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Heart sound classification plays a critical role in the early diagnosis of

cardiovascular diseases. Although there have been many advances in heart

sound classification in the last few years, most of them are still based on

conventional segmented features and shallow structure-based classifiers.

Therefore, we propose a new heart sound classification method based on

improved mel-frequency cepstrum coefficient features and deep residual

learning. Firstly, the heart sound signal is preprocessed, and its improved

features are computed. Then, these features are used as input features of

the neural network. The pathological information in the heart sound signal is

further extracted by the deep residual network. Finally, the heart sound signal is

classified into different categories according to the features learned by the

neural network. This paper presents comprehensive analyses of different

network parameters and network connection strategies. The proposed

method achieves an accuracy of 94.43% on the dataset in this paper.
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1 Introduction

Cardiovascular disease is a term used to describe a group of diseases, including

coronary heart disease, cerebrovascular disease, and rheumatic heart disease. A patient’s

blood pressure, blood sugar, and lipid levels can be raised by fried foods, fast foods,

alcohol, and tobacco, as well as weight gain and obesity, leading to premature death.

Prevention of sudden death from cardiovascular disease can be achieved by finding

groups at risk for cardiovascular disease and ensuring they receive the proper treatment. It

is possible to reduce the risk of sudden death from cardiovascular disease by reducing

alcohol consumption, reducing salt intake, eating more fruits and vegetables, and

exercising more.

Heart sounds are produced by the heart through rhythmic contraction and diastole.

The heart is the powerhouse of the body and it is the most critical organ in the body,

responsible for delivering blood to other organs to provide oxygen and other nutrients

and to carry away the end products of metabolism so that cells can maintain a normal
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physiological state. Hearts have four chambers: Left atrium, left

ventricle, right atrium, and right ventricle, the details of heart

structure are shown in Figure 1. Atrioventricular valves prevent

blood from flowing backward between the atria and ventricles Li

S. et al. (2020).

A cardiac cycle occurs when one heartbeat precedes the next,

producing four heart sounds, which are the first, second, third,

and fourth heart sounds. Screening for cardiovascular disease by

auscultatory heart sound auscultation is a simple, necessary, and

effective method that has been used for over 180 years Liu et al.

(2016). The first heart sound marks the beginning of ventricular

systole and is characterized by long duration, high intensity, and

loud sound. The second heart sound marks the beginning of

ventricular diastole and has the characteristics of shorter

duration, less intensity, and less sound. After the second heart

sound, the third heart sound occurs. It lasts between 0.04 and

0.05 s and has a longer wavelength. About half of young adults

and most children hear it, and it does not necessarily indicate

abnormality. In the fourth heart sound, a long wave sound

precedes the first heart sound and lasts for about 0.04 s. It is

mechanical wave caused by the contraction of the atria and the

rapid filling of the ventricles with blood flow, also known as an

atrial sound. Most healthy adults can record a tiny fourth heart

sound on an electrocardiogram, which is difficult to detect on

general auscultation. Based on the patient’s clinical condition, the

physician records the four basic heart sounds and analyzes their

differences from the normal situation. It is typically tricky for

physicians to determine a patient’s condition by heart sound

auscultation in clinical practice Jiang and Choi (2006).

Industrialization has made sophisticated machines standard

medical tools, and electrocardiograms (PCG) are recorded

using acoustic instruments to diagnose and treat patients.

With the continuous application of PCG, the use of signal

processing and artificial intelligence techniques to extract

physiological and pathological information from PCG data

has gradually become a popular trend Herzig et al. (2014).

Benefit from the development of deep learning field in recent

years Hinton and Salakhutdinov (2006); Yu et al. (2013); Ranzato

et al. (2006); Bengio. (2009); Hinton and Salakhutdinov (2012);

Vincent et al. (2010); Silver et al. (2016); Nair and Hinton (2010),

a new horizon has been opened for heart sound classification

Zhang and Han (2017). CNN is now a mature deep learning

framework since it was first proposed in 2006. It has become a

widely used approach in computer vision due to its convolutional

layer that learns local patterns of images. CNN is also gradually

applied to biomedical signal classification and speech semantic

FIGURE 1
The Structure of the human heart.

FIGURE 2
Waveform representation of S1, S2, S3, and S4 sounds in systole and diastole intervals, as of Varghees and Ramachandran (2014).
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recognition through corresponding audio processing methods,

such as transforming human physiological signals into speech

spectrograms. Recurrent neural networks (RNN) are a class of

neural networks that specialize in processing sequential data.

