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Many researchers have suggested evaluation methods and Torsades de Pointes

(TdP) metrics to assess the proarrhythmic risk of a drug based on the in silico

simulation, as part of the Comprehensive in-vitro Proarrhythmia Assay (CiPA)

project. In the previous study, we validated the robustness of 12 in silico

features using the ordinal logistic regression (OLR) model by comparing the

classification performances of metrics according to the in-vitro experimental

datasets used; however, the OLR model using 12 in silico features did not

provide desirable results. This study proposed a convolutional neural network

(CNN) model using the variability of promising in silico TdP metrics hypothesizing

that the variability of in silico features based on beats hasmore information than the

single value of in silico features. We performed the action potential (AP) simulation

using a human ventricular myocyte model to calculate seven in silico features

representing the electrophysiological cell states of drug effects over 1,000 beats:

qNet, qInward, intracellular calcium duration at returning to 50% baseline (CaD50)

and 90% baseline (CaD90), AP duration at 50% repolarization (APD50) and 90%

repolarization (APD90), and dVm/dtMax_repol. The proposed CNN classifier was

trained using 12 train drugs and tested using 16 test drugs among CiPA drugs. The

torsadogenic risk of drugs was classified as high, intermediate, and low risks. We

determined the CNN classifier by comparing the classification performance

according to the variabilities of seven in silico biomarkers computed from the in

silico drug simulation using the Chantest dataset. The proposed CNN classifier

performed the best when using qInward variability to classify the TdP-risk drugs

with 0.94 AUC for high risk and 0.93 AUC for low risk. In addition, the final CNN

classifierwas validated using theqInward variability obtained aftermerging three in-

vitro datasets, but the model performance decreased to a moderate level of

0.75 and 0.78 AUC. These results suggest the need for the proposed CNN

model to be trained and tested using various types of drugs.
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1 Introduction

Torsades de Pointes (TdP) is a fatal arrhythmia induced by

drugs. The major challenge in developing new drugs is to filter

life-threatening drugs, which can lead to TdP, and prevent them

from entering the market (Sager et al., 2014; Vicente et al.,

2018). From the 1990s to the early 2000s, many drugs were

withdrawn from the market due to concerns about inducing

TdP (Roden, 2004; Onakpoya et al., 2016; Vicente et al., 2018).

To detect drugs that have the risk of TdP, the International

Council on Harmonization (ICH) has established a guideline

based on the mechanism of pharmaceutically occurring QT

interval prolongation, which is blockage of the IKr channel, a

human ether-à-go-go-related gene (hERG) channel current

(International Council on Harmonisation, 2005a;

Harmonisation, 2005b). Although this guideline can

accurately detect proarrhythmic drugs in new drug

development, the strict regulation due to the low specificity

of this guideline may disrupt the development of a potential

therapeutic drug that prolongs the QT interval but never leads

to TdP (Llopis-Lorente et al., 2020).

To address this problem, a comprehensive proarrhythmia

assay (CiPA) was proposed at a Think Tank meeting at the US

Food and Drug Administration (FDA) headquarters in 2013

(Sager et al., 2014; Strauss et al., 2019). CiPA, as a new paradigm,

assesses the proarrhythmogenic risk of a drug through in silico

simulation using a human cardiomyocyte model integrating

multi-ion channels of pharmacological in-vitro data (Li et al.,

2019). As part of this CiPA project, many researchers have

suggested evaluation methods and TdP metrics to assess the

proarrhythmic risk of drugs based on the in silico simulation.

Lancaster and Sobie (2016) suggested several metrics derived

from action potential (AP) and intracellular calcium (Ca2+)

concentration from in silico simulations observing drug

response in human ventricular cell models, such as AP

duration at 50% repolarization (APD50), AP duration at 90%

repolarization (APD90), Ca duration at getting to 50% baseline

(CaD50), and Ca duration at getting to 90% baseline (CaD90). The

FDA proposed qInward and qNet as promising TdP risk metrics

computed from in silico simulations for categorizing the

proarrhythmic risk of drugs as high, intermediate, and low

(Chang et al., 2017a; Li et al., 2017, 2019). Through several

studies, some of these in silico features were reported to be highly

accurate in classifying the torsadogenic and non-torsadogenic

drugs.

