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The manual identification and segmentation of intracranial aneurysms (IAs)

involved in the 3D reconstruction procedure are labor-intensive and prone to

human errors. To meet the demands for routine clinical management and large

cohort studies of IAs, fast and accurate patient-specific IA reconstruction

becomes a research Frontier. In this study, a deep-learning-based

framework for IA identification and segmentation was developed, and the

impacts of image pre-processing and convolutional neural network (CNN)

architectures on the framework’s performance were investigated. Three-

dimensional (3D) segmentation-dedicated architectures, including 3D UNet,

VNet, and 3D Res-UNet were evaluated. The dataset used in this study included

101 sets of anonymized cranial computed tomography angiography (CTA)

images with 140 IA cases. After the labeling and image pre-processing, a

training set and test set containing 112 and 28 IA lesions were used to train

and evaluate the convolutional neural network mentioned above. The

performances of three convolutional neural networks were compared in

terms of training performance, segmentation performance, and

segmentation efficiency using multiple quantitative metrics. All the

convolutional neural networks showed a non-zero voxel-wise recall

(V-Recall) at the case level. Among them, 3D UNet exhibited a better overall

segmentation performance under the relatively small sample size. The

automatic segmentation results based on 3D UNet reached an average

V-Recall of 0.797 ± 0.140 (3.5% and 17.3% higher than that of VNet and 3D

Res-UNet), as well as an average dice similarity coefficient (DSC) of 0.818 ±

0.100, whichwas 4.1%, and 11.7% higher than VNet and 3DRes-UNet. Moreover,

the average Hausdorff distance (HD) of the 3D UNet was 3.323 ± 3.212 voxels,

which was 8.3% and 17.3% lower than that of VNet and 3D Res-UNet. The three-

dimensional deviation analysis results also showed that the segmentations of 3D

UNet had the smallest deviation with a max distance of +1.4760/−2.3854 mm,

an average distance of 0.3480mm, a standard deviation (STD) of 0.5978 mm, a

root mean square (RMS) of 0.7269 mm. In addition, the average segmentation

time (AST) of the 3D UNet was 0.053s, equal to that of 3D Res-UNet and 8.62%

shorter than VNet. The results from this study suggested that the proposed deep
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learning framework integrated with 3D UNet can provide fast and accurate IA

identification and segmentation.

KEYWORDS

SAH, intracranial aneurysm, automatic segmentation, convolutional neural network,
deep learning

1 Introduction

The intracranial aneurysm is the local abnormal bulge of the

intracranial arterial wall, which occurs in 5%–8% of the general

population (Schievink, 1997; Vlak et al., 2011; Cebral and Raschi,

2013). The IAs remain asymptomatic until rupture. The global

incidence of subarachnoid hemorrhage (SAH) caused by an IA

rupture varies from two to more than 20 per 100,000 persons-

years, and the modality could be greater than 50% (Nam et al.,

2015; Lawton and Vates, 2017; Etminan et al., 2019; Schatlo et al.,

2021).

One of the major challenges in IAs management is rupture

prediction (Wiebers et al., 1987; England, 1998; Rayz and Cohen-

Gadol, 2020). In current clinical practices, rupture risk

estimation of IAs mainly relies on morphological metrics,

including size, location, aspect ratio (AR), and size ratio

(Hademenos et al., 1998; Wardlaw and White, 2000; Lall

et al., 2009; Ma et al., 2010; Duan et al., 2018). Thus, accurate

measurement is the basis of successful prediction (Raghavan

et al., 2005; Dhar et al., 2008; Zanaty et al., 2014; Leemans et al.,

2019), especially for some sensitive parameters such as daughter

sac and AR (Murayama et al., 2016; Wang et al., 2018).

Traditionally only 2D information from neuroimaging was

utilized in the interpreting and measuring IAs (Rayz and

Cohen-Gadol, 2020), which neglected the complex 3D

structure of IAs and may lead to measurement bias and

inconsistency (Rajabzadeh-Oghaz et al., 2017, 2018). Studies

have shown that morphological metrics derived based on 3D

information are more accurate and consistent than 2D manual

measurement (Ma et al., 2004; Ryu et al., 2011; Rajabzadeh-

Oghaz et al., 2018). However, recent studies have revealed that

the morphology metrics alone may not be sufficient for

predicting the rupture risks of IA, especially in small

unruptured IAs (Abboud et al., 2017; Korja et al., 2017; Longo

et al., 2017; Hu et al., 2021; Ren et al., 2022).

In addition to morphological evaluation, hemodynamics’

role in IA rupture has drawn growing attention. Imaging-

based patient-specific computational fluid dynamics (CFD)

simulations have been regarded as a powerful tool for

investigating the hemodynamics in the IAs (Xiang et al., 2011;

Takao et al., 2012; Liang et al., 2016; Xu et al., 2018; Zhu et al.,

2019a; Medero et al., 2020; Hu et al., 2021; Le, 2021; Li et al.,

2022). Several quantitative hemodynamics metrics, such as

average wall shear stress (WSS), maximum intra-aneurysmal

WSS, low WSS area, average oscillatory shear index, and

relative resident time, were identified to play a vital role in

the pathologies of IA rupture. However, most metrics are

derived from studies that only involve a single or relatively

small volume of patients, which are statistically unconvincing.

Moreover, the clinical guideline and practical scoring system that

include the hemodynamics metrics for IA management are yet to

be established. To overcome the problems mentioned above,

single and multicenter studies that contain patient-specific

hemodynamics analysis in larger cohorts would be required

(Xiang et al., 2013; Ionita et al., 2014; Rayz and Cohen-Gadol,

2020).

