in
complex-valued data, such as magnetic resonance imaging (MRI)
(Cole et al., 2021), steady-state visually evoked potentials (SSVEP)
(Ravi et al., 2020).

In this study, we propose a novel approach for identifying
pathological PAC in SEEG from patients with epilepsy. We first
provide a method for generating complex-valued PAC (CV-PAC)
with both the coupling strength and the coupled phase of LFO. The
CV-CNN is then trained to discriminate the pathological PACs from
normal ones. SEEG recordings from nine intractable epilepsy patients
were further analyzed to validate our proposed approach.

2 Materials and methods

2.1 Data and subject description

SEEG data of 23 seizures from nine patients were used in this
study. All patients had undergone surgery and achieved seizure-free
outcomes (General hospital of northern theater command). The
regions of surgical resection were used as the epileptogenic zone in
this study. Informed consent was obtained from each patient, and the
ethics committee of the hospital approved the study. The clinical
information of each patient is outlined in Table 1. A neurologist
marked the SEEG onset and termination of all seizures. To eliminate

TABLE 1 Clinical information of patients studied in this work.

Patients Age/Sex Duration (years) Seizure (s) MRI Findings Pathology Surgery

P1 16M 10 66, 61, 48 Left hippocampal abnormality FCD/HS Left: T

P2 37M 17 74, 76, 77 Normal FCD Left: T

P3 36M 23 75, 84 Normal Gliosis Right: T

P4 31M 30 42, 64, 120 Multiple region abnormality Gliosis Right: T

P5 25F 17 65, 97, 67 Normal HS Right: T

P6 38M 32 71 Left occipital abnormality — Left: O*

P7 11M 7 44, 54, 55 Left parietal and right occipital abnormality Gliosis/FCD Right: O

P8 54M 32 59, 60, 82 Right temporal abnormality FCD Right: FT

P9 22M 3 76, 80 both hippocampal abnormality HS Left: T

F, frontal; T, temporal; O, occipital; *, radio-frequency thermo-coagulation; —, unknown; FCD, focal cortical dysplasia; HS, hippocampal sclerosis.
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the reference effect, we transform the SEEG recordings into a bipolar
montage. Channels with obvious artifacts are removed based on visual
inspection. EEG is a non-linear and non-stationary signal. It could be
treated as a stable state within a short duration. A 10 s window was
suggested for computing PAC (Guirgis et al., 2015; Shi et al., 2019).We
used a 10 s sliding window on seizure with a step size of 2 s. The

duration of each seizure is listed in Table 1. There are 38,751 CV-PACs
generated. Each CV-PAC is represented as a complex-valued image.
The CV-PAC is labeled as a pathological pattern if the corresponding
SEEG channel resides in the surgical resection. Otherwise, the CV-
PAC is labeled as normal. There are 10,289 CV-PACs marked as
pathological, and the other 28,462 CV-PACs are marked as normal.

FIGURE 1
The ictal SEEG segment and theCV-PACpatterns frompatient P1. (A) 10 s SEEG segment with selected channels 16 s after seizure onset. The labels of the
SEEG channel in surgical resection are marked in red color. (B) The coupling strength of CV-PAC of channel A4-A3 in surgical resection. Red and blue colors
indicate strong andweak coupling strengths, respectively. The value is between 0 and 1. (C) The coupled phase of CV-PACof channel A4-A3 corresponding to
(B). The range of phase is between −π and π rad. (D) The coupling strength of CV-PAC of channel D4-D3 in the normal brain region. Red and blue colors
indicate strong and weak coupling strengths, respectively. (E) The coupled phase of CV-PAC of channel D4-D3 corresponding to (D). The range of phase is
between −π and π rad.
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2.2 Complex-valued phase-amplitude
coupling

