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With-no-lysine (K) (WNK) kinases have been identified as the causal genes for

pseudohypoaldosteronism type II (PHAII), a rare hereditary hypertension

condition characterized by hyperkalemia, hyperchloremic metabolic acidosis,

and thiazide-hypersensitivity. We thought that clarifying the link between WNK

and NaCl cotransporter (NCC) would bring us new mechanism(s) of NCC

regulation. For the first time, we were able to produce a knock-in mouse

model of PHAII and anti-phosphorylated NCC antibodies against the putative

NCC phosphorylation sites and discover that constitutive activation of NCC and

increased phosphorylation of NCC are the primary pathogenesis of the disease

in vivo. We have since demonstrated that this regulatorymechanism ismediated

by the kinases oxidative stress-response protein 1 (OSR1) and STE20/SPS1-

related proline/alanine-rich kinase (SPAK) (WNK–OSR1/SPAK-NCC signaling

cascade) and that the signaling is not only important in the pathological

condition of PHAII but also plays a crucial physiological role in the

regulation of NCC.
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Pseudohypoaldosteronism type II

Worldwide, hypertension is very common, and even now, when there are many

antihypertensive medications on the market, finding efficient treatment targets is still a

pressing concern. Monogenic hypertensive conditions like Liddle syndrome and

pseudohypoaldosteronism type II (PHAII) have helped us understand the

physiological mechanisms that regulate blood pressure. PHAII was first described as

familial hyperkalemic hypertension (FHHt) by Paver and Pauline (1964). In 1970,

Gordon et al. reported that enhanced renal sodium reabsorption was the underlying

cause of a 10-year-old girl’s hypertension, hyperkalemia, hyperchloremic metabolic

acidosis, and suppression of renin-angiotensin systems (Gordon, 1986). Clinically,

hyperkalemia is inevitable in patients in their teens due to impaired renal excretion of

potassium, and hypertension develops in most cases thereafter. Aldosterone is suppressed

and plasma renin activity is decreased, both of which indicate a tendency toward salt

retention. However, due in part to high serum potassium, aldosterone may appear to be

within the normal range. Administration of thiazide diuretics improves not only

hypertension but also hyperkalemia and acidosis. Thiazide is beneficial in PHA II

patients, and genetic anomalies of the NaCl cotransporter (NCC), the drug’s target
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molecule, have been speculated to be a potential contributing

factor. However, no causative mutations had not been detected in

the NCC gene.

Discovery of WNK-OSR1/SPAK-NCC
signaling cascade

Since a conserved lysine (K) residue in the kinase’s catalytic

domain is changed to a cysteine, WNK kinase, a member of the

serine-threonine kinase family, earned its nickname (Xu et al.,

2000). Presently, four types of WNK1 to four have been found in

mammals, but there are no reports of WNK2 and WNK3 being

aberrant in human kidney diseases. Full-length (long) WNK1

(L-WNK1) and kidney-specific WNK1 lacking the functional

kinase domain are the two main isoforms of WNK1 that are

known to exist (KS-WNK1). While KS-WNK1 was localized in

the distal convoluted tubule (DCT), in situ hybridization

demonstrated that the expression of L-WNK1 in the kidney

was less than sensitive to detection (Delaloy et al., 2003). After a

FIGURE 1
Overview of the WNK signaling molecules The CCT domain at the C-terminus of OSR1/SPAK is bound by the RFxV/I motif of the WNK kinases
and SLC12A transporters. The PHAII mutations cluster in the region, which is the starting point for binding to KLHL3.
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while, using a new method that uses “never-spliced” exon of

WNK1 (in the case exon 8) as a reference, Vidal-Petiot et al.

