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Introduction: Bronchopulmonary dysplasia (BPD) is a life-threatening lung illness
that affects premature infants and has a high incidence and mortality. Using
interpretable machine learning, we aimed to investigate the involvement of
endoplasmic reticulum (ER) stress-related genes (ERSGs) in BPD patients.

Methods: We evaluated the expression profiles of endoplasmic reticulum stress-
related genes and immune features in bronchopulmonary dysplasia using the
GSE32472 dataset. The endoplasmic reticulum stress-related gene-based
molecular clusters and associated immune cell infiltration were studied using
62 bronchopulmonary dysplasia samples. Cluster-specific differentially expressed
genes (DEGs) were identified utilizing theWGCNA technique. The optimummachine
model was applied after comparing its performance with that of the generalized
linear model, the extreme Gradient Boosting, the support vector machine (SVM)
model, and the random forest model. Validation of the prediction efficiency was
done by the use of a calibration curve, nomogram, decision curve analysis, and an
external data set.

Results: The bronchopulmonary dysplasia samples were compared to the control
samples, and the dysregulated endoplasmic reticulum stress-related genes and
activated immunological responses were analyzed. In bronchopulmonary
dysplasia, two distinct molecular clusters associated with endoplasmic reticulum
stress were identified. The analysis of immune cell infiltration indicated a
considerable difference in levels of immunity between the various clusters. As
measured by residual and root mean square error, as well as the area under the
curve, the support vector machine machine model showed the greatest
discriminative capacity. In the end, an support vector machine model integrating
five genes was developed, and its performance was shown to be excellent on an
external validation dataset. The effectiveness in predicting bronchopulmonary
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dysplasia subtypes was further established by decision curves, calibration curves, and
nomogram analyses.

Conclusion: We developed a potential prediction model to assess the risk of
endoplasmic reticulum stress subtypes and the clinical outcomes of
bronchopulmonary dysplasia patients, and our work comprehensively revealed the
complex association between endoplasmic reticulum stress and bronchopulmonary
dysplasia.

KEYWORDS

bronchopulmonary dysplasia, machine learning, endoplasmic reticulum stress, immune
infiltration, prediction model

Introduction

Bronchopulmonary dysplasia (BPD) is a pulmonary condition that
affects preterm newborns and is hallmarked by suppressed lung
development and lung damage, requiring life-saving medical
interventions like mechanical ventilation and oxygen treatment
(Thebaud et al., 2019). Consequently, it is one of the conditions that is
considered to be the most life-threatening in neonatal intensive care units
(Bancalari and Jain, 2019). Even though there have been tremendous
breakthroughs in maternal and neonatal care, the prevalence of BPD in
preterm babies remains between 20% and 40% (Sillers et al., 2020). BPD
may result in impaired lung development and permanent impairment
(Gilfillan et al., 2021). BPDmay also cause harm to the neurological system
and other systemic organs (Shukla and Ambalavanan, 2021). However, the
pathogenesis of BPD is poorly known, and there are few early diagnostic
tests and precise prevention or therapy approaches for this disease.

The endoplasmic reticulum (ER) is essential for maintaining the
intracellular environment’s equilibrium (Zeeshan et al., 2016). Under
persistent stress, the disturbance of ER homeostasis may result in ER
stress, as demonstrated by alterations in the Ca2+ levels in the cells and
the overaccumulation of misfolded or unfolded proteins, which
ultimately leads to numerous protein-folding diseases, including
BPD (Adamopoulos et al., 2014; Leprivier et al., 2015). It is
generally believed that prematurely born infants display oxidative
stress shortly after delivery owing to their immature antioxidant
defenses and the fast increase in oxygen tension caused by medical
intervention (Bonadies et al., 2020). Numerous adaptive survival
mechanisms are triggered in response to a sudden rise in oxidative
stress, such as the UPR (a reaction to variations in chaperone
function), resulting in increased ER stress and reduced protein
production to facilitate the restoration of proteostasis (Hu et al.,
2020; Kepp and Galluzzi, 2020). Both ER stress and oxidative stress
are two connected conditions associated with a variety of lung diseases
(Marciniak, 2017; Chen et al., 2018). Recent research indicates that ER
stress is elevated in the lungs of numerous recognized BPD animal
models (Pritchard et al., 2022). These investigations showed that ER
stress may be an effective therapeutic target for BPD. However, the
particular molecular processes of ER in controlling the course of BPD
have yet to be completely explained and need more research.