Gated recurrent units (GRU) and long short-term memory

(LSTM) are improved versions of RNN, and they provide

state-of-the-art performance in many applications, including

machine translation, speech recognition, and image captioning

Abduh et al. (2019). Heart sound signals are sequential data with

strong temporal correlation, so heart sound classification can be

efficiently processed by RNN Nogueira et al. (2019); Ismail et al.

(2022); Sakib et al. (2019). Figure 2 describes the Waveform

representation of S1, S2, S3, and S4 sounds in systole and diastole

intervals.

In addition, since some noise in the environment is inevitably

collected during the acquisition of heart sounds, this can greatly

affect the accuracy of the model classification. Therefore, it is

crucial to process the original heart sound signal through feature

engineering before feeding it into the neural network for training.

There are several commonly used feature extraction methods in

heart sound classification tasks, including discrete wavelet

transform coefficients (DWT) Mei et al. (2021), and Mel

frequency cepstral coefficients (MFCC) Yang and Hsieh

(2016). In this paper, the MFCC-based first and second-order

difference coefficients are used as the input tensor of the neural

network. This feature extraction method reduces the effect of

noise on the results and allows the neural network to extract the

physiological and pathological features in the heart sound signal,

resulting in higher classification accuracy. Compared to

traditional heart sound classification algorithms, deep learning

techniques avoid the problems of manual intervention, complex

processes, and poor generalization. Kui et al. (2021) combined

MFSC and CNN for classification of heart sounds. Li et al. (2021)

used Short Time Fourier Transform (SFTF) based features as

input to CNN. Tschannen et al. (2016) used Wavelet-based

features and CNN. Li F. et al. (2020) extracted 497 features

from time series as input to the CNN. Er (2021) proposed Local

Binary Pattern (LBP) and Local Ternary (LTP) pattern

features as input to the CNN. Wu et al. (2019) used

MFCC as input to the CNN. Lack of large authoritative

open heart sound datasets restricts the performance of the

model. To address this concern, this paper incorporates three

of the most widely used heart sound datasets. It helps to

radically improve the performance of the deep learning

model. Although the performance of the above methods

has been greatly improved compared to traditional

machine learning methods, most of these are shallow

structures and the features used are insufficient to fully

express the information of heart sounds. In this study, we

select improved MFCC as input features to more

comprehensively represent the static and dynamic

characteristics of the heart sound signal. Additionally, we

use a residual neural network which alleviates gradient

disappearance and degradation during training. Figure 3

summarizes the motivation of our study.

The rest of the paper is structured as follows: Section 2

discusses recent research trends and essential methods related to

heart sound classification. Section 3 describes in detail the

preprocessing and feature engineering of heart sound audio

and introduces the deep residual neural network structure

used in this paper and analyzes in detail the more critical

convolution and residual principles. In Section 4, we describe

the three datasets used in this paper in detail. We split 20% of the

dataset as the testing set. All metrics are the results of the testing

set. Additionally, we make a comparison between MFCC,

nMFCC, n2MFCC, and improved MFCC to further explain

what the improvements are for a better understanding of the

superiority of the methods in this paper, RNNs and CNNs are

used for comparison and we show models’ loss and accuracy

during training. We also list references with other methods used

for comparison. Section 5 summarizes our study, and our

proposed method is feasible for the heart sound

classification task.

2 Related work

At present, heart sound auscultation technology is one of the

leading clinical diagnostic tools for treating cardiovascular

diseases, with the characteristics of non-invasive, efficient,

convenient, and can obtain physiological and pathological

information about the heart, but due to the complex clinical

diagnostic conditions, there is a lot of noise pollution, a lack of

experience in physicians are often disturbed by the noise of the

environment, resulting in an inaccurate diagnoses of the

condition. In 1929, the German doctor Werner used a

catheter to deliver drugs to the heart, opening the door to the

use of physical models to study cardiovascular disease; in the

1970s, Dr. Marcus in the United States used angiography to

observe the causes of cardiovascular disease, overturning long-

held misconceptions about heart disease; in the 1980s, the earliest

cardiac defibrillators came into clinical use at Johns Hopkins

University, and the earliest telemetry systems were developed so

that Doctors coule observe the vital signs of heart disease patients

from a distance; in recent years, with the development of

technology, devices similar to comprehensive ECG heart

sound analyzers and intelligent electronic stethoscopes have

been put into clinical use, but due to the inevitable factors in

the use process, the collected heart sound signals will contain

various types of noise to varying degrees, affecting the final

diagnostic results. At present, digital filters, wavelet

decomposition and empirical modal decomposition are widely

used for digital denoising of heart sound signals. In recent years,

with the rise of artificial intelligence, big data, and other

technologies, more accurate and effective heart sound

detection methods are expected to be realized.
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The dataset is one of the fundamental issues affecting the