The CV-PAC is generated based on the PAC measure (Guirgis et al.,
2015). In this study, the low-frequency range is chosen as 1–10 Hz, and
the high-frequency range is chosen as 30–160 Hz. Both low- and high-
frequency ranges are further divided into 10 intervals equally in log space.
We denote the selected low- and high-frequency signals as xfP(t) and
xfA(t) (i.e.,AfA(t)) and the instantaneous phase ofxfP(t) (i.e.,ΦfP(t)) is
extracted by using continuous wavelet transformation (CWT) in
MATLAB (MathWorks, Natick, USA). The phases ΦfP(t) are binned
and the mean of AfA over each phase bin is calculated, which denotes as
<AfA > ΦfP

(j). Themean amplitude is then normalized by the sum of all
mean amplitudes in each phase bin j, as follows

P j( ) � <AfA > ΦfP
j( )

∑N
k�1

<AfA > ΦfP
k( )
, (1)

where N = 18, and j is chosen from 1 to 18. The Kullback-Leibler (KL)
distance between amplitude distribution p and uniform distribution U
(U(j) = 1/N for all bins j) is measured by following equation (Tort et al.,
2010):

DKL P, U( ) � ∑N

j�1P j( )*log P j( )
U j( )[ ]. (2)

The strength of CV-PAC at low- and high-frequency pair is
calculated as follows

SPAC � DKL P, U( )
log N( ) . (3)

The phase bin at the peak of P(j) is extracted as the coupling phase
of the corresponding high and low frequency pair

ψPAC � argmax
j

P j( )*π
9
. (4)

The SPAC is also called modulation index (MI) (Tort et al., 2010).
The strength SPAC and phase ψPAC are then used as the module and
phase angle of complex-valued vector

CPAC � SPAC* cos ψPAC( ) + i*SPAC* sin ψPAC( ) (5)
where i is the imaginary number. CPAC forms one pixel in CV-PAC
image.

The surrogate-tested CV-PAC (ST-CV-PAC) is also generated.
The phases in each low frequency are shuffled 100 times. If the
coupling strength of CPAC in ST-CV-PAC is lower than the
maximum 5% of the corresponding shuffled values, the CPAC will
be set to 0. The CV-PAC and CV-PAC-SA in 10 × 10 resolution are
used in this study since our preliminary study shows that it is a good
balance between performance and computational load (Wang and Li,
2020).

A 10 s SEEG segment during seizure is shown in Figure 1A. The
coupling strengths and coupled phases of CV-PACs for pathological
and normal activities are shown in Figures 1B–E, respectively. To
compare the performance of CV-CNN with traditional CNN, SVM,
and random forest, the real part of CV-PAC and the imaginary part of
CV-PAC are used as two-layer images when using CNN to classify
PAC patterns. The PAC with only coupling strength is also used to
train traditional CNN for comparison.

2.3 Complex-valued convolutional neural
network

In this study, we use CV-CNN to classify CV-PAC patterns.
The structure of CV-CNN is shown in Figure 2. The activation
function of CV-CNN is implemented using the rectified linear
function (ReLU) in our study. The ReLU is applied on the real and
the imaginary feature maps separately. In each complex-valued
convolutional layer, the weights of the convolution kernel are
complex values, and complex multiplication between weights
and feature maps is implemented. To speed up the training
convergence of the model and reduce the impact of the
variation of the input, we define a complex batch normalization
(BN) layer. The maximum number of iterations epoch set for
training is 800, the batch size is 128, and the learning rate is
.0025. In addition, the learning rate decays by a factor of .5 when
the epoch is an integer multiple of 250. A dropout with a value of

FIGURE 2
Complex-valued convolutional neural network (CV-CNN) with complex-valued phase-amplitude coupling (CV-PAC). There are three complex-valued
convolutional layers and four complex-valued fully connected layers.
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.2 is used in the first layer of the fully connected layer, and the
weights of all the complex convolution layers are regularized using
L2 with λ = .004. The cross-entropy loss function is used to quantify
the loss, and the stochastic gradient descent (SGD) algorithm is
chosen as the optimization function. The training and testing of
dataset are implemented using the PyTorch package.