(2012) successfully quantified tissue-specific expression of

WNK1 splice variants, including KS-WNK1. In particular, KS-

WNK1 was revealed to be dominantly expressed in the DCT

compared to L-WNK1. Cheng et al. isolated individual kidney

tubule segments from KS-WNK1 KO mice tissue using the

microdissection method and found that KS-WNK1 was most

abundant in the DCT, followed by cortical thick ascending limb

(cTAL), connecting tubule (CNT), and cortical collecting duct

(CCD) (Cheng et al., 2013). In the study, the authors also

demonstrated that KS-WNK1 stimulates ROMK-mediated K+

secretion and that KS-WNK1 plays a role in regulating Na+

transport in the CCD. Figure 1 illustrates the structure of

WNK kinases. With two coiled-coil domains, an

autoinhibitory domain with two phenylalanine residues, and a

brief acidic domain, four WNK kinases are identical to one

another in the kinase catalytic domain. The WNK1 mutation

in PHAII was a large deletion of intron 1, as shown in Figure 1. In

leukocytes from patients, a reverse transcription-PCR study

revealed that WNK1 expression was elevated in PHAII

patients (Wilson et al., 2001). A study from a French team

utilizing WNK1 transgenic mice indicated that both isoforms

are raised (Delaloy et al., 2008). Vidal-Petiot E et al. generated

mice that recapitulated intron one deletion and observed that

L-WNK1 was overexpressed only in the DCT and CNT and that

the mice showed a PHAII phenotype (Vidal-Petiot et al., 2013).

Chávez-Canales et al. crossed the WNK1–PHAII model mice

[WNK1(+/PHAII)] lacking intron 1 with WNK4 knockout (KO)

mice created afterward, and ectopic expression of L-WNK1 in the

DCT and positive regulation of NCC independently of

WNK4 were reported (Chávez-Canales et al., 2014). In KS-

WNK1 transgenic mice, the total and phosphorylated forms

of NCC and NKCC2 in renal cortex are reduced. These mice

display renal Na+ wasting and lower blood pressure under

normal Na+ diet (Liu et al., 2011). Conversely, KS-WNK1

knockout mice have increased expression of NCC and NKCC

in renal cortex and hypertension (Hadchouel et al., 2010; Liu

et al., 2011). These two studies are consistent with KS-WNK1

being an inhibitor of NCC in the DCT. On the other hand,

WNK4 originally contained four missense mutations, three of

which were located close to the coiled-coil domain in the

protein’s first half. These variants were thought to alter the

binding of WNK4 to other proteins, thereby changing its

function as a kinase. Initially, many investigations (Kahle

et al., 2003; Wilson et al., 2003; Yang et al., 2003; Yamauchi

et al., 2004; Gamba, 2006; Garzón-Muvdi et al., 2007; Ring et al.,

2007) were carried out to ascertain how WNK kinase regulates

renal transporters. These studies were carried out in the form of

co-overexpression of WNK1 or WNK4 and renal various

transporters. However, it was unclear how exactly this control

worked, particularly the intracellular signaling pathways

involved. In 2006, Lalioti MD et al. used wild-type and PHAII

mutant WNK4 genomic segments to create BAC transgenic

mice. They discovered that mutant Tg mice [Tg(Wnk4PHAII)]

have elevated blood pressure levels and hyperkalemic metabolic

acidosis compared to wild-type mice, which is caused by

increased NCC expression (Lalioti et al., 2006). In the study,

NCC phosphorylation was not evaluated. Additionally, wild-type

Tg mice [Tg(Wnk4WT)] suppress NCC and exhibit a Gitelman-

like phenotype, which is inconsistent with the evidence that

increased wild-type WNK4 due to reduced degradation by the

KLHL3 mutation induces PHAII (Ohta et al., 2013; Shibata et al.,

2013; Wakabayashi et al., 2013) rather than Gitelman syndrome.