We investigated the expression patterns of ER stress-related genes
(ERSGs) between BPD and control samples, as well as the association
between differentially expressed genes (DEGs), linked to ER stress
immune features. Then, we grouped BPD patients into two ER stress-
related clusters and analyzed the differences (variations) in immune
cell infiltration between the two groups. The WGCNA approach was
then used to detect cluster-specific DEGs, and enriched bioactivities

and pathways were determined based on these cluster-specific DEGs.
Moreover, the analysis of multiple machine-learning approaches
resulted in the development of a prediction model for identifying
patients who have distinct molecular clusters After that, we verified the
nomogram, calibration curve, decision curve analysis (DCA), and the
predictive model’s performance, which offered some additional
unique knowledge for predicting BPD clusters and relevant risk.

Materials and methods

Acquisition and preprocessing of data

Gene Expression Omnibus (GEO) was searched to acquire two
microarray datasets (GSE32472 and GSE108756) associated with BPD.
Microarray profiles of gene expression in neonates with BPD were
reported by GSE32472 using blood samples taken around the 5th,
14th, and 28th days of life. For reliability, we chose 100 blood samples
on around the 28th day, when a more precise diagnosis of BPD could be
established, which mainly concluded 38 controls and 62 patients with
BPD. GSE108756 included six control samples and five BPD samples and
was used as an external validation set. To standardize the expression data,
the quantile normalization function in the limma package of R was used.
The ERSGs were obtained from two gene sets (GOBP response to
endoplasmic reticulum stress and GOBP regulation of response to
endoplasmic reticulum stress) of MSigDB.v2022 and 260 ERSGs were
collected (Supplementary Table S1).

Analysis of immune cell infiltration

To calculate the relative abundance of 22 different types of immune
cells in each sample using the processed gene expression profiles, the
CIBERSORT method and LM22 signature matrix were used (Newman
et al., 2015). When calculating the inverse fold product probability value,
CIBERSORT employs Monte Carlo sampling. We only counted immune
cell fractions with p-values below .05 as accurate. The sum of the
22 immune cell proportions in each sample was 1.

Analysis of the relationship between ERSGs
and infiltrating immune cells

We examined correlation coefficients between ERSGs expression
and the relative proportion of immune cells as a further demonstration
of the connection between ERSGs and BPD-associated immune
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features. p-values < .05 for the spearman correlation coefficient
indicated a statistically significant relationship. Lastly, the
“correplot” R package was used to visually display the findings.

Unsupervised clustering of BPD patients

We analyzed the differences in ERSGs between BPD and control
groups, and the screening criteria were |logFC| > 0 and p < .001 for
genes with significant differences. We got 31 differentially expressed
ERSGs. Using the expression patterns of 31 ERSGs as input, we
executed an unsupervised clustering analysis utilizing the
“ConsensusClusterPlus” R package (Wilkerson and Hayes, 2010),
which used the k-means method and 1,000 interactions to classify
the 62 BPD samples into distinct clusters. On the basis of the
consensus matrix, the cumulative distribution function (CDF)
curve (Boso et al., 2014), and the consistent cluster score (>.9), we
determined that k = 2 was the maximum number of subtypes in our
analysis and thoroughly evaluated the optimal cluster number.

Gene set variation analysis (GSVA)

The “GSVA” package (Hanzelmann et al., 2013) in R was employed
to perform enrichment analysis, which helped to reveal the variations in
enriched gene sets across various ER stress clusters. From the MSigDB
website database, we obtained the “c2.cp.kegg.symbols.gmt” and
“c5.go.symbols.gmt” files to conduct additional GSVA analysis. By
comparing GSVA scores across several ER stress clusters, the “limma”
R program was used to determine the pathways and biological functions
that were expressed differently. Outcomes in the GSVA score with a
t-value greater than two were judged significant.