In our previous study, we validated the robustness of 12 in

silico features using an ordinal logistic regression (OLR)

model by comparing the classification performances of

metrics according to the used in-vitro experimental datasets

(Jeong et al., 2022a). However, as the results of the OLR model

using 12 in silico features were desirable, the single value of the

in silico feature was perceived as limiting to classifying the

three TdP risks. Therefore, this study proposes a

convolutional neural network (CNN) model using the

variability of promising in silico TdP metrics hypothesizing

that the variability of in silico features based on beats contains

more information than the single value of in silico features.

First, we determined a CNN classifier by comparing the

classification performance of the proposed model according

to the variabilities of seven in silico biomarkers obtained from

in silico drug simulation using specific in-vitro data. We then

evaluated the robustness of the proposed CNN classifier using

the variability of in silico biomarkers obtained from different

in-vitro data.

2 Methods

2.1 In-vitro experimental dataset and
preprocessing

In this study, to determine TdP-risk, an in-vitro

experimental dataset for CiPA 28 drugs measured by

Chantest et al. of Charles Rivers Laboratories (Han et al.,

2020) was used to train and test the proposed CNN

classifier. The finalized model tested using the Chantest

datasets was validated using two in-vitro experimental

datasets of Li et al. (2019) and Nanion et al. (Han et al.,

2020) (Supplementary Table S1). These three datasets

include the inhibition rates of seven ionic channels

according to the concentration of the corresponding CiPA

28 drugs; the CiPA drugs were classified as high-risk,

intermediate-risk, and low-risk according to their

proarrhythmic risk. The uncertainty quantification algorithm

was used for reliability and sufficient inputs by bootstrapping

the experimental datasets based on the Markov-Chain Monte

Carlo (MCMC) method (Chang et al., 2017b), which generated

2,000 Hill curves that demonstrated the relationship between

ion channel block and drug concentration. The drug

concentration causing half-maximal inhibition of the ionic

channel (IC50) and the slope at IC50 (H, Hill coefficient)

were obtained from these Hill curves and used as inputs for

the in silico simulation. We used 2,000 samples of IC50 and H

per drug for obtaining the in silico features reflecting the drug

effect.

2.2 In-silico model

This study used the Tomek-Ohara Rudy model (ToR-ORD

model), which was developed to integrate and delineate well-

mimicked healthy and diseased hearts according to drug effects

by (O’Hara et al., 2011; Dutta et al., 2017; Tomek et al., 2019). The

ToR-ORD model has been revised using the ICaL, INaCa, and IKr
equations to reproduce the AP shape, transient calcium

concentration, and sodium homeostasis under conditions
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reflecting the plateau potentials of experimental data. The drug

effects were applied to myocytes using the following equation,

consisting of IC50, H, and drug concentration (D):

Inhibitionfactor � 1

1 + IC50/ D[ ]( )H (1)

In-silico simulation was performed according to the four

changes of 1×, 2×, 3×, and 4× in maximum plasma concentration

of the drug (Cmax) (Table1). Therefore, for each Cmax variation,

there were 2,000 samples of in silico feature variability and thus,

there were 8,000 samples per drug. Through simulations, the

electrophysiological status of human ventricular myocytes was

mathematically computed according to the drug effect during

1,000 pacings with 2,000 m of a cycle length (30 bpm of heart

rate), which referred to the research of the FDA. Through drug

simulation, we calculated seven in silico features representing the

electrophysiological cell states for drug effects at every pacing:

qNet, qInward, CaD50, CaD90, APD50, APD90, and dVm/dtMax_

repol. qNet is the amount of ionic charge crossing the six ionic

channels: INaL, ICaL, IKr, IKs, IK1, and Ito Eq. 2; Chang et al., 2017b.

qInward is a change in the amount of ionic charge moving

inward through ICaL and INaL (Eq. 3) here, it is noted that the

cqInward used by Li et al. (2017) is the same concept qInward in

this study.

qNet � ∫CL

0
INaL + ICaL + IKr + IKs + IK1 + Ito( )dt (2)

qInward � 1
2

AUCICaL−drug

AUCICaL−control
+ AUCINaL−drug

AUCINaL−control
( ) (3)

where CL is the cycle length and AUC is “the area under the

curve,” which is the area under the ionic channel trace. CaD50,

CaD90, APD50, and APD90 represent the time duration from

the AP upstroke to 50% and 90% repolarization in the

transient calcium and AP traces, respectively. dVm/dtMax_

repol denotes the repolarization velocity as the slope of the AP

repolarization. As transient in silico feature variability is

observed at the beginning of pacings, we extracted the in

silico feature variance according to the last 500 beats under

the steady state and fed them to the proposed CNN classifier as

inputs. The overall process performed in this study to

assess the TdP-risk of drugs is shown schematically in

Figure 1A.