Although the in vivo study is important, it should be noted that

forced expression systems, similar to previous in vitro studies,

may not always accurately capture the physiological

phenomenon. This is likely because of a lack of downstream

signals or excessive modifications. To further comprehend the

pathophysiology, we created Wnk4D561A/+ knock-in mice that

carried the identical variation (D564A) as in human PHAII. The

mice were verified to be human PHAII model mice with a

dominant mode of inheritance because they displayed

hyperkalemia, metabolic acidosis, and hypertension despite

following a regular diet. All of these symptoms were alleviated

by the administration of thiazide (Yang et al., 2007). Before this,

the serine-threonine kinases oxidative stress-response protein 1

(OSR1) and STE20/SPS1-related proline/alanine-rich kinase

(SPAK), which are members of the Ste20 kinase subfamily,

were discovered as physiological substrates of WNKs

(Moriguchi et al., 2005) (Figure 1). To examine the molecular

pathogenesis of the disease in this mouse model, we first focused

on NCC. Pacheco-Alvarez et al. discovered three key

phosphorylation sites in NCC (T53, T58, and S71) involved in

the activation based on the comparison with the

NKCC1 sequence in a study using Xenopus laevis oocytes

(Pacheco-Alvarez et al., 2006). With reference to the study, we

created anti-phosphorylated NCC (pNCC) antibodies that

detected probable Ser and Thr phosphorylation sites by

OSR1 and SPAK. By employing anti-pNCC antibodies and

demonstrating that pNCC was concentrated in apical plasma

membranes in the DCT, Yang et al. (2007) demonstrated that

NCC phosphorylation was dramatically elevated in the kidneys

of PHAII model mice. We showed that WNK4 activates OSR1/

SPAK, which in turn phosphorylates and activates NCC (WNK-

OSR1/SPAK-NCC cascade) (Yang et al., 2007). Richardson et al.

also reported that WNK1 phosphorylates and activates the three

aforementioned NCC activation sites via OSR1/SPAK in in vitro

experiments (Richardson et al., 2008). After that, we generated

triple knock-in mice by matingWNK4D561A/+ knock-in mice with

knock-in mice lacking OSR1 and SPAK kinase activities. This

demonstrated that the activity of OSR1 and SPAK is required for

the phosphorylation of NCC in the kidney (Chiga et al., 2011).

The fact has also been shown in knockout mice of SPAK and

OSR1, respectively (Yang et al., 2010; Lin et al., 2011). The

enhanced NaCl reabsorption in the WNK4D561A/+ knock-in
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mice was mediated by phosphorylated and activated NCC, which

was discovered to be the root of salt-sensitive hypertension.

Additionally, because activated NCC in the DCT reabsorbs a

significant amount of sodium, hyperkalemia is brought on by a

reduction in sodium influx from downstream epithelial sodium

channels (ENaC) and a reduction in K+ secretion through K

channels (ROMK), which are functionally dependent on ENaC.

WNK4 is expressed not only in the DCT cells but also in

β−intercalated cells of the CCD (Kahle et al., 2004).

β−intercalated cells exchange intracellular bicarbonate for

external chloride through pendrin (SLC26A4), and therefore,

account for renal base excretion. At the same time, these cells can

also mediate thiazide-sensitive sodium chloride absorption when

the pendrin-dependent apical chloride influx is coupled to apical

sodium influx by the sodium-driven chloride/bicarbonate

exchanger (NDCBE/SLC4A8) (Leviel et al., 2010). Pendrin

activity was confirmed to be markedly increased in a mouse

model carrying a WNK4 missense mutation (Q562E) (López-

Cayuqueo et al., 2018), which may contribute to an increase in

thiazide-sensitive sodium chloride absorption in CCD, and also

to the development of metabolic acidosis in PHAII.

In addition, we discovered that phosphorylation of NCC

attenuates its ubiquitination and was involved in NCC

abundance at the apical membrane. Actually, in PHAII model

mice, ubiquitination was reduced, which might be a factor in the

overexpression of NCC at the membrane (Hossain Khan et al.,

2012).

Physiological significance of WNK-
NCC signaling cascade

By examining the variations in phosphorylation in normal

and knock-in mice fed a high-salt or low-salt diet, it was further

shown that WNK-OSR1/SPAK-NCC creates a phosphorylation

cascade and plays a significant role in controlling renal electrolyte

homeostasis. In wild-type mice, the cascade including NCC

phosphorylation is suppressed by a high-salt diet and

activated by a low-salt diet. In other words, it was initially

controlled by the amount of salt consumed. However, in

knock-in mice, the system remains constantly activated and is

not inhibited by a high-salt diet. This is what is causing PHAII to

continue to rise in salt reabsorption. When this system is

suppressed by a high-salt diet, an additional exogenous

aldosterone treatment can activate it. The activated state at

low salt is suppressed by spironolactone, revealing aldosterone

to be an upstream regulator of the cascade (Chiga et al., 2008;