results, and heart sound classification is no exception. In general,

the larger the data set, the more specialized the distribution, and

the more extensive the heart sound data, the more overfitting of

the model can be avoided, and the generalizability of the model

can be increased. According to a surveyMilani et al. (2022), using

deep learning techniques for heart sound classification tasks

remains challenging due to the lack of a large authoritative

open heart sound dataset. In this paper, the Physio heart

sound dataset Liu et al. (2016), Pascal heart sound dataset

Gomes et al. (2013) and Yaseen heart sound dataset Son and

Kwon (2018) were used to construct more extensive, less noisy,

and more reliable heart sound dataset. Positive and negative

sample imbalances can affect the performance of the model. It is

assumed that the distribution of positive and negative samples in

the feature space is unbalanced. When the neural network tries to

learn the mapping relationship model. It predicts that more

samples will bring less loss in most feature space regions.

Eventually, this causes the model to fail, and the predicted

values are always concentrated near the labels with more

samples. That is, the model has very high accuracy on the

training set, but a low accuracy on the validation and test sets.

It significantly reduces the generalizability of the model. To solve

such problems, researchers usually sample the heart sound data

and perform slicing operations Baghel et al. (2020); Baydoun

et al. (2020) to ensure the balance between the different labels of

the samples. Wang et al. (2021) used a weighted improvement of

the classifier to reduce the impact of the unbalanced dataset on

training. In this paper, the pre-processing of heart sound audio is

used to perform cuts and enhance a smaller number of samples to

avoid the problem of sample imbalance.

In general, binary classification, multiple classification and

regression are often used in classification problems, and how the

classification task is chosen can also affect the classification

results to some extent. For sequence data with considerable

background noise such as heart sounds, the impact of the

acquisition process on the real heart sounds must be

considered according to the actual situation of the data set. In

the current studies of heart sound classification, most of the tasks

are dichotomous, normal heart sounds and abnormal heart

sounds. Few experiments have classified specific situations

such as aortic stenosis and mitral valve insufficiency based on

medical knowledge. Demir et al. (2019) used deep convolution

neural networks to perform a four classification task on a Kaggle

dataset, as well as Oh et al. (2020) performed a quintuple

classification task on a heart sound dataset. In this paper,

heart sound datasets from three different platforms are

considered, considering the inevitable noise generated during

the acquisition process due to hardware limitations. Since some

cannot identify the heart sound signals, three classification tasks

are performed for heart sounds, namely normal, abnormal and

noisy, and this selection of classification tasks is closer to the

actual situation. It also helps to further improve the accuracy and

practical application of heart sound classification.

Many researcher have used deep learning techniques to solve

heart sound classification problems. Kui et al. (2021) investigated

the effect of discrete cosine transform (DCT) on classification

results during MFCC signal extraction. MFSC is an intermediate

state in the MFCC extraction process, which omits the step of

DCT. CNN is essentially a non-linear transformation of the data,

and since DCT is essentially a linear transformation, this

operation results in the absence of pathological information in

FIGURE 3
Motivation of the proposed method.
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the heart sound signal, so MFSC is feasible for heart sound

classification using deep learning techniques. Krishnan et al.

(2020) obtained an accuracy of 85.74% by directly using the

unsegmented PCG signal as the input to the CNN. Zeinali and

Niaki (2022) used a heart sound audio signal processing

algorithm to convert one-dimensional temporal features into

two-dimensional spectral features. This proposed method

achieved 87.0% accuracy in a heart sound triple classification

task. Tian et al. (2022) directly trained the neural network using

raw data without using feature engineering from the PhysioNet

dataset to perform a binary classification task on PCG to

distinguish between normal and abnormal heart sounds.

Wang et al. (2021) extracted five classes of features by

segmenting the PCG signal. and used a recursive feature

elimination method to obtain suitable input features, and

proposed an XGBoost-based and LSTM combination for heart

sound classification, and obtained an accuracy of 90.0% on the

test set. Li et al. (2021) segmented the original heart sound signal

and then calculated its frequency domain features by short-time

Fourier transform. For training, they proposed 2D-CNN and

achieved an accuracy of 85.70%. Er (2021) extracted the local

binary pattern (LBP) of heart sounds using local three-valued

pattern (LTP) and trained it with 1D-CNN with an accuracy of

90% on the PhysioNet dataset. Ren et al. (2022) used the

attention mechanism to explore the interpretable heart sound

classification algorithm for heart sound triple classification task

on PhysioNet dataset and obtained an unweighted average recall

of 51.2%. Iqtidar et al. (2021) obtained 98.3% accuracy on heart

sound double classification problem using MFCC based 1D

adaptive local ternary model and support vector machine.