2.3 Proposed CNN classifier

Figure 1B shows the structure of the proposed CNN

classifier with six CNN stages. All the CNN stages were

group sets comprising a series of CNN layers and one max

TABLE 1 Proarrhythmic risk level of CiPA 28 drugs.

Proarrhythmic risk level CiPA 28 drugs

Train drugs Cmax (nM) Test drugs Cmax (nM)

High Bepridil 33 Azimilide 70

Dofetilide 2 Disopyramide 742

Sotalol 1,439 Ibutilide 100

Quinidine 3,237 Vandetanib 255.4

Intermediate Cisapride 2.6 Astemizole 0.26

Chlorpromazine 38 Clarithromycin 1,206

Ondansetron 139 Clozapine 71

Terfenadine 4 Domperidone 19

Droperidol 6.33

Pimozide 0.431

Risperidone 1.81

Low Diltiazem 122 Loratadine 0.45

Mexiletine 4,129 Metoprolol 1,800

Ranolazine 1,948.2 Nifedipine 7.7

Verapamil 81 Nitrendipine 3.02

Tamoxifen 21
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pooling layer: four CNN layers for the first stage, three CNN

layers for the second stage, two CNN layers for the third and

fourth stages, and one CNN layer for the fifth and sixth stages.

Each CNN layer had five filters of 2 × 1 with one stride

(moving one space), implying that every filter was applied by

overlapping one data point. Through the max pooling layer in

the first to fourth CNN stages, the maximum value in every 2 ×

1 window was extracted with two strides, while in the fifth and

sixth CNN stages, the max pooling size was 4 with every two

strides (moving two spaces). To prevent overfitting of the

proposed CNN model, a batch normalization layer was added

at the end of the first CNN stage. After passing through the six

CNN stages, two-dimensional machine learning features of

5 × 5 were flattened to 25 and fed into the hidden layer with

ten neurons while randomly dropping out by 20%. Finally, the

output layer classified the TdP-risk of a drug into three levels:

high-, intermediate-, and low-risk. Apart from the output

layer, the activation functions of all CNN layers and hidden

layers were a “Rectified Linear Unit (ReLU)” function, and the

output layer used a “Softmax” function.

The CNN classifier was trained using 12 drugs comprising

three TdP-risk groups in equal proportions: four high-risk

drugs, four intermediate-risk drugs, and four low-risk drugs.

We randomly extracted 50 samples per drug from 8,000

(2,000 samples × four concentrations per drug) in silico

feature variability samples and used only 600 samples

(50 samples × 12 training drugs) for training the model.

The model parameters were updated every 20-batch data

during 300 training epochs. We obtained the best-fit model

with hyperparameters, which had the highest performance in

both training and validation, through 10-fold cross-

validation. The model optimization function was an

adaptive momentum (Adam) with a learning rate of

0.00001, and the loss function was a categorical cross-

entropy function for predicting three TdP risk levels.

The final CNN model was tested using 16 drugs,

comprising four high-risk drugs, seven intermediate-risk

drugs, and five low-risk drugs, through the 10,000-test

algorithms (Table 1); (Li et al., 2019). The test drug set

consisted of 2,000 feature samples of in silico biomarkers

for four concentrations per drug, a total of 128,000 samples

(2,000 feature samples x four concentrations x 16 drugs). In

the 10,000-test algorithms, we repeated the extraction of one

sample (one instance per drug) among 8,000 (2,000 samples ×

four concentrations) in silico feature variabilities per drug,

generating 10,000 test sets of 16 drugs. The final CNN

classifier was tested 10,000 times, using 10,000 test sets,

outputting 10,000 performance scores. We calculated the

AUC of the receiver operating characteristic curve,

likelihood ratio (LR), F1 score, and accuracy after

10,000 tests. We then compared the median, minimum,

and maximum of the model performance indices according

to the in silico feature variabilities Figure 2; (Jeong et al.,

2022b).