3 Result

3.1 Identifying channel with pathological
CV-PAC

We use the AUC value to evaluate the performance of
classification. To classify one channel as pathological or normal

is based on all CV-PAC generated from the channel. In the receiver
operating characteristic (ROC) curve, if the percentage of
pathological CV-PAC from one channel is higher than the
optimal threshold, the channel will be classified as pathological.
The leave-one-out cross-validation is performed. CV-PACs of
eight patients are used as the training set to train the CNN
model, and the remaining patient is used as a test. A total of
nine rounds of training and verification are performed. By
comparing with the ground truth of each CV-PAC, the ROC
curve is obtained, as shown in Figure 3A. The AUC values of all
patients are listed in the first column of Table 2. The average AUC
value is .92 when applying CV-CNN on the CV-PAC dataset. The
sensitivity and specificity are .82 and .83, respectively.

To further investigate the effects of each low-frequency band,
the PAC is divided into four regions, as shown in Figure 3F. The

FIGURE 3
ROC curves of CV-CNNonCV-PAC dataset. (A)CV-PACwith full low-frequency band. (B)CV-PACwithout slow delta. (C)CV-PACwithout fast delta. (D)
CV-PAC without theta (E) CV-PAC without alpha. (F) PAC regions are divided into four low-frequency bands. (G)CV-PAC with LFO-gamma. (H)CV-PACwith
LFO-HFO. (I) PAC is divided into LFO-gamma and LFO-HFO regions.
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low-frequency bands include slow delta (1—2 Hz), fast delta
(2—4 Hz), theta (4—8 Hz), and alpha (8—10 Hz). Each time we
replace one of the CV-PAC regions with random values with the
same mean and variance. The ROC curves are drawn in Figures
3B–E. The AUC values decrease to .882, .895, .890, and .898 for the
slow delta, delta, theta, and alpha region replaced, respectively. The

high-frequency band is then divided into gamma (30–80 Hz) and
HFO (80—160 Hz), as shown in Figure 3I. The result shows that the
AUC values decrease to .80 and .84 for using LFO-gamma and
LFO-HFO regions (Figures 3G, H; Table 2), respectively. It is also
interesting to notice that the test on original CV-PACs achieves the
best performance on patient P4 only.

TABLE 2 AUC values using CV-CNN on CV-PAC.

Patients CV-
PAC

CV-PAC without
slow delta

CV-PAC without
fast delta

CV-PAC without
theta

CV-PAC without
alpha

CV-PAC with
LFO-gamma

CV-PAC with
LFO-HFO

P1 .93182 .90125 .94886 .93845 .91667 .87879 .89015

P2 .97083 .96667 .98333 .94167 .99167 .86667 .82292

P3 .93143 .93782 .90480 .95197 .90523 .79674 .88250

P4 .96591 .90584 .94805 .90260 .93506 .83117 .91234

P5 .93088 .92059 .93309 .86544 .90882 .76397 .81544

P6 .93529 .89706 .88824 .95441 .90735 .76324 .81912

P7 .98701 .99351 .96753 .98701 .98701 .84091 .95455

P8 .91277 .88830 .92766 .91915 .92128 .91915 .91915

P9 .82394 .76169 .82119 .84730 .81174 .73345 .73345

Average .92236 .88277 .89524 .89041 .89823 .79801 .84375

Optimal values at each row are shown in bold.