Weighted gene co-expression network
analysis (WGCNA)

The “WGCNA” package in R was employed to executeWGCNA and
find co-expression modules (Langfelder and Horvath, 2008). To ensure
the reliability of high-quality findings, the top 25% of genes with the
greatest variation were subjected to WGCNA analyses. The optimal soft
thresholding power was used to generate the weighted adjacency matrix,
which was then used as the basis for a topological overlap matrix (TOM).
Additionally, the TOM dissimilarity measure (1-TOM) predicated on the
hierarchical clustering tree technique was used to create modules with a
minimummodule size of 100. A different color was chosen at random for
each module. The global gene expression patterns in each module were
denoted by the eigengene of the corresponding module. Modular
significance (MS) demonstrated the connection between modules and
illness conditions. The link between a gene and its clinical phenotypes was
termed gene significance (GS).

The development of a prediction model using
various machine-learning techniques

We used the “caret” R package to develop machine learning
models, which include an eXtreme Gradient Boosting (XGB),
generalized linear model (GLM), support vector machine model

(SVM), and random forest model (RF), premised on two distinct
ERSG clusters. RF is a machine learning ensemble method that
predicts categorization or regression using several, unrelated
decision trees (Rigatti, 2017). The SVM technique allows for the
generation of a hyperplane in the characteristic space that has a
hyperplane that maximizes the margin to discriminate between
negative and positive examples (Giraldo et al., 2006). GLM is a
variant of the linear regression technique used to examine the link
between normal distributions of dependent data and continuous or
categorical independent characteristics. XGB is a gradient-boosting-
based ensemble of boosted trees that can quantitatively compare
model complexity and classification error (Lee and Nelder, 2002).
Cluster-specific DEGs were chosen as explanatory variables, whereas
the response variables were distinct clusters. We classified 62 BPD
samples at random into a training set (consisting of 70%) and a
validation set (consisting of 30%). Machine learning models were run
with default settings and evaluated by means of 5-fold cross-
validation, and parameter optimization was done automatically by
the caret package using grid search. To clearly explain the link between
these four machine learning models and to compare their residual
distributions and feature significance, the “DALEX” package was
implemented. To display the area under ROC curves, the “pROC”
(Robin et al., 2011) R program was used. As a result, the best machine
learning model was selected, and the top five factors served as the key
predictor genes for BPD.

Development and verification of a nomogram
model

With the aid of the “rms” R package, we developed a nomogram to
analyze BPD cluster-related occurrence. There is a corresponding
score assigned to each predictor, and this value is added together to get
the “total score.” To evaluate the nomogram model’s prediction
ability, we used the DCA (Vickers and Elkin, 2006) and calibration
curve.

Independent validation analysis

The ROC analyses were used to verify the predictive model’s
capacity to differentiate between BPD and non-BPD controls using the
data set GSE108756. The “pROC” R package was used to visualize
ROC curves.

Results

Dysregulation of ERSGs

We initially extensively made a comparison of the expression
patterns of 260 ERSGs across BPD and control samples based on the
GSE32472 dataset, to elucidate the biological involvement of ERSGs in
the onset and advancement of BPD. In total, 31 ERSGs were
determined as the differentially expressed ERSGs (DE-ERSGs)
according to the criteria of |logFC| > 0 and p < .001 (Figures
1A–C). To further probe whether ERSGs played a crucial function
in the onset and advancement of BPD, we conducted a correlation
study across these DE-ERSGs. Many of the ERSGs presented strong
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FIGURE 1
Identification of dysregulated ERSGs in BPD. (A) DE-ERSGs were presented in the heatmap. (B) Boxplots showed the expression of DE-ERSGs between
BPD and control samples. ***p < .001. (C) The location of DE-ERSGs on chromosomes. (D) Gene relationship network diagram of DE-ERSGs. (E) Correlation
analysis of DE-ERSGs.

FIGURE 2
Identification of molecular and immune characteristics between BPD and control samples. (A) The relative abundances of 22 infiltrated immune cells
between BPD and control samples. (B) Boxplots showed the differences in immune infiltrating between BPD and control samples. (C) Correlation analysis
between DE-ERSGs and infiltrating immune cells. *p < .05, **p < .01, ***p < .001.
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synergistic effects (Figure 1D). Additional evidence of the remarkable
link between these DE-ERSGs was provided by the gene interaction
network diagram (Figure 1E).