Vallon et al., 2009). This mechanism has been demonstrated to

be an aldosterone effector system in the kidney in addition to the

traditional aldosterone signaling pathway mediated by epithelial

FIGURE 2
Overview of WNK signaling and its regulators WNK kinase forms a WNK–OSR1/SPAK–SLC12A signal that promotes phosphorylation and
activation of downstream substrates, OSR/SPAK, and then NKCC1/2 and NCC. The signal is positively regulated by various regulatory factors such as
aldosterone, angiotensin, and insulin.
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sodium channels (ENaC) (Figure 2). Castañeda-Bueno et al.

created WNK4 knockout (KO) mice in 2012 and reported

that they exhibit a Gitelman-like phenotype and that positive

regulation of angiotensin II to NCC is mediated by WNK4

(Castañeda-Bueno et al., 2012). We also generated WNK4 KO

mice and observed the marked reduction of phosphorylated and

total NCC levels with the reduction of SPAK phosphorylation in

the KO mice, demonstrating that WNK4 is the primary WNK

positively regulating NCC (Takahashi et al., 2014). SPAK is also

one of the most notable causal genes of essential hypertension

because a genome-wide association study in the general

hypertensive population revealed a substantial link with SNPs

in the intronic region of SPAK (Wang et al., 2009). One of these

flag SNPs (rs3754777) was knocked into HEK293T cells using a

CRISPR/Cas system, which was revealed to cause increased

protein expression and phosphorylation of SPAK.

Additionally, the downstream Na-K-2Cl cotransporter-1

(NKCC1) was shown to be phosphorylated and activated,

providing further evidence that the SNP is a functional

polymorphism (Mandai et al., 2015).

Inappropriate overactivation of NCC
by WNK signal leads to salt-sensitive
hypertension

TheWNK signal is crucial for controlling blood pressure and

maintaining NaCl homeostasis, in addition to being relevant for

rare hereditary illnesses, according to the discovery of the WNK-

OSR1/SPAK-NCC phosphorylation cascade. As previously

indicated, excessive WNK-SPAK/OSR1-NCC phosphorylation

signaling causes NCC phosphorylation to be improperly

inhibited by salt consumption and salt to be improperly

expelled in the urine, which causes salt retention and salt-

sensitive hypertension. In other words, the discovery of the

physiological activators of WNK signaling will provide insight

into the new mechanisms of salt-sensitive hypertension. As a

result, research has been done to find physiological activators of

WNK signaling.

Discovery of KLHL3 and CUL3, and
their involvement in the
pathophysiology of NCC activation

While WNKs were found to activate NCC via OSR1/SPAK,

the mechanism by which WNK mutations activate this cascade

remained unclear. In 2012, two studies using next-generation

sequencing analysis of PHAII pedigrees revealed that CUL3 and

KLHL3 are new PHAII causal genes (Boyden et al., 2012; Louis-

Dit-Picard et al., 2012). CUL3 and KLHL3 are part of the

ubiquitin ligase complex that regulates protein degradation.

Key elements of the ubiquitin or proteasome system that

transfer ubiquitin moieties to substrates are ubiquitin ligases

sometimes referred to as E3 ligases. CUL3 is a member of the

Cullin family and binds to several substrate adapter proteins with

BTB domains (Kipreos et al., 1996). Numerous members of the

Kelch-like protein family are known, and they are substrate

adapter proteins with five to seven Kelch domains that

connect with substrates and a BTB domain that binds to

CUL3 (Adams et al., 2000). KLHL–CUL3 E3 ligase substrates

are diverse and be involved in many cellular functions. Based on

these results, we postulated that the CUL3 and KLHL3 ubiquitin

ligase complex would engage with any component of the WNK-

OSR1/SPAK-NCC cascade to ubiquitinate and destroy it. First,

we confirmed that KLHL3 interacts with CUL3 and

WNK4 in vitro, induces WNK4 ubiquitination, and reduces

WNK4 protein levels (Wakabayashi et al., 2013) (Figure 3).