Precise individualized 3D modeling of IA is the first and the

most crucial step in the workflow of accurate patient-specific

morphological and hemodynamics analyses. Conventionally, the

IA recognition and segmentation in the modeling procedure

mainly rely on manual operations. The manual detection and

segmentation of IAs require researchers to have rich medical

image interpretation experience (Firouzian et al., 2011; Sen et al.,

2014; Yang et al., 2014; Kavur et al., 2020; Haider and

Michahelles, 2021; Jalali et al., 2021). Due to the complexity

of cerebrovascular anatomy, the procedure is error-prone, which

could bring inconsistency in the modeling and induce errors in

subsequent analyses (Sen et al., 2014; Schwenke et al., 2019; Bo

et al., 2021; Mensah et al., 2022). In addition, the highly labor-

intensive nature of the manual operations also prevents the

application of patient-specific analyses in large cohorts. Thus,

automating the modeling process has been a research Frontier.

With the development of machine learning in recent years,

convolutional neural network (CNN) architecture has shown

great potential in automatic medical image segmentation.

Ronneberger et al. proposed the UNet, a U-shaped

convolution neural network model (Ronneberger et al., 2015).

This model can achieve accurate segmentation under a small

dataset and is continuously applied, developed, and optimized.

Based on UNet, deep residual UNet (Res-UNet) simplifies the

training process of deep neural networks with a residual

mechanism, achieving higher accuracy in aerial image-based

road extraction (Zhang et al., 2018). VNet also adopts the

residual mechanism based on UNet, showing excellent results

in the field of prostate segmentation (Milletari et al., 2016). Based

on these studies, many neural network models have emerged in

the past 2 years to detect and segment IAs(Park et al., 2019; Shi

et al., 2020a; Ma and Nie, 2021; Su et al., 2021). Park et al. (Park

et al., 2019) developed a CNNmodel called HeadXNet, which can

process the CTA images of patients and generate voxel-by-voxel

prediction results and has passed the validation of the clinical

application. Su et al. (Su et al., 2021) introduced the attention gate
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(AG) mechanism into the 3D UNet model to improve the

performance of the UNet model under a small sample size.

Ma et al. (Ma and Nie, 2021) adopted the 3D UNet model

and configured it with a larger patch size to obtain more context

information. The early experiences of CNN-assisted automatic

IA segmentation have proved its practical value as a tool to assist

clinical diagnosis and to improve the efficiency of the modeling

procedure of IA (Zhao et al., 2018).

Furthermore, several groups have conducted studies to

evaluate the segmentation performances between different

CNN architectures. Karimov et al. (Karimov et al., 2019)

compared the accuracy and performance of three CNNs

(UNet, ENet, and BoxENet) for the segmentation of mast cells

in scans of histological slices and found that UNet showed higher

accuracy in terms of DSC, intersection over union (IoU) and F1-

score. Kartali et al. (Kartali et al., 2018) compared three deep-

learning approaches based on CNN and two conventional

approaches for real-time emotion recognition of four basic

emotions (happiness, sadness, anger, and fear) from facial

images. Zhang et al. proposed the Dense-Dilated Neural

Network (DDNet) based on 3D UNet for the segmentation of

cerebral arteries in TOF-MRA images, which got better

performance than UNet, Vnet, and Uception (Zhang and

Chen, 2019). Zhu et al. (Zhu et al., 2019b) compared the

segmentation performance of V-NAS, 3D UNet, and VNet on

the dataset of both normal organs (NIH Pancreas) and abnormal

organs (MSD Lung tumors and MSD Pancreas tumors). These

studies suggested that the CNN architectures and the

segmentation object could impact the segmentation

performances. However, the performances of existing CNNs

in IA segmentation are yet to be investigated.

In this study, we proposed a deep-learning-based

segmentation framework for IA, and the impacts of pre-

processing and convolutional neural network (CNN)

architectures on IA segmentation performance were

quantitively evaluated.

2 Methods

2.1 Data preparation

2.1.1 Data collection
The Institutional Ethics Review Committee of the First

Affiliated Hospital of Xi’an Jiaotong University approved this

retrospective study. A dataset containing the CTA images of

101 patients with 140 IAs was retrospectively collected and fully

anonymized from the First Affiliated Hospital of Xi’an Jiaotong

University. The CTA images were captured by the 256-slice spiral

CT scanners (BrillianceiCT, Philips Healthcare, Cleveland, OH,

United States). The specific scanning parameters were as follows:

tube voltage, 120 kV; tube current, 1,000 mA; layer thickness,

0.9 mm.

We included all CTA acquisitions with at least an aneurysm,

irrespective of etiology, symptomatology, and configuration

(saccular, fusiform, and dissecting). The aneurysms were

located in the anterior cerebral arteries (ACA), the anterior

communicating arteries (ACoA), internal carotid arteries

(ICA), the middle cerebral arteries (MCA), the posterior

cerebral arteries (PCA), and the vertebral basilar arteries (VA).

2.1.2 Image annotation
The CTA images were annotated under the guidance of

experienced clinicians. All aneurysms were manually

segmented using the manual segmentation tool of ITK-SNAP.

The location and diameter of the 140 IAs were determined and

statistically classified.

2.1.3 Dataset construction
According to the classification by location and size of IAs,

80% of cases were randomly divided as the training set, and the

remaining 20% were used as the test set to ensure that the data

distribution of the training set and the test set is as consistent as

possible. Thus, the training set and test sets contained 112 and

28 aneurysms, respectively, as shown in Figure 1. Finally,

112 negative cases (no IAs occur) were added to the training

set to balance the proportion of positive and negative samples.