FIGURE 4
Phase distribution of low-frequency bands. (A) The quivermap of averaged strength and phase of CV-PACs in non-resected regions. Note that the length
and angle of each gray arrow represent the coupling strength and coupled phase at each high- and low-frequency pair, respectively. (B) The quiver map of
averaged strength and phase of CV-PACs in resected regions. The length and angle of each arrow represent the coupling strength and coupled phase,
respectively. (C) The coupling with phases in slow-delta (1–2 Hz). The blue and red arrows indicate the coupling in the non-resected and resected
regions, respectively. (D) The coupling with phases in delta (2–4 Hz). (E) The coupling with phases in theta (4–8 Hz). (F) The coupling with phases in alpha
(8–10 Hz).
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The CV-PACs from non-resected regions and resected regions are
averaged separately. The coupling strengths and coupled phases of
pathological and normal CV-PAC are plotted in Figures 4A, B,
respectively. The two patterns are different. The coupled phases in
low-frequency bands are plotted in Figures 4C–F. The coupled phases
in non-resected and resected regions are separable for slow delta, fast
delta, and alpha bands. The phases in the non-resected and resected
regions are overlapped for theta band, but the coupling strengths in the
resected regions are stronger than the ones in non-resected regions.
These features contribute to the capability of identifying pathological
CV-PAC in the resected regions.

3.2 Comparison with CNN, SVM, and RF

We use traditional CNN, SVM, and random forest (RF) to train
the model. The leave-one-out cross-validation is also performed. The
real part and imaginary part of CV-PAC are extracted to form images
with two layers. The obtained three-dimensional vectors are used as
the features of the RF classifier. The number of trees searched is from
50 to 300. Since the performance does not improve after 100 trees, the
number of trees is set to 100 in the remaining tests. The features used
for SVM are the same as the RF. The SEEG of patient P1 is first trained
and tested using the SVMmethod. A grid search over the parameters C
(22, 26, . . ., 220) and γ(2–10, 2–8, . . ., 210) is performed to find optimal
values. The parameter C is set to 218, and the parameter γ is set to 22.
Those values of parameter C and γ are used for further analysis. The
ROC curves are plotted in Figures 5A–C, and the AUC values are .890,
.795, and .880 for traditional CNN, SVM, and RF, respectively. The
performances of the above methods are lower than CV-CNN, as
shown in Table 3. The PACs (without the coupled phases) are used to
train the traditional CNN. The ROC curves are plotted in Figure 5D,
and the AUC value is .88 (Table 3). We use the ST-CV-PAC to train
the CV-CNN model with leave-one-out cross validation. The ROC
curves are plotted in Figure 5E, and the averaged AUC value is .83
(Table 3).

4 Discussion

The PAC is commonly used to localize the epileptic tissue (Weiss
et al., 2015; Liu et al., 2021), but the coupled phase of LFO in PAC is
seldom used due to the complexity of the pattern. The proposed CV-
PAC contains both the coupling strengths and the coupled phases.

FIGURE 5
ROC curves of classification using CNN, SVM, random forest, and CV-CNN. (A) ROC curves using CNN. (B) ROC curves using SVM. (C) ROC curves using
random forest. (D) ROC curves using CNN and PAC. (E) ROC curves using CV-CNN and ST-CV-PAC.

TABLE 3 Comparisons of AUC values by using CNN, SVM, RF, CNN(PAC), and CV-
CNN(ST).

Patient CNN SVM RF CNN(PAC) CV-CNN(ST)

P1 .94318 .95833 .91667 .95833 .90152

P2 .93750 .74583 .92500 .98333 .95833

P3 .94082 .94082 .92024 .86664 .86440

P4 .95779 .78247 .89610 .9513 .92857

P5 .90000 .68162 .91250 .87059 .86618

P6 .92647 .69265 .87059 .86618 .96296

P7 .97204 .97727 .98052 .99026 .99320

P8 .91915 .73617 .85745 .86809 .91136

P9 .78953 .75379 .83182 .79751 .79112

Average .89081 .79543 .88006 .88082 .83454

Optimal values at each row are shown in bold.
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Our result shows that the CV-PAC/CV-CNN approach outperforms
PAC/CNN approach. The AUC values of the two approaches are
.92 and .88, respectively (Tables 2, 3). When the real part and
imaginary part of CV-PAC are extracted as two-layer input feature
maps for traditional CNN, the AUC value decreases to .88. The
performance will not improve if we just feed the CNN with real-
value features. It implies that the coupling strengths and the coupled
phases are correlated, and the complex-value operation in CV-CNN
extracts the correlated information for identifying pathological PAC.