WNK4 ubiquitination was decreased and WNK4 protein

levels were elevated as a result of decreased interaction

between KLHL3 and WNK4 caused by PHAII-causing

mutations in either protein. Furthermore, transgenic mice

overexpressing WNK4 showed a PHAII phenotype, and

Wnk4D561A/+ PHAII model mice had increased WNK4 protein

(Wakabayashi et al., 2013). At about the same time as our report,

Shibata et al. demonstrated that CUL3–RING ligases containing

KLHL3 target ubiquitination of WNK4 and thereby regulate

WNK4 levels, which in turn regulate levels of ROMK (Shibata

et al., 2013). The KLHL3–CUL3 ligase complex’s role in WNK

regulation was largely similar to our report inWakabayashi et al.,

but this study concentrated primarily on ROMK as a result of

WNK signaling. Ohta et al. (2013) also investigated WNK1’s

in vitro interactions with KLHL3 and CUL3. The wild-type

KLHL3–CUL3 E3 ligase complex ubiquitinated WNK1,

whereas the mutant KLHL3–CUL3 E3 complex was shown to

inhibit ubiquitination. CUL3 was knocked down using siRNA,

which led to an increase in WNK1 protein levels and kinase

activity in HeLa cells.

Additionally, we created and examined KLHL3R528H/+ knock-

in mice, an ideal mouse model for KLHL3 PHAII, to further our

understanding of the pathophysiology of PHAII induced by

KLHL3 mutations (Susa et al., 2014). KLHL3R528H/+ knock-in

mice exhibited salt-sensitive hypertension, hyperkalemia, and

metabolic acidosis. It is interesting to note that the protein levels

ofWNK1 andWNK4were bothmarkedly higher in the kidney of

KLHL3R528H/+ mice, suggesting that mutant KLHL3 kinase

expedited the phosphorylation of the WNK-OSR1/SPAK-NCC

cascade in mice. Fluorescence correlation spectroscopy was used

to evaluate the binding of TAMRA-labeled WNK1 and

WNK4 peptides to full-length KLHL3 to determine whether

mutant KLHL3 R528H can interact with WNK kinase. The

results showed that neither WNK1 nor WNK4 could bind to

KLHL3 R528H (Susa et al., 2014).

That KLHL3-CUL3 complex binds to and interacts with

WNK1 and WNK4, which causes their ubiquitination and

lowers their protein levels, according to numerous in vitro
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and in vivo studies. The combination of CUL3 and KLHL3 binds

WNK kinases and modestly degrades them to control the activity

of the WNK-OSR1/SPAK-NCC cascade for sodium homeostasis

under normal physiological settings. However, mutations in

these molecules decrease their ubiquitination activity and

prevent them from attaching. Slower degradation causes

WNK kinases to accumulate (Figure 3). Recently, a whole-

exome analysis of a family with a PHAII phenotype and a

dominant inheritance form revealed a new missense mutation

(p.Asp635Glu) in exon seven of WNK1 (Louis-Dit-Picard et al.,

2020). Functional studies on Xenopus laevis oocytes and

HEK293T cells showed that this mutation strongly reduces

KS-WNK1 ubiquitination by the KLHL3–CUL3 complex

rather than the L-WNK1 isoform. This mutation is on the

short conserved acidic motif, the binding motif for the

KLHL3–CUL3 complex. Knock-in mice with the same

mutation displayed the PHAII phenotype. It was proposed

that the mechanism of KS-WNK1 increase is an important

pathophysiology of WNK1-induced PHAII development

(Louis-Dit-Picard et al., 2020).

As a result, permanent overactivation of the WNK–OSR1/

SPAK-NCC cascade promotes NCC-mediated salt reabsorption.

There was continuing discussion over whether WNK4 was a

positive or negative regulator of the NCC before the discovery of

this WNK degradation pathway, and there was evidence to

support both hypotheses. Chloride stabilizes the inactive

conformation of WNK1, preventing kinase

autophosphorylation and activation (Piala et al., 2014).

Similarly, WNK4 can have different effects on NCC

depending on the level of intracellular chloride (Bazúa-Valenti

et al., 2015). Although there are numerous modifying factors in

WNK signaling, our results from in vivo studies do not negate the

negative effect of WNK on NCC, which was initially established

by in vitro experiments with oocytes and cultured cells, as

mentioned in the previous report (Takahashi et al., 2014).