No validation set was set due to the small sample size in this

study.

2.1.4 Image pre-processing
Before input to the network, the data needs to be pre-

processed because the grey value of IA is relatively similar to

the surrounding tissues and the lesion area occupies a relatively

small proportion in the original image. Therefore, we set up a

comparative experiment in this study. First, we performed first-

order derivation on the image in advance to emphasize the

boundary features of the aneurysm and performed the same

follow-up pre-processing on the derivated and underived images.

Then we input the derivated and underived images into the

network model for training, respectively, and compared the

segmentation effects of the models in the two situations to

explore the sensitivity of the edge information to the deep

learning network model. The data pre-processing process is

shown in Figure 2.

In the above-mentioned follow-up pre-processing process,

we first cropped the image into 48 × 48 × 48 voxel sub-volumes,

thereby increasing the proportion of lesions in the image.We also

performed a grayscale transformation to enhance the contrast

between IA and the background region. After these two steps, the

image features of the lesion are directly enhanced. Considering

the small sample size of the dataset in this study, random flip and

random rotation are also used for data augmentation in the pre-

processing stage.

To explore the influence of different patch sizes on the

automatic segmentation results of the model, this study set
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three different patch sizes, namely 32 × 32 × 32, 48 × 48 × 48, and

64 × 64 × 64 voxels.

2.2 Convolutional neural network

Convolutional neural network (CNN) is one of the most

representative algorithms of deep learning, proposed firstly by

Lecun et al. for image processing (LeCun et al., 1998). CNN

usually consists of an input layer, multiple convolution layers,

pooling layers, and fully connected layers. It uses a convolution

kernel to extract features from the image and uses image filling

strategy to retain the original image information as much as

possible. Therefore, it can extract high-order features from input

information, which is widely used in image recognition, target

segmentation, natural language processing, and other fields. We

built and compared three popular CNN models for medical

image processing in this paper, including 3D UNet, VNet, and

3D Res-UNet.

2.2.1 3D UNet
3D UNet is a CNN composed of a contracting path and an

expansive path (Cicek et al., 2016). The contracting path is used

to obtain context information, while the expansive path is used to

locate accurately. They are almost symmetrical, forming a

U-shaped network structure (Figure 3A).

In the encoder part of the left half, the downsampling module

is repeatedly applied, which is composed of two

3 × 3 × 3 convolutions, each followed by a rectified linear

unit (ReLU) and a 2 × 2 × 2 maximum pooling operation.

After each pooling operation, the image size is reduced by one

time, and the number of channels of the feature map is doubled.

In the decoder part of the right half, the upsampling module

is repeatedly applied, which is composed of a 2 × 2 × 2 up-

convolution and two 3 × 3 × 3 convolutions, each followed by a

ReLU. In this process, the image size can be doubled by the

2 × 2 × 2 up-convolution operation, and the number of channels

of the feature map can be doubled. Subsequently, the feature map

obtained in the upsampling process and the corresponding

cropped feature map in the contracting path are concatenated

through skip connections so that more information can be

integrated for more precise pixel positioning. In the last layer,

a 1 × 1 × 1 convolutional layer is also added to reduce the number

of channels of the output image to the number of labels.

3D UNet can accept images of any size because it does not

contain full connection layers. In addition, 3D UNet uses batch

FIGURE 1
Composition of IAs of different locations and sizes (A) Aneurysm location distribution (B) Aneurysm size distribution.

FIGURE 2
Data pre-processing process.
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normalization (BN) before each RELU to speed up convergence

and avoid network structure bottlenecks.

2.2.2 VNet
VNet is a CNN proposed for 3Dmedical image segmentation

(Milletari et al., 2016). Similar to UNet, its contracting path and

expansive path are almost symmetrical, forming a V-shaped

network structure (Figure 3B).

The contracting path on the left is divided into different stages,

including one to three convolutional layers, and each stage uses a

convolution kernel with a size of 5 × 5 × 5 voxels for convolution

operation. VNet introduces the residual function, which connects

the feature map after convolution operation and PReLU non-

linearity with the original input of this stage for element-wise

residual connection. Then the convolution with 2 × 2 × 2 voxels

wide kernels applied with stride two is performed for downsampling.

Therefore, after each downsampling operation, the size of the feature

map is reduced by half, and the number of channels is doubled.

The expansive path on the right continuously extracts features

during the up-sampling process and increases the spatial support for

lower-resolution feature maps to collect important feature

information. Finally, softmax is used to generate probability

distributions to achieve voxel-by-voxel classification.

Like UNet, VNet also transfers and superimposes the feature

map of the contracting path on the left to the expansive path on

the right through skip connections, supplementing the detailed

information of the loss to improve the segmentation accuracy.

2.2.3 3D Res-UNet
3D Res-UNet is a CNN model implemented by adding

residual units based on UNet, as seen in Figure 3C (Kerfoot

et al., 2019).

3D Res-UNet uses convolution and deconvolution with

stride two to perform downsampling and upsampling

operations instead of pooling layers so that the network can

learn the best upsampling or downsampling operation and

further reduce the number of network layers. In addition,

parametric rectifying linear units (PReLU) are used in the

residual unit to enable better activation of the network

learning and improve the segmentation effect. Instance

normalization is used to prevent contrast shift.