FIGURE 1
Schematic of the proposed algorithm for TdP-risk assessment; (A), flow chart of the process; (B), the proposed convolutional neural network
(CNN) classifier using in silico feature variability; MCMC, Markov-chain Monte Carlo; H, Hill coefficients; IC50, the half inhibitory concentration;
Conv1D, one-dimensional CNN layer; Batch Norm, Batch Normalization; MaxP 1D, one-dimensional max pooling layer; str, strides; ReLU, Rectified
Linear Unit activation function.
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FIGURE 2
Schematic of 10,000-test algorithm; CNN, convolutional neural network model; AUC, area under the receiver operating curve; LR, likelihood
ratio.

TABLE 2 CNN classifier performance for 16 test drugs according to the in silico feature variabilities; performance indexes represent the median, the minimum,
and the maximum values as the results of 10,000 times test algorithms; Three asterisks (***) denote excellent performance over 0.9 of the median AUC value,
two asterisks (**) for good performance over 0.8 of the median AUC value, and one asterisk (*) for moderate performance over 0.7 of the median AUC value.

Model In-silico feature variability of chantest dataset

qNet qInward CaD50 CaD90 APD50 APD90 dVm/
dtmax_repol

AUC High 0.83**
(0.31–0.96)

0.94***
(0.60–1.00)

0.83**
(0.54–1.00)

0.46 (0.19–0.90) 0.82**
(0.63–0.94)

0.81**
(0.67–0.92)

0.81** (0.56–0.94)

Intermediate 0.62 (0.38–0.78) 0.75* (0.57–0.92) 0.71* (0.48–0.84) 0.71*
(0.57–0.86)

0.70* (0.55–0.80) 0.73* (0.57–0.84) 0.72* (0.60–0.82)

Low 0.64 (0.44–0.98) 0.93***
(0.82–1.00)

0.25 (0.01–0.51) 0.71*
(0.23–0.65)

0.70* (0.49–0.88) 0.51 (0.36–0.89) 0.65 (0.46–0.78)

LR+ High 2.33 (0.56–Inf) Inf (2.2–Inf) 0.00 (0.00–9.00) 0.50 (0.00–5.0) 3.00 (0.70–17.5) 1.44 (0.73–0.7) 3.00 (0.70–Inf)

Intermediate 1.71 (0.96–6.00) 3.6 (1.04–Inf) 3.6 (1.04–6.00) 3.6 (0.96–7.71) 2.33 (0.83–4.12) 1.94 (0.80–4.67) 2.67 (1.04–10.0)

Low 1.08 (0.55–4.67) 4.67 (2.89–6.5) 0.42 (0.00–1.08) 0.55 (0.42–2.5) 2.33 (0.00–3.75) 0.55 (0.00–2.89) 2.93 (0.58–4.8)

LR− High 0.64 (0.00–1.19) 0.27 (0.00–0.73) 1.36 (0.00–1.50) 0.00 (0.00–1.40) 0.53 (0.00–1.14) 0.87 (0.00–1.1) 0.6 (0.16–1.14)

Intermediate 0.64 (0.29–1.03) 0.48 (0.22–0.97) 0.48 (0.29–0.97) 0.48 (0.16–1.03) 0.56 (0.33–1.64) 0.62 (0.39–1.2) 0.55 (0.29–0.97)

Low 0.96 (0.00–1.26) 0.00 (0.00–0.43) 1.39 (0.96–1.83) 1.26 (0.62–1.39) 0.75 (0.33–1.12) 1.26 (0.43–1.83) 0.43 (0.00–1.23)

Accuracy 0.50 (0.30–0.70) 0.74 (0.49–0.88) 0.45 (0.25–0.63) 0.53 (0.31–0.65) 0.54 (0.36–0.72) 0.35 (0.14–0.6) 0.58 (0.39–0.77)

F1 score 0.50 (0.31–0.69) 0.69 (0.50–0.88) 0.44 (0.25–0.56) 0.50 (0.31–0.62) 0.54 (0.36–0.94) 0.32 (0.12–0.62) 0.57 (0.39–0.75)
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3 Results

We demonstrated the performance of the proposed CNN

classifier for 16 test drugs based on seven in silico feature

variabilities calculated from drug simulation using in-vitro

datasets of Chantest et al. (Table 2; Figure 3). The model

performance was excellent for classifying high-risk and low-

risk drugs with an AUC of 0.94 and 0.93, respectively, using

qInward variability. Especially for the low-risk drugs, qInward

variability demonstrated the best performance compared to other

in silico feature variabilities, with less than or approximately

0.70 AUC. The classification accuracy of the intermediate-risk

drugs using qInward variability with the CNN classifier was

moderate at 0.75 AUC, but it was the highest among the in silico

feature variabilities. In the CNN classifiers using qInward

variability, the LR + and LR-for three TdP-risk were satisfied

to over minimal limitation level the excellent level of LR + >
10 and LR− < 0.1, a suitable level for LR + > 5 and LR − < 0.2, and

the minimally acceptable level for LR + > 2 and LR − < 0.5.