Activation of the immune responses in BPD
patients

Immune cell infiltration analysis using the CIBERSORT method
demonstrated a difference in the percentages of 22 types of infiltrated
immune cells between BPD and control samples, providing more evidence
for the existence of immune system differences between the two groups
(Figure 2A). The findings illustrated that BPD patients exhibited a greater
infiltration level of monocytes, macrophages M0, neutrophils, naive CD4+

T cell, and lower levels of dendritic cells activated, macrophagesM2, resting
memory CD4 T cells, and CD8 T cells (Figure 2B), pointing to immune
system changes as a potential root cause of BPD. Nevertheless, a study of
correlations found strong associations between ERSGs and neutrophils,
macrophages, resting CD4 memory T cells, naïve CD4 T cells, and
CD8 T cells (Figure 2C). From these findings, ERSGs could perform a
crucial function in controlling the molecular and immunological
infiltration status of BPD patients.

Determination of ERSGs clusters in BPD

We used a consensus clustering technique to classify the 62 samples
according to the expression patterns of 31DE-ERSGs, thus elucidating the
ER stress-associated expression profiles in BPD. Cluster sizes were most
consistent with a k value of 2 (k = 2), whereas CDF curves showed little
variation between consensus indices of .2 and .8 (Figures 3A–C).

Additionally, only when k = 2, each subtype’s consistency score
was >.9 (Figure 3D). Hence, two clusters were finally identified as
optimal. Further principal component analysis (PCA) (Ben and Ben,
2021) findings showed a remarkable variation between the
aforementioned clusters (Figure 3E).

Differentiation of ERSGs and immune
infiltration features between ERSGs clusters

The expression variations of ERSGs between clusters 1 and 2 were
first thoroughly evaluated, allowing for the investigation of the
molecular variations across the two categories. Two different ERS
patterns were found, each with its unique expression landscape of
ERSGs (Figures 4A, B). Furthermore, immune infiltration study
findings revealed a changed immune milieu between ER stress
clusters 1 and 2 (Figure 4C). Cluster two exhibited higher
proportions of macrophages M0, neutrophils, and NK cells resting,
whereas the levels of B cells naive, B cells memory, T cells CD8, T cells
CD4 memory resting, and monocytes were relatively greater in cluster
1 (Figure 4D). These results confirmed that the two clusters based on
the ERSGs had different immune environments, which provided a
strong case for foundational genetic changes that link ERS, immune
cell infiltration, and the remodeling seen with BPD.

Screening of gene modules and creation of
co-expression networks

Todeterminewhich genemodules played a key role in BPD,weused the
WGCNA method to create a co-expression network and modules for both

FIGURE 3
Identification of ER stress-related molecular clusters in BPD. (A) Consensus clustering matrix when k = 2. (B–D) Representative CDF curves. (E) PCA
visualizes the distribution of two subtypes.
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BPD and normal samples. We determined the variation of expression for
each gene in GSE32472 and afterward analyzed the top 25% of genes with
the greatest variance. Once the soft power value was adjusted to 19, co-
expressed gene modules were determined (Figure 5A). By means of the
dynamic cutting method, we obtained 14 unique co-expression modules,
each of which was assigned a unique color (Figures 5B–D). Module-clinical
characteristics (Control and BPD) co-expression was then continually
applied to these genes in the 14 colored modules to determine adjacency
and similarity. Lastly, 568 genes in the blue module showed the highest
correlation with BPD (Figure 5E). In addition, we found a positive link
between the blue module and module-related genes (Figure 5F).

We used the WGCNA technique to further scrutinize the key gene
modules that are linked to ER stress clusters. To develop a scale-free
network, we found that a value of β = 19 was the optimal soft threshold
(Figure 6A). In particular, a heatmap depicted the TOM of all genes
associated with the 13 modules deemed to be significant (Figures 6B–D).
An examination of the links betweenmodules and clinical variables (clusters
1 and 2) revealed a strong association between the turquoise module and
BPD subtypes (Figure 6E). A correlation study revealed a strong association
between turquoise module genes and the chosen module (Figure 6F).