Our research on WNK-NCC signaling has significantly

impacted the discussion about the physiological and

pathological mechanisms that are prevalent in vivo.

Insulin links WNK-NCC signal
activation and salt-sensitive
hypertension in metabolic syndrome

Clinical data showed that patients with obesity and

metabolic syndrome had increased insulin resistance (Chen

FIGURE 3
Effects of PHAII mutations inWNK signaling molecules on the signaling In normal states, CUL3, KLHL3, andWNK1/4 form the E3 ubiquitin ligase
complex to regulate WNK1/4 degradation by the ubiquitin-proteasome system (left: normal); in PHAII, mutations in each intermolecular binding site
fail this complex formation, subsequently, accumulation of WNK1/4 leads to activation of downstream OSR1/SPAK-NCC signaling.
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et al., 2009), sparking research into the underlying

mechanisms. Metabolic syndrome is characterized by

insulin resistance, leading to hyperinsulinemia. It has been

shown that insulin increases salt sensitivity and activates the

WNK-OSR1/SPAK-NCC signaling (Sohara et al., 2011;

Komers et al., 2012; Chávez-Canales et al., 2013;

Takahashi et al., 2014). A high-salt diet has little effect on

WNK signaling in db/db animal models of the

hyperinsulinemic metabolic syndrome (Nishida et al.,

2012; Ishizawa et al., 2019). Furthermore, Nishida et al.

showed that inhibiting PI-3K or Akt in db/db mice

reduced elevated NCC phosphorylation, demonstrating

that insulin increases WNK-OSR1/SPAK-NCC signaling

via the PI-3K/Akt pathway. Indeed, KLHL3 is

phosphorylated at S433 by Akt, resulting in defective

degradation of WNK kinase, due to decreased binding

between WNKs and KLHL3 (Yoshizaki et al., 2015). These

findings suggest that WNK signaling is a promising target for

metabolic syndrome’s blood pressure management.

Calcineurin inhibitor activates the
WNK-NCC axis, leading to PHAII-like
phenotype

Both physiologically and therapeutically, the effects of

calcineurin (CaN) and its inhibitors on WNK signaling are

crucial. Cyclosporine is known to cause hypertension and

hyperkalemia as side effects. These adverse consequences

resemble the PHAII phenotype, which raises the possibility

that calcineurin inhibitors could stimulate the WNK-NCC

signal. Farfel’s team observed that CaN inhibitor-fed rats

developed salt-sensitive hypertension and that their kidneys

showed much higher levels of WNK4 protein and NCC

phosphorylation (Melnikov et al., 2011). Ellison’s team

extended these findings to people by demonstrating that

kidney transplant recipients who had received tacrolimus

had fractional chloride excretion in response to

bendroflumethiazide, an NCC inhibitor, than those who had

not received tacrolimus; as well as higher renal NCC abundance

(Hoorn et al., 2011). These findings may help to partially

explain how calcineurin inhibitors-cause hypertension and

hyperkalemia, and they also imply that tacrolimus patients

had higher levels of cheap NCC abundance. It demonstrates

that well-tolerated thiazide diuretics may be particularly

effective in preventing the complications of CNI treatment.

Additionally, it has been proposed that NCC is directly

dephosphorylated by calcineurin. Shoda et al. demonstrated

that tacrolimus, a CaN inhibitor, inhibits the fast

dephosphorylates of NCC after oral potassium treatment,

irrespective of OSR1/SPAK (Shoda et al., 2017). This

suggests that high potassium CaN is involved in NCC

dephosphorylation.

Tumor necrosis factor (TNF) α
activates the WNK1-NCC signal,
leading to salt-sensitive hypertension
in chronic kidney disease (CKD)

The most frequent comorbidity linked to CKD is

hypertension (Townsend and Taler, 2015). One of the main

reasons for the development of hypertension in CKD patients is

increased salt sensitivity. Recent research reveals that insufficient

sodium processing in the tubules, in addition to decreased

glomerular filtration rate, causes salt sensitivity in CKD

(Gonzalez-Villalobos et al., 2013; Kobayashi et al., 2017).