Lahmiri and Bekiros (2022) used discrete wavelet transform

with support vector machine optimized through bayesian

optimization obtained 89.26% accuracy. In the heart-tone

classification task mentioned above, neural networks with

MFCC-based features perform better. To further enhance the

advantages of MFCC features in expressing heart sound signals,

this paper calculates first-order and second-order difference

coefficients for expressing the dynamic properties of heart

sound signals.

3 Proposed methodology

This section describes the heart sound classification

algorithm proposed in this paper in three parts. The first step

is data set fusion, which filters, downsamples, and cuts the

original heart sounds. The second step is feature engineering,

extracting standard MFCC, first-order MFCC, and second-order

MFCC, and fusing them into input feature vectors. In the third

step, a deep residual neural network is constructed, and feature

vectors are input for training. Finally, the test samples are

predicted using the trained model, and the accuracy is

counted. Figure 4 shows the workflow of this paper. The

innovation of the methodology as threefold: 1) Using the

authoritative heart sound datasets from three different

sources, which helps to radically improve the performance of

the deep learning model. 2) Selecting improved MFCC as input

features to more comprehensively represent the static and

dynamic characteristics of the heart sound signal. 3) Using a

residual neural network, which alleviates gradient disappearance

and degradation during training.

3.1 Dataset fusion

The label classification standards of the datasets selected in

this paper are different. Before entering the data into the neural

network, the labels must be unified, and data pre-processing is

performed on all files. making full use of heart sound datasets

from different sources helps to improve the generalization of the

model further. According to the characteristics of the label types

of the dataset, this paper divides the labels of the fused heart

sound data into three categories: normal, abnormal, and noise.

3.1.1 Digital filtering
In collecting heart sound audio, due to hardware limitations

and the influence of the background environment, many noises

will inevitably be collected in the audio. To reduce the impact of

noise on neural network training, this paper filtered the heart

sound audio. To preserve the low frequency components of heart

sounds that contains important physiological information, this

paper sends the heart sound audio into the fifth-order 400 hz

Butterworth low-pass filter to filter out the high-frequency

murmurs in the heart sound signal.

3.1.2 Down sampling
To reduce the computational complexity of the model and

ensure that the heart sound data from different sources can

generate the same size feature map in the subsequent feature

engineering, all audio signals are down-sampled to 2000 hz.

3.1.3 Audio cutting
Considering the significant difference in length between

heart sound audios, this paper cuts the audio in units of 2 s to

use the existing heart sound audio and unified audio length as

much as possible. On the other hand, considering the solid

temporal correlation of pathological features in heart sound

audio, heart sound audio with too short duration is difficult

to express the pathological features of heart sound, so this paper

discarded heart sound audio with less than 2 s.

3.2 Feature engineering

In most cases, deep learning models cannot learn from

completely arbitrary data, so it is essential to extract heart
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sound features by hard coding through feature engineering. To

obtain an effective pathological feature representation of

cardiovascular disease, this paper used an improved feature

extraction algorithm based on MFCC Deng et al. (2020). The

human ear’s perception of frequency is logarithmic. It is sensitive

to changes in low-frequency bands and insensitive to changes in

high-frequency bands. The use of linearly distributed

spectrograms in feature engineering affected the model’s

performance. MFCC reflects the non-linear relationship

between the human ear and the sound frequency, which can

effectively extract the pathological features in the heart sound

audio. The calculation formula of the MFCC is shown as follows

Mel f( ) � 2595lg 1 + f/700( ) (1)

where lg is defined as the base 10 logarithm.

3.2.1 Signal pre-emphasis
In processing the heart sound signals, the high-frequency signal

generated during cardiovascular exercise is inadequate, and the low-

frequency signal is adequeate. The reason for this phenomenon can

explain from the physical level. In the process of sound energy

propagation in the medium, the higher the frequency, the more it

is easy to be lost, and pre-emphasis makes up for the loss of high

frequency and protects the original heart sound signal. In this paper,

the heart sound signal. is passed through a high-pass filter to narrow

the intensity gap between the high and low-frequency components of

the signal. The specific operation of the signal x[n] is shown as follows

y n[ ] � x n[ ] − αx n − 1[ ] (2)

where α usually takes a value close to 1.

3.2.2 Framing windowing
To obtain the distribution of each element of frequency in the

heart sound audio, it is necessary to performFourier transformon the

audio signal, and the Fourier transform requires that the input signal

must be stable, so the audio signal needs to be framed and windowed

first. Framing is to divide the original signal into several small blocks

according to time, and one block is called a frame. In framing process,

the original signal will have a spectrum leakage phenomenon. The

spectrum corresponding to the original signal and the signal after

framing are very different. The Hamming window can effectively

overcome the leakage phenomenon Astuti et al. (2012). The

Hamming window function W(n) is shown as follows

W n( ) � 1 − α( ) − α cos 2πn/ N − 1( )( ), 0≤ n≤N − 1 (3)

where the α value is 0.46 by suggested in Trang et al. (2014).