The coupled phases of LFOs are important in localizing the
epileptogenic tissues (Amiri et al., 2016; Li et al., 2016). In our
study, the delta band is divided into slow delta and fast delta
(Amiri et al., 2016). Our result showed that the coupled phases of
both slow delta and fast delta are different in pathological and normal
PACs, as shown in Figures 4C, D. If the coupling in slow delta region
was replaced by random values, the performance of classification
dropped the most, as shown in Table 2. Our result also showed that the
coupling in alpha region also contributes to the improvement of
performance (Table 2; Figure 4F). The coupled phases in theta
band are overlapped in pathological and normal PAC (Figure 4E).
The coupling strengths of pathological PACs in delta band are
stronger than the coupling strengths of normal PACs (Figures 4A,
B). We infer that it is the main reason why the traditional PAC or MI
can help us discriminate pathological brain tissues.

Some studies focused on the PAC in either LFO-gamma
(30–80 Hz) or LFO-HFO (> �80) (Amiri et al., 2016; Liu et al.,
2021). Our result shows that the AUC values scored only .80 and
.84 when using CV-PAC of LFO-gamma (30–80 Hz) and LFO-HFO
(80–160 Hz), respectively. Our result suggests that the CV-PAC of
LFO-HFO (80–160 Hz) is more important than the CV-PAC of LFO-
gamma (30–80 Hz) in classifying pathological patterns.

In our study, the PAC in the form of two-layer feature maps was
used to train the SVM and RF. The performance of RF is comparable
to PAC/CNN approach (Table 3). The AUC value of CV-PAC/CV-
CNN approach is higher than all other methods, as listed in Table 3,
which emphasizes the importance of the correlation between the
coupling strength and coupled phase. The coupled phase is
important, and it is more meaningful when combined with
coupling strength. Since there are difficulties in analyzing the phase
patterns of PAC, our proposed approach provides a tool for the
classification of pathological PAC and normal PAC by introducing
a complex-value image classification measure. Surrogate testing can be
used to remove the spurious coupling in EEG signals (Shi et al., 2019;
Li et al., 2021). In our study, the averaged AUC value using ST-CV-
PAC is lower than the value using CV-PAC. Here, we adopt the image
recognition measure by using CNN and CV-CNN. The ST-CV-PAC
may become more complex and discontinuous due to removing some
non-significant values. We think that is the main reason why the
performance on ST-CV-PAC is lower than CV-PAC.

There are some limitations in this study. The ictal dataset is
analyzed, and it still needs more study to extend it to inter-and pre-
seizure data. Since the subdural is another widely used measure for
recording brain electrical activity, it is necessary to include those types of
data. In our study, most patients had temporal lobe epilepsy, and the
location of SEEG implemented varied from patient to patient. It should
be cautious to apply our method to all candidates for epilepsy surgery.
Some studies have shown that PAC can be used to identify channels in
SOZ, which is often much smaller than the area surgically removed.
Comparing our results with traditional SOZ classification results still

needs to be further explored. The non-linear decomposition methods
for generating PAC may potentially improve the classification
performance, which will be addressed in our future work.

5 Conclusion

The PAC pattern is a useful biomarker for identifying SEEG
channels with pathological brain activities, and it is critical for
presurgical evaluation of DRE patients. The proposed CV-PAC
represents richer pathological patterns than PAC, which can be
further analyzed by using image recognition measure. The CV-CNN
achieves better performance than traditionalmachine learningmeasures
in classification of pathological and normal PAC patterns. This study
provides a new approach for localizing epileptogenic brain tissues.
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