2.3 Training procedure

In this study, the three CNNmodels are constructed based on

PyTorch (Paszke et al., 2019) and Monai (MONAI Consortium,

2020) deep learning frameworks. All training and testing tasks

were carried out on the same deep learning platform and

accelerated by GeForce GTX 1080 Ti GPU with 10 GB of

memory. Each model was trained for 500 epochs using the

Adam optimizer with an initial learning rate of 0.0001. As the

criterion for convergence of model training, the Dice coefficient

loss function is defined as Eq. 1, where ygt and ypred are the ground

truth and binary predictions from the neural networks,

FIGURE 3
Convolutional neural network structures of (A) 3D UNet (Cicek et al., 2016) (B) VNet (Milletari et al., 2016), and (C) 3D Res-UNet (Kerfoot et al.,
2019).

Frontiers in Physiology frontiersin.org05

Zhu et al. 10.3389/fphys.2022.1084202

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1084202


respectively. Additionally, ε is an infinite decimal, set to 1e-5

here.

Dloss � 1 − 2 ygt ∩ ypred

∣∣∣∣ ∣∣∣∣ + ε

ygt

∣∣∣∣ ∣∣∣∣ + ypred

∣∣∣∣ ∣∣∣∣ + ε
(1)

2.4 Performance evaluation

In this paper, we used V-Recall, DSC, HD, and AST to

comprehensively evaluate the segmentation performance of three

CNN models. Among them, V-Recall was used to characterize

the voxel-wise accuracy of lesion recognition. DSC and HD were

used to characterize the quality of lesion segmentation, and AST

was used to characterize segmentation efficiency.

V-Recall: V-Recall is the voxel-wise ratio of the number of

true positive IA voxels to the number of all true IA voxels in an IA

lesion, which is defined as follows:

V − Recall � ygt ∩ ypred

∣∣∣∣ ∣∣∣∣
ygt

∣∣∣∣ ∣∣∣∣ (2)

where ygt and ypred represent the ground truth and the binary

predictions from the neural networks and | ygt∩ypred | is the

intersection of the ground truth and the prediction,

representing the predicted correctly lesion voxels. We used

V-Recall to evaluate the ability of the model to accurately

identify true IA voxels in an IA lesion since a segmentation

task can be seen as a voxel-wise prediction. A non-zero

V-Recall indicates that the lesion can be identified at the

case level. The closer V-Recall is to 1, the more complete

the segmentation of the lesion.

DSC: DSC represents the overlap ratio between the ground

truth and segmentation results. Its value range is between 0 and 1,

the closer to 1, the better the segmentation effect. DSC is defined

as follows:

DSC � 2 ygt ∩ ypred

∣∣∣∣ ∣∣∣∣
ygt

∣∣∣∣ ∣∣∣∣ + ypred

∣∣∣∣ ∣∣∣∣ (3)

HD: The HD measures the distance between the two point

sets, representing the similarity of the two sets. The HD is

sensitive to the boundary of the segmentation results. When

the segmentation results predicted by the neural networks are

closer to the ground truth, the HD is smaller. The HD between

the two sets is defined as follows:

HD � max dygtypred , dypredygt{ }
� max{max

x∈ygt
min
y∈ypred

d x, y( ), max
y∈ypred

min
x∈ygt

d x, y( )} (4)

where d(x, y) is the distance between point x of the ground truth

(ygt) and point y of the predictions (ypred).

AST: AST is the average segmentation time consuming for a

trained model to segment each sample, representing a trained

model’s segmentation efficiency.

Because the above metrics (DSC, HD, V-Recall, etc.) cannot

reflect the bias of geometric details, whichmight affect the accuracy of

subsequent mechanical analysis, a 3D deviation analysis between

CNN-based segmentation and ground truth was carried out in

Geomagic Studio 2014 software (Raindrop Geomagic,

Development Triangle, NC, United States). The 3D models were

reconstructed from segmentation and ground truth based on the

Python platform and VTK library (Schroeder et al., 2006).

Furthermore, the geometric quality was evaluated using four

metrics widely used in 3D model deviation analysis, including

maximum distance, average distance, standard deviation (STD),

and root mean square (RMS) value.

3 Results

3.1 impact of pre-processing method on
model performance

3.1.1 Impact of image derivation
The training process and results of three models in two

pre-processing methods (with derivation and without

derivation) were compared. The Dice loss value change on

the training set and the DSC change on the test set during the

training process of three models are shown in Figure 4.

Compared with the pre-derivation of images, 3D UNet and

3D Res-UNet models can fit and converge faster without

derivation while achieving a higher DSC value at the end of

training. Besides, the Dice loss value was lower and the DSC

value changed more smoothly after convergence. In addition,

VNet was not sensitive to the pre-derivation of images, and

the Dice loss value and DSC value were similar between

derivation and non-derivation during training.

In general, the overall training effect of the three models on

the dataset without derivation was better. Therefore, the

segmentation effects of the three models on the dataset

without derivation were compared, and the subsequent studies

in this paper were carried out on the data set without derivation.

3.1.2 Impact of patch size
To explore the influence of different patch sizes on the

automatic segmentation results of the 3D UNet model, this study

set three different patch sizes (32 × 32 × 32, 48 × 48 × 48, 64 × 64 ×

64 voxels). We input samples with different patch sizes into 3D

UNet for training and compared the automatic segmentation results

of the test set samples, the specific data are shown in Table 1.

As can be seen from Table 1, the patch size of the sample

would affect the segmentation performance of models. When the

patch size was 48 × 48 × 48 voxels, the average DSC value on the
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test set sample was the highest, which was 0.818 ± 0.100, 5.3%, and

0.3% higher than that of 32 × 32 × 32 voxels and 64 × 64 ×

64 voxels, respectively. Besides, the HDwas also the lowest (3.323 ±

3.212 voxels) when the patch size was 48 × 48 × 48 voxels, which

was 15.5% and 28.1% lower than those of 32 × 32 × 32 voxels and

64 × 64 × 64 voxels, respectively. Therefore, when the patch size

was 48 × 48 × 48 voxels, 3D UNet had better segmentation

performance for IAs.