The proposed CNN classifiers using the in silico feature

variabilities mostly classified the high-risk drugs with a good

performance of over 0.80 AUCs, apart from CaD90 variabilities,

which demonstrated very poor performance of 0.46 AUC. CaD90

variability showed only a medium level of accuracy for the other

two groups of TdP-risk drugs (both 0.71 AUCs). The

intermediate-risk drugs were classified at a moderate accuracy

of approximately 0.70 AUCs through the proposed CNN

classifier with six in silico feature variabilities, except for qNet

variability. qNet variability classified only high-risk drugs

effectively, showing good performance of 0.83 AUC. APD50

variability showed moderate outcomes for classifying

intermediate-risk and low-risk drugs as both 0.70 AUCs. The

variabilities of qNet, CaD50, APD90, and dVm/dtMax_repol were

low for classifying low-risk drugs; in particular, CaD50 variability

was abysmal at 0.25 AUC.

To validate the proposed CNN classifier, we compared the

classification performance using the in silico feature variabilities

computed from the three in-vitro datasets of Li dataset, Chantest

dataset, and Nanion dataset (Tables 3, 4; Figure 4). Table 3

summarizes the proposed CNN classifiers for classifying 16 test

drugs. When categorizing the high-risk and low-risk drugs in the

combined datasets, the performances of the CNN classifier using

qInward variability, which was the best model with an excellent

level of AUC in Chantest datasets, decreased tomoderate levels of

0.75 and 0.78 AUCs, respectively. Conversely, the classification

performance of the intermediate-risk drugs increased a bit to

0.79 AUC when using qInward variability. The CNN classifier

using dVm/dtmax_repol was the best when classifying the TdP-risk

for 16 test drugs of combined datasets, but the performances were

just medium levels as 0.77: high-risk, 0.79 for intermediate-risk,

and 0.80 for low-risk (Table 3; Supplementary Figure S2). Two

CNN classifiers using qInward variability and dVm/dtmax_repol

variability satisfied the minimally acceptable LR+ and LR-levels

in the three TdP-risks.

Table 4 summarizes the model performances in classifying

TdP-risk for all 28 drugs using in silico feature variabilities of

merged datasets. The proposed CNN classifier showed poor

accuracy in classifying the high-risk drugs with AUC ranging

from 0.62 to 0.68 in all the in silico feature variabilities. The CNN

classifier using qInward variability categorized low-risk drugs to

acceptable levels of 0.82 AUC and intermediate-risk drugs to

moderate levels of 0.75 AUC. In the combined dataset, the

FIGURE 3
Distribution of AUCs based on the TdP-risk using qInward variability of 16 test drugs in the Chantest dataset; (A–C), AUC distribution for the
high, intermediate, and low-risk of the CNN classifier for 16 test drugs.
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classification performances for intermediate-risk drugs among all

28 drugs and 16 test drugs were modest in most of the in silico

feature variabilities. However, when using APD90 variability and

dVm/dtMax_repol variability, the intermediate-risk drugs among

all 28 drugs did not demonstrate high performance but were

classified reasonably with an AUC of 0.81. For detecting the high-

risk drugs, qNet variability showed good performance in 16 test

drugs of Chantest dataset but poor performance in both 16 test

TABLE 3 CNN classifier performance for 16 test drugs according to the in silico feature variabilities of a merged dataset; performance indexes represent the
median, the minimum, and the maximum values as the results of 10,000 times test algorithms; Three asterisks (***) denote excellent performance over 0.9 of
the median AUC value, two asterisks (**) for good performance over 0.8 of the median AUC value, and one asterisk (*) for moderate performance over 0.7 of
the median AUC value.