Additionally, a recent publication to the NEJM stating that

thiazides, which are NCC inhibitors, are successful in treating

advanced CKD raises the possibility that NCC is responsible for

this elevated salt sensitivity in CKD (Agarwal et al., 2021).

On the other hand, studies are emerging suggesting that the

immune system is important in hypertension (Norlander et al.,

2018; Rucker et al., 2018). According to these findings, the

immune system may be involved in the excessively high renal

salt retention that results in hypertension. Studies in which

reduction or suppression of TNF inhibited the development of

hypertension in mice in response to Ang II infusion, for instance,

suggested that the inflammatory cytokine TNFα is involved in

hypertension (Guzik et al., 2007; Zhang et al., 2014).

Furthermore, clinically, TNFα antagonists were reported to

have antihypertensive effects in patients with rheumatoid

arthritis (Yoshida et al., 2014). Activating the WNK1-SPAK-

NCC phosphorylation cascade and causing salt-sensitive

hypertension in CKD animal models are two recent findings

made by Furusho et al. (2020). Renal TNFα increased

WNK1 protein expression by suppressing NEDD4-2, another

E3 ligase that degrades WNK1. Thus, in CKD kidneys with

elevated renal TNFα, the WNK1-SPAK-NCC signaling pathway

is activated, resulting in salt-sensitive hypertension. These

findings suggest that the immune system controls the WNK

phosphorylation pathway, which is connected to salt-sensitive

hypertension in CKD.

Challenges in drug discovery and
biomarker development

Although there are thiazides that only control NCC, the

following facts make it worthwhile to block signals from upper

levels in addition to NCC. As previously indicated, WNK

signaling is crucial in the control of sodium delivery in vivo,

which is influenced by several regulatory factors. Physiologically,

it may be a promising new drug target because it is involved not

only in salt regulation but also in the control of vasoconstriction.

WNK4 regulates adipocyte early differentiation and is expressed

in adipose tissue. Mice lackingWNK4 demonstrated resistance to

obesity from a high-fat diet (Takahashi et al., 2017). Additionally,
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SPAK is expressed in white adipose tissue, and SPAK kinase-

inactivated knock-in mice, in which the WNK phosphorylation

activation site was inactivated, displayed resistance to obesity and

hepatic steatosis brought on by high-fat diets (Torre-Villalvazo

et al., 2018). Additionally, it has been suggested that a lack of

SPAK enhances the intestine’s innate immune homeostasis,

which is crucial for regulating or reducing pathogenic

responses in inflammatory bowel illnesses (Zhang et al., 2013).

These results imply that WNK signaling inhibitors may be new

antihypertensive diuretics and metabolic ameliorators.

Fluorescence correlation spectroscopy was used to carry out

high-throughput screening of WNK-SPAK binding inhibitors

(Mori et al., 2013) (Figure 1). Then, using ELISA, a screening of

direct SPAK inhibitors was carried out, which made it possible to

find several intriguing compounds that had in vivo WNK

signaling inhibitory action (Kikuchi et al., 2015). A recent in

silico structural analysis of one of the candidates, STOCK1S-

14279, revealed that it binds to an allosteric pocket in the

conserved carboxy-terminal (CCT) domain of SPAK and

inhibits its interaction with WNK. This candidate has been

cited and used in subsequent studies as a SPAK inhibitor

(Zhang et al., 2020; Jonniya et al., 2021). Furthermore, we

established a quantitative detection method for urinary

phosphorylated NCC by ELISA as a biomarker for the

evaluation of WNK signaling activation (Isobe et al., 2013).

Gitelman syndrome and PHAII patients are two hereditary

renal diseases that can change NCC activity, and the test is

less invasive and useful for evaluating WNK signaling activity as

well as for screening for these conditions. A marked decrease in

Gitelman patients and a marked increase in PHAII patients’

NCC activity were noted (Isobe et al., 2013).

The discovery of the WNK signaling, a specific and potent

regulator of NCC, has provided many new insights into NCC

regulation. Our knowledge of Na, Cl, and K handling in the

kidney has advanced along with our awareness of the role of NCC

in physiological and pathological aspects. We are greatly looking

forward to the development of signal transduction research in

this field.
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