3.2 Performance

3.2.1 Training performance
The three CNNs were trained under the same

hyperparameters. Changes in the Dice loss value on the

training set and the DSC on the test set during the training of

three models are shown in Figures 5, 6. Compared with VNet and

3D Res-UNet, 3D UNet has the fastest convergence rate and the

highest DSC value on the test set.

3.2.2 Overall segmentation performance
Figure 6A illustrates the boxplot of the V-Recall of

segmentation results on the test set. All the CNNs showed a

non-zero voxel-wise recall at the case level, which indicates that

all the IAs in each case were identified successfully. Moreover, 3D

UNet achieved the highest average V-Recall (79.7%), as well as

the highest median V-Recall (81.5%). The average V-Recall of 3D

UNet on the test set was 3.5% and 17.3% higher than that of VNet

and 3D Res-UNet, respectively. The specific data were listed in

Table 2.

Figures 6B, C illustrate the boxplots of the DSC and HD of

three CNNs’ segmentation results on the test set. The average DSC

and HD values of 3D UNet, VNet, and 3D Res-UNet were 0.818 ±

0.100 and 3.323 ± 3.212 voxels, 0.786 ± 0.108 and 3.626 ±

3.167 voxels, 0.732 ± 0.139 and 6.080 ± 6.065 voxels, respectively

(Table 2). The average DSC of 3DUNet was 4.1% and 11.7% higher

than VNet and 3D Res-UNet, and the average HD was 8.3% and

17.3% lower than that of VNet and 3D Res-UNet, respectively. The

FIGURE 4
Changes of dice loss value and DSC coefficient in the training process of threemodels. The changes of the Dice loss on the training set of (A) 3D
UNet (C) VNet, and (E) 3D Res-UNet. The changes of the DSC on the test set of (B) 3DUNet (D) VNet, and (F) 3D Res-UNet. The red and blue curves in
the figure represent the training process of images with derivation and without derivation, respectively.

TABLE 1 Comparison of automatic segmentation results of different patch
sizes on 3D UNet.

Patch size V-Recall DSC HD/voxels AST/
s

32 × 32 × 32 0.788 ± 0.153 0.777 ± 0.150 3.934 ± 2.986 0.050

48 × 48 × 48 0.797 ± 0.140 0.818 ± 0.100 3.323 ± 3.212 0.058

64 × 64 × 64 0.809 ± 0.106 0.816 ± 0067 4.621 ± 7.033 0.054
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segmentation results of three CNNs are illustrated in Figure 7.

Among all the compared models, the 3D UNet provides

segmentation results most similar to the ground truth.

The AST of 3D UNet and 3D Res-UNet was 0.053 s, which

was 8.62% faster than VNet (0.058 s). The specific data of the

evaluation performance of the three models on the test set are

shown in Table 2.

To further investigate the DSC distributions of segmentation

results, the DSC values of the segmentations in the test set were

statistically analyzed. We divided the IA segmentation results

into three categories according to the DSC. Group A, Group B,

and Group C represented sample groupings of DSC between

0.4 and 0.6, 0.6–0.8, and 0.8–1.0, respectively. For the automatic

segmentation based on 3D UNet, 67.86% had a DSC greater than

FIGURE 5
Changes of dice loss value and dice coefficient in the training of threemodels (A)Changes of dice loss on the training set (B)Changes of DSC on
the test set.

FIGURE 6
Segmentation results of three models on the test set (A) V-Recall (B) DSC (C) HD.

TABLE 2 Comparison of evaluation performance of three models on test set samples.

Model V-Recall DSC HD/voxels AST/
s

Average Median Range Average Median Range Average Median Range

3D UNet 0.797 ± 0.140 0.815 0.277–0.976 0.818 ± 0.100 0.844 0.433–0.917 3.323 ± 3.212 2.236 1.000–18.055 0.053

VNet 0.771 ± 0.160 0.795 0.343–1.000 0.786 ± 0.108 0.826 0.511–0.908 3.626 ± 3.167 2.449 1.414–15.684 0.058

3D Res-UNet 0.680 ± 0.205 0.713 0.269–0.989 0.732 ± 0.139 0.776 0.401–0.776 6.080 ± 6.065 3.239 1.000–22.561 0.053
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0.8 (Figure 8A), which was 5.5% and 45.5% higher than that of

VNet (Figure 8B) and 3D Res-UNet (Figure 8C), and only 3.57%

(1 case) had a DSC between 0.4 and 0.6 (Figure 8A). In the

subsequent VNet and 3D Res-UNet, Group C decreased in

proportion, while Group A increased in proportion

(Figures 8B,C).

FIGURE 7
Visualization of segmentation results of three models. The ground-truth annotations are shown in red, and the automatic segmentations of 3D
UNet, VNet, and 3D Res-UNet are shown in yellow, blue, and green, respectively.

FIGURE 8
Statistical results of DSC values of segmentation results on the test set. The proportion of segmentation results within different DSC values
based on (A) 3DUNet (B) VNet, and (C) 3DRes-UNet. Group A, Group B, andGroupC represented samples of DSC between 0.4 and 0.6, 0.6–0.8, and
0.8–1.0, respectively.
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3.2.3 Impact of IA size
Sizes and location of IAs are important factors that may affect

IA rupture. However, the sensitivity of different models to these

factors remains to be studied. Therefore, we compared the

segmentation performances of these three models on IAs at

different sizes to study the impact of size on model performance.