Model In-silico feature variability of a combined dataset

qNet qInward CaD50 CaD90 APD50 APD90 dVm/
dtmax_repol

AUC High 0.54 (0.10–0.72) 0.75* (0.35–1.00) 0.75* (0.15–1.00) 0.38 (0.11–0.94) 0.60 (0.02–1.00) 0.54 (0.06–1.00) 0.77* (0.10–1.00)

Intermediate 0.71* (0.28–1.00) 0.79* (0.39–1.00) 0.71* (0.25–0.99) 0.67 (0.22–0.98) 0.76* (0.42–1.00) 0.79* (0.44–1.00) 0.79* (0.49–1.00)

Low 0.75* (0.39–1.00) 0.78* (0.37–1.00) 0.55 (0.17–0.94) 0.65 (0.22–0.99) 0.64 (0.27–0.92) 0.65 (0.35–0.94) 0.80** (0.39–1.00)

LR+ High 5.00 (0.00–Inf) 5.33 (0.00–Inf) 5.0 (0.00–Inf) 5.0 (0.00–9.00) 5.0 (0.00–Inf) 5.0 (0.00–15.00) 5.0 (0.00–Inf)

Intermediate 4.00 (0.8–Inf) 4.08 (0.83–Inf) 3.21 (0.41–Inf) 2.31 (0.51–Inf) Inf (0.86–Inf) Inf (0.86–Inf) 5.33 (0.85–Inf)

Low 2.89 (0.48–5.67) 2.89 (0.37–8.0) 1.6 (0.00–9.6) 1.6 (0.00–7.5) 2.0 (0.00–5.67) 2.17 (0.00–5.67) 3.25 (0.92–15.0)

LR− High 0.00 (0.00–1.55) 0.00 (0.00–1.45) 0.49 (0.00–2.77) 0.00 (0.00–1.45) 0.00 (0.00–0.15) 0.00 (0.00–1.55) 0.00 (0.00–1.50)

Intermediate 0.48 (0.27–1.20) 0.46 (0.20–1.17) 0.49 (0.00–2.7) 0.62 (0.27–2.46) 0.46 (0.25–1.14) 0.44 (0.25–1.14) 0.42 (0.00–1.05)

Low 0.43 (0.00–1.37) 0.43 (0.00–1.53) 0.8 (0.00–2.2) 0.80 (0.00–1.62) 0.67 (0.00–1.71) 0.65 (0.00–1.56) 0.42 (0.00–1.05)

Accuracy 0.59 (0.39–0.89) 0.66 (0.34–0.89) 0.59 (0.25–0.84) 0.57 (0.33–0.76) 0.64 (0.46–0.8) 0.64 (0.41–0.80) 0.67 (0.40–0.90)

F1 score 0.64 (0.48–0.84) 0.65 (0.32–0.88) 0.56 (0.24–0.82) 0.52 (0.29–0.74) 0.59 (0.38–0.78) 0.59 (0.35–0.78) 0.65 (0.38–0.89)

TABLE 4 CNN classifier performance for all 28 drugs according to the in silico feature variabilities of a merged dataset; performance indexes represent the
median, the minimum, and the maximum values as the results of 10,000 times test algorithms; Three asterisks (***) denote excellent performance over 0.9 of
the median AUC value, two asterisks (**) for good performance over 0.8 of the median AUC value, and one asterisk (*) for moderate performance over 0.7 of
the median AUC value.

Model In-silico feature variability of a combined dataset

qNet qInward CaD50 CaD90 APD50 APD90 dVm/
dtmax_repol

AUC High 0.68 (0.21–0.99) 0.68 (0.38–0.94) 0.62 (0.33–0.98) 0.68 (0.17–0.92) 0.68 (0.17–0.99) 0.64 (0.16–0.98) 0.68 (0.18–0.99)

Intermediate 0.75* (0.47–0.95) 0.75* (0.48–0.98) 0.74* (0.41–0.96) 0.71* (0.39–0.96) 0.67 (0.40–0.97) 0.81** (0.55–0.98) 0.81** (0.56–0.98)

Low 0.74* (0.43–1.00) 0.82** (0.57–0.96) 0.68 (0.33–0.92) 0.54 (0.36–0.92) 0.76* (0.43–0.98) 0.74* (0.46–0.92) 0.70* (0 0.43–0.99)

LR+ High 4.0 (0.00–8.67) 3.25 (0.00–20.13) 2.89 (0.00–12.0) 3.86 (0.00–5.8) 2.62 (0.00–Inf) 4.0 (0.00–7.67) 3.0 (0.0–8.67)

Intermediate 6.0 (1.14–Inf) 3.94 (0.93–Inf) 3.56 (0.56–Inf) 3.36 (0.86–Inf) 2.0 (0.42–Inf) 6.67 (1.2–Inf) 7.76 (1.4–Inf)