3.2.3 Get power spectrum
After framing and windowing, this paper used discrete

Fourier transform (DFT) on the data to transform the time-

domain signal into a frequency-domain signal to obtain the

spectrum X(k) is shown as follows

X k( ) � ∑N−1

n�0
x n( )e−j2πnk/N, 0≤ n, k≤N − 1 (4)

The power spectrum P(k) is equal to the signal spectrum X(k) as

the square of its modulus, as shown in Eq. 5. The power spectrum

expresses the energy characteristics of the heart sound signal

more accurately, retains some amplitude elements in the heart

sound spectrum, and discards the phase characteristics of the

heart sound spectrum is described as follows

P k( ) � 1
N
|X k( )|2 (5)

3.2.4 Mel filter bank
A normal human ear is able to hear sounds with frequencies

from 20 Hz to 20,000 Hz. The range of 20 Hz to 20,000 Hz is

FIGURE 4
Flow chart of the proposed method.
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called the audible frequency range. The sounds we hear comprise

of various frequencies. The Mel filter bank is represented as a

group of triangular filters on the image. Usually a set contains

20 to 40 ascending triangular filters, and the starting position of

each triangular filter is at the midpoint of the previous triangular

filter, and because it has a linear frequency in the Mel scale, it is

called a Mel filter bank. At each frequency, calculate the product

of P(k) and filter Hm(k). Defining a triangular filter bank with

Mel filters, the frequency response Hm(k) of the triangular filter

is calculated as follows

Hm k( ) �

0, k<f m − 1( )
k − f m − 1( )

f m( ) − f m − 1( ), f m − 1( )≤ k≤f m( )

f m + 1( ) − k

f m + 1( ) − f m( ), f m( )≤ k≤f m + 1( )

0, k>f m + 1( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(6)

where m represents the serial number of the filter, and f (m-1),

f(m), and f (m+1) correspond to the starting point, middle point,

and end point of the filter, respectively. In calculations, the values

of m take 1, 2, . . . , 13. For a Mel triangular filter, f(m) represents

the center frequency of theMel trangular filter, f (m-1) represents

the start of the Mel trangular filter, and f (m+1) represents the

end of the Mel trangular filter. Summing the whole of Hm(k), we

can obtain Eq. 7, and the value of M is 13.

∑M−1

m�0
Hm k( ) � 1 (7)

3.2.5 Log spectrum
The logarithmic energy spectrum S(m) at each frame is

obtained by using the logarithmic operation is shown as follows

S m( ) � ln ∑N−1

k�0
P k( )Hm k( )⎡⎣ ⎤⎦, 0≤m≤M (8)

where lg is defined as the base e logarithm.

3.2.6 Discrete cosine transform
The discrete cosine transform (DCT) is performed on the

above log spectrum to obtain the Mel cepstral coefficient C(n),

which is the MFCC feature, The corresponding equation is

described as follows.

C n( ) � ∑N−1

m�0
S m( )cos πn m − 0.5( )/M( ), n � 1, 2, . . . , L (9)

3.2.7 Dynamic feature extraction
MFCC reflects the static information of the heart sound

signal, and the dynamic information of the heart sound signal

also contains rich pathological features, which can be used to

improve the classification accuracy further. To reflect the

dynamic information of the heart sound signal, this paper

extracts the first-order difference coefficient D(n) and the

second-order difference coefficient D2(n) based on MFCC.

The calculation formulas are described as follows

D n( ) � 1������∑i�k
i�−ki2

√ ∑i�k
i�−k

i · C n + i( ) (10)

D2 n( ) � 1�������
2∑i�k

i�−ki2
√ ∑i�k

i�−k
i ·D n + i( ) (11)

where the value of k is taken as 2, and C (n + i) is a frame of

MFCC coefficient. Figure 5 shows 2D visualization of them,

whereMFCC is the result of Eq. 9,nMFCC is the result of Eq. 10,

and n2MFCC is the result of Eq. 11. The size of them are all

(199,13), we use them to construct a (199,39) feature as the input

of neural network.

3.3 Resnet

The network structure in this paper is shown in Figure 6.

Convolutional neural network (CNN) can learn valuable

features in large-scale heart sound spectrograms developed

from traditional artificial neural networks, CNN not only have

the traditional fully connected neural network characteristics, but

also have many differences and improvements based on them.