We divided the IAs of the test set into Group 1, Group 2, and

Group 3 according to maximum diameter (Dmax), which were

distributed in Dmax < 5 mm, 5 mm < Dmax ≤ 10 mm, and Dmax >
10mm, respectively. Group 1, Group 2, and Group 3 contained 9,

14, and 4 cases, with an average Dmax of 3.498, 7.143, and

13.281 mm, respectively.

Figure 9 illustrates the statistical results of the three

models’ mean and standard deviation of the V-Recall, DSC,

and HD values. In the groups of IAs of different sizes, 3D

UNet achieved the highest average V-Recall (Figure 9A) and

DSC (Figure 9B) as well as the lowest average HD (Figure 9C),

followed by VNet and 3D Res-UNet. When the maximum

diameter (Dmax) of the IAs increased, the V-Recall and DSC

values of the segmentation results of the three models

increased gradually, and the HD values decreased gradually.

It could be seen that the three CNN models had good

recognition and segmentation ability for larger IAs. As

shown in Table 3, the DSC value of 3D UNet, VNet, and

3D Res-UNet for large aneurysms (Dmax > 10 mm) in Group

3 was 0.856 ± 0.043, 0.824 ± 0.063, 0.711 ± 0.156, which was

13.5%, 15.9%, 3.9% higher than that of small aneurysms

(Dmax < 5 mm) in Group 1. While in Group 1, 3D UNet

still had a DSC of 0.754 ± 0.142, which was 6.0% and 10.2%

higher than that of VNet and 3D Res-UNet. V-Recall and HD

showed similar dynamics to DSC. Therefore, the segmentation

performance of 3D UNet on small aneurysms, general

aneurysms, and large aneurysms was relatively balanced,

which was better than that of VNet and 3D Res-UNet.

VNet performed second. While 3D Res-UNet segmentation

results were greatly affected by aneurysm size changes. The

specific data were listed in Table 3.

3.3 3D deviation analysis

The 3D deviation analysis results (Table 4) showed that 3D

IA reconstruction models based on 3D UNet have the smallest

deviation under the above four metrics, while that of 3D Res-

UNet has the highest deviation. The max distance of 3D UNet

was +1.4760/-2.3854 mm, which was 10.3%/20.1% and 42.2%/

48.6% lower than the absolute value of VNet and 3D Res-UNet.

The average distance, STD, and RMS of 3D UNet were

FIGURE 9
Comparison of IA segmentation results under different sizes (A) V-Recall (B) DSC (C) HD.

TABLE 3 Comparison of segmentation results under IA groups of different sizes.

Group 3D UNet VNet 3D Res-UNet

V-Recall DSC HD/voxels V-Recall DSC HD/voxels V-Recall DSC HD/voxels

Group 1 0.800 ± 0.199 0.754 ± 0.142 1.934 ± 0.840 0.784 ± 0.211 0.711 ± 0.133 2.649 ± 2.306 0.686 ± 0.241 0.684 ± 0.168 7.124 ± 7.812

Group 2 0.793 ± 0.100 0.845 ± 0.052 3.445 ± 4.104 0.765 ± 0.127 0.820 ± 0.073 3.472 ± 3.456 0.702 ± 0.171 0.770 ± 0.094 3.754 ± 2.532

Group 3 0.805 ± 0.101 0.856 ± 0.043 5.479 ± 1.085 0.763 ± 0.135 0.824 ± 0.063 5.814 ± 2.568 0.605 ± 0.204 0.711 ± 0.156 10.713 ±
6.295
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0.3480 mm, 0.5978 mm, and 0.7269 mm, which was 28.2% and

56.1%, 22.0% and 22.5%, 24.0% and 35.3% lower than that of

VNet and 3D Res-UNet, respectively.

Figure 10 illustrates the visual distribution of the 3D

deviation using the color-coded map to show the differences

between CNN-based segmentations compared to the reference.

For the IA represented in the first row, all 3D reconstruction

models based on three CNN models have minor deviations

compared to the reference, and the deviation distribution of

the three models is consistent. For the IA in the second row, more

yellow areas appear in all 3D reconstruction models, indicating

higher deviations. Specifically, 3D IA reconstruction models

based on 3D UNet have the smallest deviation.

4 Discussion

In this study, three CNN models (3D UNet, VNet, 3D Res-

UNet) were constructed and applied to the automatic

segmentation of IAs. We compared the automatic

segmentation performances of the three models under a small

sample size and found that 3D UNet outperformed VNet and 3D

Res-UNet. The automatic segmentation results of IAs suggest

that the 3D UNet can achieve excellent segmentation quality,

which can meet the requirement of the subsequent 3D

reconstruction as well as assist clinical diagnosis and

treatment. In addition, 3D UNet is also highly time-efficient

for a single prediction of less than a second.

TABLE 4 3D deviation between 3D reconstruction models from CNN-based segmentation and ground truth.