Determination of DEGs unique to clusters and
annotation of their functions

By intersecting the genes involved in ER stress modules with those
involved in BPD and controls, we detected 49 cluster-specific DEGs

(Figure 7A). To delve even further into the functional differences
between the two clusters, we employed the GSVA analysis to examine
the DEGs that were specific to each cluster. The findings illustrated
that the regulation of transcription by RNA polymerase 1, regulation
of cytoplasmic translational initiation, transcription by RNA
polymerase 1, spliceosome, N glycan biosynthesis, aminoacyl tRNA
biosynthesis, MYC targets, and MAPK unfolded protein response
were enriched in cluster 2, while the icosanoid binding, toll-like
receptor 4 binding, respiratory burst, MTOR signaling pathway,
long term potentiation, IL6/JAK/STAT3 signaling, inflammatory
response, and hypoxia were enriched in cluster 1 (Figures 7B–D).

Development and evaluation of models for
machine learning

We applied four validated machine learning models (SVM, RF,
GLM, XGB) using the expression patterns of 49 cluster-specific DEGs
in the BPD training dataset to additionally uncover subtype-specific
genes with excellent diagnostic significance. The residual variance in
SVM and RF machine learning models was quite low (Figures 8A, B).
Next, root mean square error (RMSE) was used to determine the rank
of importance for each model’s top 10 feature variables (Figure 8C). In
addition, we computed ROC curves by means of 5-fold cross-
validation to assess the discriminative capacity of the four
machine learning techniques in the testing dataset. The area under
the ROC (AUC) was greatest for the SVM machine-learning model

FIGURE 4
Identification of molecular and immune characteristics between the two ER stress clusters. (A) Expression patterns of DE-ERSGs between two ER stress
clusters were presented in the heatmap. (B) Boxplots showed the expression of DE-ERSGs between two ER stress clusters. (C) The relative abundances of
22 infiltrated immune cells between two ER stress clusters. (D)Boxplots showed the differences in immune infiltrating between two ER stress clusters. *p < .05,
**p < .01, ***p < .001.
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(AUC) (RF, AUC = .783; SVM, AUC = .798; XGB, AUC = .758; GLM,
AUC = .679) (Figure 8D). Altogether, these findings show that the
SVMmodel is superior at distinguishing across patient populations. In
the end, the variables PYGL, YIPF1, SLC2A14, CKAP4, and
PDLIM7 that were shown to be the most significant by the SVM
model were chosen to serve as predictor genes for the subsequent
research.

To conduct a more in-depth analysis of the prediction power of the
SVMmodel, we initially designed a nomogram to predict the likelihood
of ER stress clusters occurring in 62 BPD patients (Figure 9A). Both the

DCA and calibration curves were used to evaluate the nomogram
model’s capacity for accurate prediction. The calibration curve
indicated that the variation between the observed and anticipated
risks of BPD clusters was low (Figure 9B), and DCA shows that our
nomogram is quite accurate, highlighting that it might be used to guide
medical judgment (Figure 9C). Next, we used GSE108756 to evaluate
our 5-gene prognostic model, and its ROC curves demonstrated strong
performance (AUC = 1.000) (Figure 9D), demonstrating that our
diagnostic model is accurate in differentiating BPD cases from non-
BPD individuals.

FIGURE 5
Co-expression network of DEGs in BPD. (A) The selection of soft threshold power. (B) Cluster tree dendrogram of co-expression modules. (C)
Representative of clustering of module eigengenes. (D) Representative heatmap of the correlations among 14 modules. (E) Correlation analysis between
module eigengenes and clinical status. (F) Scatter plot between module membership in the blue module and the gene significance for BPD.
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Discussion

BPD is a complicated illness that has a significant genetic
component. Some scholars contend that a variety of genetic
pathways and mutations might be linked to the predisposition
to developing BPD (Higano et al., 2021). Each genetic variation
may participate in the development of the illness, and the
accumulation of these variants results in the dysregulation of
biological processes in the growing lungs of preterm babies