Convolutional neural networks work on the basic principle of

converting the original data into a two-dimensional matrix

format, which is superior to traditional artificial neural

networks in terms of the performance of extracting image

feature values. In CNN, the initial convolutional layer

functions similarly to an edge detector and can be used to

identify low-level features. Although the network near the

convolutional layer is more complex or abstract, because of

the CNN weight sharing property, its network requires fewer

parameters to train than the fully connected to the feature space.

It shows that when the network layers, each layer output at the

same time, the number of dimensions required for the stage CNN

to process the same data is much lower than the whole connected

to the feature space fully. Compared with other feature extraction

methods, CNN has a simple structure, fitting ability and

trainability. The principle of convolution calculation in CNN

is shown in Figure 7.

Batch Normalization (BN) was originally designed to solve

Internal Covariate Shift (ICS), which is a phenomenon where the

internal node data distribution changes due to parameter

changes in the network. ICS has a greater negative impact on

deeper neural networks. Data distribution change times increase

with the number of neural network layers. It makes the network

harder to train and more sensitive to overfitting. BN layer adjusts

their distribution by normalizing each batch of data, the principle

of which is shown in Figure 8. Using the BN layer not only
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reduces the training time, but also make the model converge

faster, and better control the problems of gradient disappearance

and gradient explosion at the same time Ioffe and Szegedy (2015).

The BN is calculated as follows

x̂l � xi − μB�����
σ2B + ϵ

√ (12)

where μB is the mean of each batch of data, σ2B is the variance of

each batch of data, and ϵ is called the smoothing term, which

ensures numerical stability in the operation by stopping the

division by zero values.

The residual neural network was proposed initially by He

et al. (2016). The degeneration phenomenon refers to the

substantial decrease in model accuracy that occurs without

warning as the depth of the network continues to increase.

The degeneracy phenomenon makes us reflect on non-linear

transformation, which significantly improves data classification.

However, as the depth of the network continues to increase, we

have gone too far in the non-linear transformation to achieve

linear transformation surprisingly. Bottlenecks can quickly occur

when training the data using CNN, and this paper introduces a

residual module to address this phenomenon. It is no

FIGURE 5
2D visualization of the features. (A) Normal heart sound. (B) Abnormal heart sound. (C) Noise
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exaggeration to say that half of the neural networks used in

computer vision today are based on Resnet and his variants.

The principle of the residual structure constructed in this

paper is shown in Figure 9. A layer of the network can usually be

viewed as y = H(x), and a residual block of the residual network

is: H(x) = F(x) + x, then F(x) = H(x)—x, and y = x is the observed

value and H(x) is the predicted value, so H(x)—x is the residual,

that is, F(x) is the residual, so it is called the residual network.

FIGURE 6
Structure of Resnet.

FIGURE 7
Principle of convolution.

FIGURE 8
Principle of batch normalization.
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When the deep network propagates forward, the information

obtained by the network decreases layer by layer as the network

deepens. In contrast, ResNet deals with this problem by identity

mapping. The next layer includes not only the information x of

that layer, but also the new information F(x) after the non-linear

transformation of that layer. This treatment makes the

information instead show an increasing trend layer by layer.

This is so useful that you cannot worry about lossing data.

Intuitively, the residual block protects the integrity of the

information by directly passing the input information around

to the output, and the whole network only needs that part of the

input and output difference, simplifying the experimental goal

and difficulty.

4 Experimental evaluation

4.1 Dataset

This paper uses heart sound datasets published on three

different platforms, the PhysioNetChallenge 2016 heart sound

database, the heart sound dataset from the kaggle platform,

and the Yaseen heart sound dataset. In 2016, Physionet hosted

the PhysioNet/Computing in Cardiology (CinC) Challenge

2016 and released the dataset Liu et al. (2016). Physionet is a

resource platform for complex physiological signal research

managed by the MIT Computational Physiology Laboratory.

The dataset was collected by different research groups in

clinical and non-clinical conditions. These heart sound data

were sampled at the same frequency, with a large amount of

data and low noise. The label classification of the dataset is

relatively simple and is divided into two categories: normal

and abnormal. There was a wide range of audio lengths,

ranging from 5 s to 120 s. In this paper, the audio was cut

before the classification task. The details of this dataset are

shown in Table 1.

Kaggle is currently one of the largest data science platforms in

the world, with many high-quality datasets. These datasets are

often sponsored by large companies for data science

competitions in 2016, Kaggle held a heart sound classification

competition with a dataset that referenced the Pascal heart sound

dataset Jiang and Choi. (2006) and attached several description

files without any modifications to the audio files. For labeling

purposes, the dataset used in this paper is the one published by

Kaggle. The audio lengths in this dataset range from 1s to 30 s,

and the details are shown in Table 2.