Model Max distance/mm Average distance/mm STD/mm RMS/mm

3D UNet +1.4760/−2.3854 0.3480 0.5978 0.7269

VNet +1.6455/−2.9844 0.4850 0.7666 0.9563

3D Res-UNet +2.5522/−4.6451 0.7147 0.7711 1.1239

FIGURE 10
3D deviation analysis results of two IA reconstructed models based on CNN segmentation. The deviation is represented in the reference
geometry. The first, second, and third columns represent 3D deviation results for 3D UNet, VNet, and 3D Res-UNet on two IA reconstructed models
(upper and lower rows), respectively. The red areas show an overestimation of the reference model and the blue areas indicate an underestimation.
Red: +6.000 mm deviation. Green: 0.000 mm deviation. Blue: −6.000 mm deviation.
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4.1 Impact of patch size

The patch size plays an important role in getting a precise

segmentation of IA lesions, which would affect the negative and

positive proportion of the input as well as the consumption of

computing resources. Therefore, it is necessary to select the most

appropriate patch size according to the specific task for

subsequent research. This study compared the impact of three

patch sizes (32 × 32 × 32, 48 × 48 × 48, 64 × 64 × 64 voxels) on the

IA segmentation using 3D UNet, and found that 3D UNet has

better segmentation performance for IAs when the patch size is

48 × 48 × 48 voxels (Table 1). Some previous studies have also

shown that a larger patch size doesn’t necessarily mean better (Xu

et al., 2019; Essa et al., 2020; Tang et al., 2021).

4.2 Performance

4.2.1 Training performance
The convergence and efficiency of CNN training receive

much concern in the evaluation of the model since the

training is computationally intensive and might affect the

segmentation performance (Rehman et al., 2018). In our

study, there is no obvious over-fitting phenomenon in the

three models. Among them, 3D UNet has the fastest

convergence and the highest DSC value on the test set. It

might benefit from the use of batch normalization in 3D

UNet, which helps the network train faster and achieve higher

DSC by reducing internal covariate shifts (Ioffe and Szegedy,

2015; Cicek et al., 2016). Besides, the simple structure of 3D

UNet also makes it relatively light and shallow to be available to

process the data efficiently under the same hardware conditions

(Zou et al., 2018; Lyu et al., 2021).

4.2.2 Segmentation performance
4.2.2.1 Overall segmentation performance

The automatic segmentation and reconstruction quality of

IAs have a primary influence on the subsequent hemodynamic

analysis. Inaccurate segmentation (especially for important

anatomical features, such as aneurysm necks) may result in

unrealistic flow patterns and diverging flow parameter values

and therefore may even lead to erroneous conclusions (Berg et al.,

2018, 2019; Valen-Sendstad et al., 2018).

In this paper, 3D UNet showed excellent IA segmentation

performance under a small sample size, which was better than

VNet and 3DRes-UNet. In terms of lesion recognition, all the CNNs

showed a non-zero V-Recall at the case level, indicating that all the

IAs were identified successfully. Among them, 3D UNet achieved

the highest average V-Recall of 0.797 ± 0.140, which was 3.5% and

17.3% higher than that of VNet and 3D Res-UNet, respectively

(Table 2). This suggested that 3D UNet was more sensitive than the

other two models in voxel-wise lesion identification. In terms of

lesion segmentation, the automatic segmentation based on 3DUNet

reached an average DSC of 0.818 ± 0.100, 4.1%, and 11.7% higher

than that of VNet and 3D Res-UNet, as well as an average HD of

3.323 ± 3.212 voxels, 8.3%, and 17.3% lower than that of VNet and

3D Res-UNet (Table 2). These results are comparable to previous

studies which used similar image modalities, sample size, andmodel

architecture (Shahzad et al., 2020; Ma and Nie, 2021). Table 5 lists

the average DSC achieved in previous studies ranging from 0.53 to

0.8632 (Sichtermann et al., 2019; Shi et al., 2020b; Shahzad et al.,

2020; Bo et al., 2021; Ma and Nie, 2021).

There could be multiple possible reasons for the better

segmentation performance of 3D UNet, for there are

differences among the three network architectures. VNet and

3D Res-UNet adopt residual mechanisms based on 3D UNet and

use convolution layers instead of pooling layers to perform

downsampling. The residual mechanism is mainly proposed

to improve the gradient disappearance and gradient explosion

in the deep network training through skip connection to realize

feature fusion between different layers (He et al., 2016). However,

Wang et al. have found that skip connection is not always

beneficial, and some inappropriate feature fusion would

negatively influence the segmentation performance (Wang

et al., 2022). The optimal combination of skip connections

should be determined according to the scales and appearance

of the target lesions (Wang et al., 2022). Some studies also

showed that the effect of the residual mechanism is related to

the implementation of specific residual blocks and the input data

and pre-processing methods (Naranjo-Alcazar et al., 2019). Our

study also demonstrates that adding residual blocks may affect

the effectiveness of feature fusion and weaken the IA

segmentation performance.

Besides, the performance of CNNs is somewhat different on

different datasets. The study by Turečková et al. showed that VNet

slightly outperforms 3D UNet on Medical Decathlon Challenge

(MDC) Liver dataset, while the trend is opposed in the MDC

Pancreas dataset (Turečková et al., 2020). Wang et al. also showed

that 3D UNet outperforms VNet in head and neck CT tumor

segmentation (Wang G. et al., 2022). Our dataset has high

variability in size and shape, similar to those of pancreas and head

andneck tumors, resulting in consistent results with the above studies.

4.2.2.2 Impacts of IA size on segmentation performance

Small IAs are a common risk factor for aneurysmal SAH

which have a high risk of being missed in clinical screening

(Kassell and Torner, 1983; Adams et al., 2000; Weir et al., 2002;

Pradilla et al., 2013; Dolati et al., 2015). Whereas, the accurate

automatic segmentation of small IAs is still a problem. To verify

the impacts of IA size on segmentation performance, we analyzed

and found that the performances of the models on small IAs were

worse than those on large IAs (similar to other studies

(Sichtermann et al., 2019; Shi et al., 2020b; Bo et al., 2021)),

and the performance of 3D UNet on small IAs was better than

other models. The DSC of 3D UNet, VNet, and 3D Res-UNet for

large IAs in Group 3 was 13.5%, 15.9%, and 3.9% higher than that
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of small aneurysms in Group 1. While in Group 1, the DSC of 3D

UNet was 6.0% and 10.2% higher than that of VNet and 3D Res-

UNet (Table 3).