(Jung et al., 2019). This high-risk population will benefit from
the development of new treatments once the processes behind BPD
are better understood. Better molecular clusters must be identified
to provide direction for the customized therapy of BPD patients
because of the heterogeneity of BPD pathology. The ER is the
subcellular organelle that offers a one-of-a-kind environment for
the synthesis of cholesterols, lipids, and proteins, as well as for the
metabolism of carbohydrates and the storage of calcium (Parmar
and Schroder, 2012; Sanvictores and Davis, 2022). The ER is

FIGURE 6
Co-expression network of DEGs between the two ER stress clusters. (A) The selection of soft threshold power. (B) Cluster tree dendrogram of co-
expression modules. (C) Representative of clustering of module eigengenes. (D) Representative heatmap of the correlations among 13 modules. (E)
Correlation analysis between module eigengenes and clinical status. (F) Scatter plot between module membership in turquoise module and the gene
significance for cluster 2.
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essential to the process of alveoli production in the following ways:
1) preserving the function of the mitochondria; 2) correction of
growth factor and receptor post-translation modifications; 3)
reducing oxidative stress production; and 4) control of
inflammation (Chan et al., 2016; Biwer and Isakson, 2017;
Koksal et al., 2021). It has been observed that HOX and
interferon-gamma increase ER stress in the lungs of newborn
mice, thus causing lung damage and the arrival of neutrophils
(Ileriturk et al., 2022). Non-etheless, further research is necessary
to confirm the exact mechanisms underpinning ER stress and its
modulatory involvement in different disorders. As a result, we
aimed to better understand the function of ERSGs in the
characterization of BPD phenotypes and the immune milieu in
which they exist. Furthermore, ER stress-related gene signatures
were used to classify BPD cases.

In this work, for the first time, we executed an in-depth
comparison of the expression patterns of ERSGs in BPD
samples with those from control groups. Compared to non-BPD
patients, those with BPD were more likely to have dysregulated
ERSGs, highlighting the important function of ERSGs in the
development of BPD. We next determined the inter-ERSG
connection to fully understand the link between ERSGs and
BPD. We found that the presence of ERSG interplay in BPD
patients offered evidence that some ERSGs exhibited strong
synergistic or antagonistic impacts.Changes in immune cell
abundance between control and BPD samples are indicative of
the potential involvement of immune cells in the pathogenesis of
BPD. In addition, we employed unsupervised cluster analysis to

depict various ER stress trends in BPD patients according to the
expression patterns of ERSGs, and we found that there were two
different ER stress-related clusters. Our results found that Cluster
2 had significantly higher neutrophils. Neutrophils play a very
important role in acute lung inflammation in mature and
developing organisms (Beck-Schimmer et al., 2005; Phillipson
and Kubes, 2011; Aggarwal et al., 2014). During the initiation of
inflammation, neutrophils undergo many changes in gene
expression and functional properties (Christensen, 1989).
Neutrophils originate in the bone marrow and are then released
into the circulatory system where they act as the first line of cellular
immune defense when they are recruited to the site of injury (Furze
and Rankin, 2008; Prame et al., 2018). After the first wave of
inflammation, subsequent stages recruit monocytes. Neutrophils
remove pathogens through phagocytosis and by releasing
proteases, reactive oxygen species (ROS) and bioactive
membrane vesicles (Nauseef and Borregaard, 2014). By
classifying patients with BPD into Cluster 1 and Cluster
2 subtypes, we have shown that the two types of immune cells
have differences, suggesting that there may be differences in
outcomes that need to be explored further in the future.

Recent years have seen a surge in the use of machine learning
algorithms that incorporate demographic and imaging parameters
to anticipate BPD prevalence, and evidence from these research
reports shows that multifactorial analyses properly accounted for
links among variables, as a consequence, having a reduced error
rate and more robust outcomes than univariate analysis. Premised
on the expression patterns of cluster-specific DEGs, we generated