The third dataset was open-sourced by Herzig et al. (2014) on

the GitHub platform, and the authors preprocessed the dataset.

The audio was sampled at the same frequency, with the same

FIGURE 9
Residual structure.

TABLE 1 PhysioNet/CinC Challenge dataset.

File name Normal Abnormal

Training-a 292 117

Training-b 104 386

Training-c 24 7

Training-d 28 27

Training-e 183 1958

Training-f 34 80

Total 665 2575

TABLE 2 Pascal dataset.

File name Normal Murmur Extrahs Artifact

Set-a 31 34 19 40

Set-b 320 95 None None

Total 351 133 19 40
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length and less murmur. The data were labeled with five

categories: normal, aortic stenosis, mitral valve insufficiency,

mitral stenosis, and murmur, the latter four being abnormal

heart sound signals in patients with cardiovascular disease, with

the specific information shown in Table 3.

4.2 Experimental setup

In this study, we use Accuracy, Sensitivity, Specificity, and

Precision to evaluate the proposed method. All of them are

defined as follows

Accuracy � TP + TN

TP + TN + FP + FN
(13)

Sensitivity � TP

TP + FN
(14)

Specificity � TN

TN + FP
(15)

Precision � TP

TP + FP
(16)

To further illustrate the classification performance, we

tested the proposed algorithm on two different deep learning

network architectures by adding LSTM and GRU, whose

structures are shown in Table 4. LSTM(x) represents an

LSTM layer, and x is the dimension of the output space.

GRU(x) represents a GRU layer, and x is the dimension of

the output space. Drop(x) represents a Dropout layer, x is the

possibility of dropping neurons. FC(x) represents a fully

connected layer with x neurons. Conv [x, (y, z)] represents

a convolution layer, x is the number of filters, y and z are the

width and height of 2D filter window. BN represents a Batch

Normalization layer Ioffe and Szegedy (2015). SeparableConv

[x, (y, z)] is a deeply separable convolutional layer.

MaxPooling (x, y) is a max pooling layer, and x and y are

the pooling sizes. Residual (x) is a residual connectivity

module, it is not a specific layer, it marks the position of

the output layer. Add represents a residual connection layer,

which takes the output of a previous layer as the input of a

later one. GlobalAveragePooling() represents the global

average pooling layer.

TABLE 3 Yaseen dataset.

File name Normal Aortic stenosis Mitral stenosis Mitral regurgitation

N 200 None None None

AS None 200 None None

MS None None 200 None

MR None None None 200

MVP None None None None

TABLE 4 The parameters of deep learning architecture.

Model Structure details Params Training time s)

LSTM LSTM (64)-Drop (0.5)-FC(64)-FC (3) 30,979 75

GRU GRU (64)-Drop (0.5)-FC(64)-FC (3) 24,515 55

CNNa Conv [16, (3,3)]-MaxPooling (3,3)-Conv [32, (3,3)]-MaxPooling (3,3)-
Conv [64, (3,3)]- MaxPooling (3,3)-Conv [128, (3,3)]-MaxPooling (3,3)-
Drop (0.5)-GlobalAveragePooling ()-Dense (3)

97,539 55

CNNb Conv [16, (3,3)]-MaxPooling (3,3)-Conv [32, (3,3)]-MaxPooling (3,3)-
Conv [64, (3,3)]- MaxPooling (3,3)-Conv [128, (3,3)]-MaxPooling (3,3)-
Drop (0.5)-GlobalAveragePooling ()-Dense (3)

40,979 200

Resnet Conv [8, (3,3)]-BN-Conv [8, (3,3)]-residual {Conv [16, (1,1)]-BN}-
SeparableConv [16, (3,3)]-BN-MaxPooling (3,3)-add-residual {Conv
[32, (1,1)]-BN}-SeparableConv [32, (3,3)]-BN-SeparableConv [32,
(3,3)]-BN-MaxPooling (3,3)-add-residual {Conv [64, (1,1)]-BN}-
SeparableConv [64, (3,3)]-BN-SeparableConv [64, (3,3)]-BN-
MaxPooling (3,3)-add- residual {Conv [128, (1,1)]-BN}-SeparableConv
[128, (3,3)]-BN-MaxPooling (3,3)-add-Conv [3, (3,3)]-
GlobalAveragePooling ()

52,339 320
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4.3 Experimental results

To test the validation of the improved MFCC, we do

comparison using the single features. MFCC, nMFCC,

n2MFCC, and improved MFCC are trained on neural

network separately, and the best epoch is taken as the result

for comparison. The results of this experiment are shown in

Figure 10. ImprovedMFCC’s sensitivity, specificity, and accuracy

are higher than other features, the precision is lower than MFCC.