Low 3.14 (0.82–8.0) 3.82 (1.11–10.5) 1.83 (0.00–10.67) 2.3 (0.48–8.8) 2.19 (0.46–7.33) 3.07 (0.75–8.33) 3.61 (0.78–17.78)

LR− High 0.00 (0.00–1.53) 0.40 (0.00–1.53) 0.43 (0.00–1.60) 0.00 (0.00–1.58) 0.57 (0.00–1.6) 0.00 (0.0–1.58) 0.43 (0.0–1.53)

Intermediate 0.5 (0.28–0.91) 0.49 (0.18–1.05) 0.51 (0.16–1.35) 0.58 (0.00–1.11) 0.65 (0.25–1.66) 0.47 (0.27–0.9) 0.45 (0.22–0.83)

Low 0.35 (0.00–1.08) 0.40 (0.11–0.95) 0.7 (0.00–1.64) 0.58 (0.00–1.38) 0.63 (0.00–1.38) 0.46 (0.0–1.12) 0.35 (0.0–1.1)

Accuracy 0.63 (0.46–0.78) 0.64 (0.42–0.86) 0.58 (0.29–0.81) 0.58 (0.38–0.75) 0.53 (0.27–0.8) 0.64 (0.45–0.77) 0.65 (0.47–0.84)

F1 score 0.59 (0.41–0.77) 0.62 (0.38–0.86) 0.55 (0.30–0.81) 0.54 (0.38–0.75) 0.52 (0.27–0.79) 0.61 (0.41–0.77) 0.62 (0.43–0.83)
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drugs and all 28 drugs of merged datasets, which were 0.54 and

0.68 AUCs, respectively. Conversely, the classification

performances for intermediate-risk and low-risk drugs using

the CNN classifier using qNet variability increased to medium

levels (approximately 0.75 for 16-test drugs and all 28 drugs in

the combined datasets.

We compared the classification performance of the proposed

CNN classifier using the variability of in silico biomarkers with

that of the OLR classifier using a single value for in silico

biomarkers (Supplementary Table S2). The single values of

qNet, APD50, APD90, and dVm/dtmax_repol classified high-risk

drugs with excellent accuracy and low-risk drugs with moderate

accuracy for the 16 test drugs in the Chantest dataset. In the

merged dataset, the high-risk drugs were moderately

distinguished by qNet, dVm/dtMax_repol, APD50, and APD90,

and the low-risk drugs could be roughly classified by only qNet

and dVm/dtMax_repol, but not very accurately; their AUCs ranged

from 0.7 to 0.79. However, the classification performance for

intermediate-risk drugs was poor in all OLR classifiers using

single values, less than 0.6 AUC. However, the CNN classifiers

using the variabilities of qInward and dVm/dtMax_repol could

roughly classify the 16-test drugs into three levels of TdP risk,

despite not being perfect.

4 Discussion

This study suggested a CNN classifier using the variability of

in silico biomarkers to assess the TdP-risk of drugs under the

hypothesis that the variability of in silico biomarkers is more

likely to have more features based on the TdP-risk than every

single in silico biomarker. Hinterseer et al. suggested that the

variability of QT intervals based on beats affects drug-induced

long-QT syndrome (Hinterseer et al., 2008). The mechanism of

pharmaceutically occurring QT interval prolongation involves

the blockage of ionic channels. Because in silico TdP metrics are

FIGURE 4
Distribution of AUCs based on the TdP-risk using qInward variability merged of three datasets; (A–C), AUC distribution for the high,
intermediate, and low-risk of the CNN classifier for 16 test drugs; (D–F), AUC distribution for the high, intermediate, and low-risk for the CNN
classifier for 28 drugs.
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obtained fromAP and ionic currents computed from simulations

with blockages of ionic channels as drug responses, the variability

of the in silico TdP metric according to the beats also reflects the

characteristics of torsadogenic drugs. Indeed, among the in silico

features used in this study, the variabilities of qInward, CaD50,

and CaD90 were better for classifying the TdP-risk of drugs,

especially for intermediate-risk and low-risk drugs, than their

single values. Notably, the CNN classifier using qInward

variability was the best model to classify the high- and low-

risk in the 16-test drugs of the Chantest datasets.