FIGURE 7
Identification of cluster-specific DEGs and biological characteristics between two ER stress clusters. (A) The intersections between module-related
genes of ER stress clusters and module-related genes in the GSE32472 dataset. (B–D) Differences in GO pathway, KEGG pathway, and hallmark pathway
between cluster 1 and cluster 2 samples ranked by t-value of GSVA method.
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an SVM-based prediction model and contrasted the prediction
accuracy across four chosen machine learning classifiers (XGB,
GLM, SVM, and RF), which demonstrated the best predictive
efficiency in the validation cohort, revealing that SVM-based
machine learning performs well in classifying BPD subtypes.
Then, we built a five-gene SVM model by selecting PYGL,
YIPF1, SLC2A14, CKAP4, and PDLIM7 as the most crucial
variables. There is evidence that points to PYGL being involved
in glycogen degradation (Zhan et al., 2021). The hypoxia
metabolism gene PYGL was discovered to be upregulated in
many malignancies, including breast cancers and head and neck

squamous cell carcinomas (Kawakubo-Yasukochi et al., 2021; Zhao
et al., 2021). The glycogen degradation mediated by PYGL has been
hypothesized to sustain the growth of cancer cells. Recently, Wang
et al. (2022) reported that PYGL is a potential target of miR-155-5p
for regulating the function of pulmonary artery smooth muscle
cells in response to hypoxia. YIPF1 belongs to the YIPF family, and
HA-tagged YIPF1 has also been observed to partially localize to the
ER (Soonthornsit et al., 2017). The SLC2A14 gene is responsible for
encoding the glucose transporter member 14 (GLUT14). Disorders
of the central nervous system, rheumatoid arthritis, lymphoma,
and intraocular pressure in primary open-angle glaucoma have all

FIGURE 8
Construction and evaluation of RF, SVM, GLM, AND SGB machine models. (A) Cumulative residual distribution of each machine learning model. (B)
Boxplots showed the residuals of each machine-learning model. (C) The important features in RF, SVM, GLM, and XGB machine models. (D) ROC analysis of
four machine learning models based on five-fold cross-validation in the testing cohort.
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been linked to mutations in the SLC2A14 gene (Amir et al., 2016;
Amir et al., 2017). CKAP4 is an ER protein that is present on the
surface of cell membranes and has been identified to be a cell
surface receptor for many proteins such as t-PA and APF (Kimura
et al., 2016; Osugi et al., 2019; Harada et al., 2020). Interaction
between PDLIM7 and synaptopodin was discovered to occur
through several domains, and PDLIM7 colocalizes with
synaptopodin on the cisternal organelle, an unusual stacking of
ER cisterns that resembles the spine apparatus, and is found at axon
initial segments of a subset of neurons (D’Cruz et al., 2016).

This additional external validation in GSE108756 dataset
demonstrates that the five gene-based SVM model could reliably
predict BPD, expanding our understanding of the diagnostic
process for BPD. Moreover, we used PYGL, YIPF1, SLC2A14,
CKAP4, and PDLIM7 to develop a nomogram model for
diagnosing BPD subtypes. In our tests, the model showed
considerable predictive performance, suggesting its potential use in
clinical settings. Altogether, the SVM model integrating these five
genes provides sufficient guidance for distinguishing between BPD
subtypes.

There are a few drawbacks to this research that must be
mentioned. To begin, the present research relied heavily on

bioinformatics, and further clinical or experimental evaluation is
needed to confirm the expression patterns of ERSGs, which was not
the case in our investigation. Additionally, the performance of the
prediction model needs to be verified by a more comprehensive set
of clinical parameters. Further investigation into the possible
relationship between ERSGs and immunological responses is
also warranted, and a larger number of BPD samples is required
to confirm the reliability of ER stress-related clusters. Even though
we used an external dataset to ensure accuracy, further trials are
needed to establish a link between the characteristics of BPD
pathology.

Conclusion

Overall, our research revealed the connection between ERSGs
and infiltrated immune cells and shed light on the substantial
heterogeneity of the immune across BPD patients with diverse
ER stress clusters. The best machine learning model for
determining BPD subtypes and the clinical prognosis of BPD
patients was found to be a five-gene-based SVM model. Our
findings clarify the molecular processes driving BPD

FIGURE 9
Validation of the five gene-based SVMmodel. (A) Construction of a nomogram for predicting the risk of ER stress clusters based on the five gene-based
SVMmodel. (B)Calibration curve of the SVMmodel. (C)DCA curve of the SVMmodel. (D)ROC analysis of the SVMmodel based on five-fold cross-validation in
the GSE108756 dataset.
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heterogeneity and establish for the first time the significance of
ER stress in this disorder.
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