Compared with VNet, 3D UNet uses a smaller convolution

kernel size which may be more attentive to local IA features and

not be overly distracted by the neighborhood when an IA lesion is

relatively small and surrounded by many tissues, as Cao et al.

demonstrated in their study (Cao et al., 2021).

4.2.3 3D deviation analysis
To evaluate the availability and reliability of the 3D IAmodels in

subsequent hemodynamics, a specific geometric deviation analysis is

necessary. Nevertheless, the above metrics (DSC, HD, etc.) cannot

reflect the accuracy of geometric details, which is important in

subsequent mechanical analysis. Thus, we performed the 3D

deviation analysis to intuitively evaluate the detailed bias between

the CNN-based segmentation and the ground truth. Table 4 shows

that 3D UNet had the smallest deviation with a max distance of

+1.4760/-2.3854 mm and an average distance of 0.3480 mm. While

3D Res-UNet had the highest deviation, consistent with the trend

demonstrated by the above metrics.

What’s more, the visual deviation analysis suggested that

high deviations usually occur at the concave and convex areas of

irregular IAs (Figure 10). For an IA with regular morphology, the

3D reconstruction models based on three CNN models are more

likely to have a small deviation compared with the reference, as

shown in the first row of Figure 10. On the contrary, for an IA

with irregular morphology, the original concave and convex

areas are more likely to be overestimated and underestimated

in the 3D reconstruction models, respectively, as shown in the

second row of Figure 10. That is because these areas are hard to

be segmented accurately by CNNmodels. Under this premise, we

still found that 3D IA reconstruction models based on 3D UNet

are more likely to have smaller deviations compared with VNet

and 3D Res-UNet.

4.2.4 Segmentation efficiency
Improving the segmentation efficiency is of great significance

for meeting clinical needs timely and accelerating the

morphological and hemodynamic analysis based on

individualized 3days models. As far as we know, automatic

segmentation time varies according to different tasks (Patel

et al., 2020; Claux et al., 2022). According to some studies,

automatic segmentation of IA takes seconds to minutes per

case (Sichtermann et al., 2019; Shi et al., 2020b; Bo et al., 2021).

In our study, three CNN models are all highly time-efficient

with an AST of less than a second, which is promising for

practical use. As the test set uses a smaller patch size (48 ×

48 × 48 voxels) than other studies (Sichtermann et al., 2019; Shi

et al., 2020b; Bo et al., 2021), the AST of 3D UNet and 3D Res-

UNet of an IA is only 0.053s in this study, which is 9.4% less than

that of VNet and comparable with the study of Jin et al. (Jin et al.,

2019). The longer AST of VNet can be attributed to the use of a

larger convolution kernel size, resulting in disproportionally

increased expensive computation (Szegedy et al., 2016).

4.3 Limitation

The main limitation of this study is related to the small

sample size of IAs from a single center, which may result in

insufficient diversity of samples. Multicenter study validation

should be performed to improve the robustness of results to data

from different centers. Besides, all cases in this study were labeled

by only one annotator. In the future, cross-validation between

different annotators is needed to reduce the impact of individual

differences among annotators. Finally, this study only compared

three CNN models, and more updated network models can be

included for comparison in the future following the same

methodology proposed in this study.

5 Conclusion

In conclusion, we deployed three CNN models (3D UNet,

VNet, 3D Res-UNet) and applied them to the automatic

segmentation of IAs. After comparing the automatic

segmentation effects of the three models under a small sample

size, we found that 3D UNet outperformed VNet and 3D Res-

UNet in terms of V-Recall, DSC, and HD. Besides, the 3D

TABLE 5 Comparison of the segmentation performance of this study with the previous studies.

Study Networks Input data format Number of cases DSC HD/voxels AST/s

This Study 3D UNet CTA 101 0.818 ± 0.100 3.323 ± 3.212 0.053

Sichtermann et al. (2019) DeepMedic 3D TOF-MRA 85 0.53 ± 0.30 65.40 ± 18.89 50

Shahzad et al. (2020) DeepMedic CTA 253 0.75 — —

Ma and Nie, (2021) 3D nnUNet 3D CT 132 0.8632 4.97 —

Bo et al. (2021) GLIA-Net CTA 1,476 0.579 9.07 25.8

Shi et al. (2020b) DAResUNet DSA 1,177 0.75 — 17.6
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Deviation analysis of 3D reconstruction models from CNN-

based segmentation also suggested that the segmentation of

3D UNet had the smallest deviation under the above four

metrics while that of 3D Res-UNet had the highest deviation,

consistent with the above metrics, further demonstrating that 3D

UNet is more suitable for IA segmentation than the other two. In

terms of segmentation efficiency, three models are all highly

time-efficient for a single prediction of less than a second in this

study, which is promising for practical use in the real-time

diagnosis of cerebral hemorrhage and treatment of IAs. This

can greatly facilitate current large-scale CTA-based precise

patient-specific modeling and analysis studies in healthcare.

The study of IA is vital for the health of the public. In the

future, beyond the automatic detection and segmentation,

predicting the rupture of IAs according to the morphological

and hemodynamic analysis based on individualized 3D models

will be worth exploring. Therefore, 3D UNet can not only assist

clinicians in the diagnosis of IAs but can also encourage more

implementations of artificial intelligence in healthcare.
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