In medical signal recognition, higher sensitivity and specificity is

a valid result. Especially for sensitivity, identifying more patients

is a crucial thing.

Figure 11 shows the experimental results. It can be observed

that the single Resnet, although the accuracy is higher, overfitting

occurs very fast and overfitting occurs in the 10th round.

Although LSTM can avoid overfitting better, has not yet

reached the accuracy of Resnet in the 10th round, or even in

the 30th round. This should be due to feature engineering,

because the first-and second-order MFCC features are more

reflective of relationships on time series, a property that is

good for LSTM and GRU, but not friendly for networks like

Resnet that extract locally relevant features. In addition, it can be

seen that the accuracy of GRU is much lower than LSTM, but the

average training time per round is 55 s for GRU and 75 s for

LSTM. On the whole, Resnet can get better results.

Figure 12 shows the results of the comparison. CNNa has a

shallow structure. In terms of performance, it is the least effective.

The CNNb structure eliminates the residual connection of the

Resnet. In comparison to CNNa, it performs better. In addition,

it can be seen that the accuracy of GRU is lower than LSTM. The

highest score is achieved by Resnet. As a result, it was determined

that deep structure and residual connections are useful for

classification of heart sounds. The results shows the training

process of RNNs, CNNs and Resnet. It can be observed that the

CNNs and Resnet, although the accuracy is higher, overfitting

occurs very fast in the 10th round. Although LSTM can avoid

overfitting better, has not yet reached the accuracy of CNNb and

Resnet in the 10th round, or even in the 30th round. Overfitting

exists in all machine learning problems. Obtaining more

authoritative heart sound data is the best solution. Adjusting

the capacity of the model is another solution. For a deep learning

model, the number of parameters it can learn is called the

capacity. If the model has a very large capacity, then the

model can even achieve a dictionary-style mapping of the

data, but this mapping does not have any recognition of new

data, which is a serious overfitting. So this is when we need to

improve the generalization ability of the model by decreasing the

capacity of the model and compelling the model to learn the most

important patterns. To reduce the influence of data partitioning

on the experimental results, we use 5-fold cross-validation. The

first step divides 20% on the whole dataset as the test set. The

second step selects 80% of the remaining as the training set and

20% of the remaining as the validation set. It will reapeat the

second step 5 times to allow the validation set to iterate, each time

training a new neural network separately. Finally, taking the

average of the accuracy of the five models on the test set as the

study result.

Table 5 shows the comparison with the results of other

studies. The essential difference between CNN and Resnet is

that Resnet introduces a residual structure, which effectively

mitigates the effect of degeneracy on the training of deep

neural networks. Thus, it can be more applicable to the heart

sound classification problem. In addition to the residual

structure, the features are also essential. MFCC is inspired by

FIGURE 10
Comparison of heart sound features based on the proposed method.
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FIGURE 11
Comparison of three different networks between accuracy and loss. (A) LSTM (B) GRU (C) CNNa (D) CNNb (E) Proposed method.
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biology and simulates the non-linear changes of the human ear to

sound, thus, extracting the physiological and pathological

information in heart sounds, which can fully reflect the

disease of the heart. Considering MFCC only reflects the static

information of the heart sound signal, but the dynamic

information of the heart sound signal also contains rich

pathological features, which can be used to improve the

classification accuracy further. We merge the extracted

dynamic features with static features to more fully represent

the physiological and pathological information in the heart

sounds.

5 Conclusion

In this paper, we fused datasets from three different

platforms for the lack of reliable heart sound datasets,

which provided a solid foundation for neural network

training. In addition, we used an enhanced feature

extraction algorithm based on MFCC, and experiments

show that using such features as input to the neural

network can improve the model’s performance well. The

proposed method makes the neural network training faster

and the model generalization enhanced, which effectively

mitigates the negative effects of gradient disappearance and

degradation phenomena on medical signal recognition and

achieves an accuracy rate of 94.43% on the constructed

dataset, which is higher than the state-of-the-art methods.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

FIGURE 12
Comparison of RNNs and CNNs.

TABLE 5 Comparison of experimental results of different algorithms.

References Algorithms Sensitivity (%) Specificity Precision Accuracy (%)

Li et al. (2021) SFTF and CNN 88.70 86.40% — 86.00

Wu et al. (2019) MFCC and CNN 91.73 87.90% — 89.81

Tschannen et al. (2016) Wavelet and CNN 88.12 76.30% — 82.12

Li F. et al. (2020) 497-features and CNN 87.00 72.10% — 86.80

Er. (2021) LBF and LTF 91.24 — 90.36% 91.66

Ours Improved MFCC and Resnet 92.32 95.47% 90.55% 94.43
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