The single values of the in silico features were used to

classify proarrhythmic risk using the threshold value derived

from the OLR model (Li et al., 2019). The OLR model

determined each threshold based on its distribution

according to the main classification targets, such as high-

risk, intermediate/low-risk, low-risk, and high/intermediate-

risk. Therefore, the OLR model using the single values of the

in silico features showed good performance for high-risk and

low-risk drugs, but low performance for intermediate-risk

drugs (Supplementary Table S2). Among the single in silico

features, qNet, APD50, APD90, and dVm/dtMax_repol were able

to classify high-risk drugs well for 16-drugs in the Chantest

datasets. The accuracies of APD50 and APD90 were higher than

those of the CNN classifier using the qInward variability.

However, the overall classification performances for the

three proarrhythmic risks were better in the CNN classifier

using qInward variability than in the OLR models. We believe

this is because of the loss function used when training the CNN

classifier, categorical cross-entropy, which updated the

trainable parameters such as weights and bias to improve the

classification accuracies of the three risk levels.

In this study, the CNN classifier using qInward variability

exhibited the best performance in categorizing the

proarrhythmic risk of drugs. In the 16 test drugs of Chantest

data set, no other risk drugs were included among the drugs

classified as high-risk through CNN classifiers using qInward

variability (LR + > 10 for high-risk drugs). However, high-risk

drugs can likely be classified into other risk groups (LR−= 0.27,

high-risk drugs). On the other hand, for the 16 test drugs of the

combined datasets, the possibility for high-risk drugs to be

classified as other-risk was almost zero in the CNN classifier

using qInward variability (LR-for high-risk drugs; a median of

0.00, and range of 0.00–1.45). The proposed model has little

possibility of classifying low-risk drugs in the Chantest datasets

as other-risk drugs, but the classified drugs as low-risk drugs may

be other proarrhythmic risks (LR+ = 4.67 and LR- = 0.00 and

low-risk drugs) (Roman et al., 2002).

We validated the classification performance of the proposed

CNN model using in silico feature variabilities computed from

three in-vitro datasets. Based on the results for the merged

dataset, the proposed CNN classifier appeared to be

specialized in classifying intermediate- and low-risk drugs. We

believe that the machine learning features extracted from

qInward variability through the proposed CNN classifier had

the advantageous characteristics of determining intermediate-

and low-risk drugs. However, the classification performance

showed significant differences according to the used in-vitro

datasets used. In addition, the proposed CNN classifier using

qInward variability was under fitted to the 12-training datasets;

thus, the classification performance for all 28-drugs was less than

that for 16 test drugs, even in the Chantest dataset

(Supplementary Table S3; Supplementary Figure S2). These

results suggest the need for the proposed CNN model to be

trained and tested using various types of drugs.

Because the in silico simulation results depend on in-vitro

experimental data, many researchers have tried to validate the

robustness of in silico features in classifying the proarrhythmic

risk of drugs. Some researchers have validated the in silico

features using uncertainty quantification algorithms and

population modeling. Llopis-Lorente et al. improved the

accuracy of the drug-induced TdP risk assessment by

considering population variability (Llopis-Lorente et al., 2022).

Chang et al. validated the robustness of TdP risk separation using

qNet value and uncertainty quantification algorithms (Chang

et al., 2017a). Han et al. suggested the selection method of

calibration drugs and calibrated the previous OLR model by

validating it using two lab-specific datasets (Han et al., 2020). In a

previous study, we validated 12 promising in silico features using

OLR, based on in-vitro datasets used in the AP simulation (Jeong

et al., 2022a). In this study, we determined the CNN classifier

using the variability of in silico features calculated using the

Chantest dataset and validated the corresponding robustness

using three merged in-vitro datasets.

This study has several limitations. First, we did not consider

the mechano-electric feedback, which indicates that the

mechanical contraction of the cell affects electrophysiological

activity. Second, in an actual body environment, heart rate varies

with time. Drugs can individually affect QT interval and heart

rate, and the complexity of the QT interval assessment increases

owing to heart rate variations (Roden, 2004). This study used the

in silico feature variability under the static heart rate condition,

which was 30 bpm, to mimic the bradycardia condition, without

varying the heart rate in real time. We did not consider heart rate

variability when performing in silico simulations. Therefore, the

in silico simulation results could be slightly different from the

clinical outcomes. However, as the tendency of the drug to affect

the ionic channels is the same, we speculate that these limitations

do not critically affect the results and do not change the entire

conclusion of the study.
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