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Cerebral multimodality monitoring (MMM) is, even with a general lack of Class I

evidence, increasingly recognized as a tool to support clinical decision-making

in the neuroscience intensive care unit (NICU). However, literature and

guidelines have focused on unimodal signals in a specific form of acute

brain injury. Integrating unimodal signals in multiple signal monitoring is the

next step for clinical studies and patient care. As such, we aimed to investigate

the recent application of MMM in studies of adult patients with traumatic brain

injury (TBI), subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH),

acute ischemic stroke (AIS), and hypoxic ischemic brain injury following cardiac

arrest (HIBI). We identified continuous or daily updated monitoring modalities

and summarized the monitoring setting, study setting, and clinical

characteristics. In addition, we discussed clinical outcome in intervention

studies. We identified 112 MMM studies, including 11 modalities, over the last

7 years (2015–2022). Fifty-eight studies (52%) applied only twomodalities. Most

frequently combined were ICP monitoring (92 studies (82%)) together with

PbtO2 (63 studies (56%). Most studies included patients with TBI (59 studies) or

SAH (53 studies). The enrollment period of 34 studies (30%) took more than

5 years, whereas the median sample size was only 36 patients (q1- q3, 20–74).

We classified studies as either observational (68 studies) or interventional

(44 studies). The interventions were subclassified as systemic (24 studies),
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cerebral (10 studies), and interventions guided by MMM (11 studies). We

identified 20 different systemic or cerebral interventions. Nine (9/11, 82%) of

the MMM-guided studies included clinical outcome as an endpoint. In 78% (7/9)

of these MMM-guided intervention studies, a significant improvement in

outcome was demonstrated in favor of interventions guided by MMM.

Clinical outcome may be improved with interventions guided by MMM. This

strengthens the belief in this application, but further interdisciplinary

collaborations are needed to overcome the heterogeneity, as illustrated in

the present review. Future research should focus on increasing sample sizes,

improved data collection, refining definitions of secondary injuries, and

standardized interventions. Only then can we proceed with complex

outcome studies with MMM-guided treatment.
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1 Introduction

Neuromonitoring is used to guide treatment in patients

with acute brain injuries. Most neuroscience intensive care

units (NICU) in high-income countries have intracranial

pressure (ICP) and cerebral perfusion pressure (CPP),

along with transcranial Doppler (TCD) and surface

electroencephalography (sEEG) as brain monitoring tools

available in a selection of their acute brain injured patients

(Le Roux et al., 2014; Hutchinson et al., 2015; Carney et al.,

2017; Cnossen et al., 2017). Partial pressure of brain tissue

oxygenation (PbtO2), cerebral temperature (Cerebral T),

regional cerebral blood flow (rCBF), jugular bulb venous

oximetry (SvjO2), cerebral microdialysis (CMD), near-

infrared spectroscopy (NIRS) and electrocorticography

(ECoG; from invasive electrodes on the cerebral surface)

and depth electroencephalography (dEEG) are the other

frequently applied modalities (Le Roux et al., 2014;

Stocchetti et al., 2017).

Cerebral multimodality monitoring (MMM) is often

mentioned in NICU reviews (Makarenko et al., 2016;

Stocchetti et al., 2017; Tasneem et al., 2017; Smith, 2018; Al-

Mufti et al., 2019; Veldeman et al., 2020a; Yang, 2020), but

reviews and guidelines mainly discuss the results of unimodal

signals (Le Roux et al., 2014; Carney et al., 2017). The practical

application of “combining modalities” is limited by the high-

dimensionality of signals and non-standardized methods to

present the information at the bedside. Also, clinical context,

including imaging results, is not incorporated (Tasneem et al.,

2017; Smith, 2018; Al-Mufti et al., 2019; Veldeman et al., 2020a;

Yang, 2020). In 2014, Le Roux et al. (2014) formulated five-year

expectations and recommendations regarding MMM in acute

brain injured patients. They expected patient-specific rather than

population-specific thresholds, TCD-based non-invasive

measures for ICP monitoring, and advances in the detection

of cortical spreading depolarization.

Since the projections by Le Roux et al. were put forward, no

overview of the application of MMM studies has been published

(Le Roux et al., 2014). However, rigorous insight into MMM of

recent years could detect benefits, pitfalls, and gaps for improving

future clinical study designs. In this narrative review, we,

therefore, aim to investigate the recent applications of cerebral

MMM in studies for acute brain injured patients (i.e., adult

patients with traumatic brain injury (TBI), subarachnoid

hemorrhage (SAH), intracerebral hemorrhage (ICH), acute

ischemic stroke (AIS) or hypoxic ischemic brain injury

following cardiac arrest (HIBI). Our objectives are (I) to

identify which combinations of monitoring modalities are

currently applied, in general, and across the different acute

brain injuries, (II) to summarize the monitoring setting, study

setting, and clinical characteristics, and (III) to discuss the

potential added value of MMM on clinical outcome in

intervention studies.

2 Methods

We identified studies describing combinations of cerebral

monitors providing data that updates continuously or on a

regular daily basis (i.e. regularly over the day) through a

PubMed literature search. We used a stepwise approach for

the literature search and identification of eligible studies.

Step 1, for each cerebral monitoring modality, a single

PubMed query was used (Supplementary Table S1).

Step 2, each MMM combination (ICP and NIRS, ICP and

sEEG, NIRS and TCD, etc.) was used in the search in

combination with the general inclusion criteria. The

general inclusion criteria were: clinical study, adult

(age, >18 years old) patients, article written in English, and

an Epub publication period covering Jan 1, 2015 to Jul 1, 2022.

These general criteria were selected in the PubMed filters.
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Step 3, the abstracts (and, if needed, the full-text studies) were

screened for further eligibility: (I) the study had to concern

critical care patients with (II) a minimum of five patients and

(III) diagnosed with TBI, SAH, ICH, AIS or HIBI.

Step 4, all selected full-text studies were read, and their

references were screened for additional studies. The

abstracts were read when the reference was used in a

MMM context in the main text or when in a reference

MMM was part of the title. In addition, the citations of the

selected studies were screened in the Web of Science Core

collection database (August 2022).

Step 5, we selected MMM studies for which the study aim or

objective(s) were related to MMM. We defined MMM

application as (I) the application and reporting results of at

least two modalities, i.e., modalities that were part of the

research protocol, and (II) without aiming to evaluate

superiority/inferiority between modalities (validation

studies), as these studies are not designed to integrate

multiple signals but aim for the (potential) replacement of

a signal.

Step 6, we collected the monitoring setting, study setting, and

clinical characteristics from each study. In addition, we

collected defined secondary injuries from observational and

interventional studies. These secondary injuries are the

defined cerebral, potential reversible, pathophysiological

conditions diagnosed by monitoring, imaging, or other

clinical diagnostics. The interventions and the clinical

outcome were also collected for the interventional studies.

Detailed definitions/descriptions are given in Supplementary

Table S2. The collected information resulted in a

comprehensive table to support the objectives of our

MMM review.

For objective I, we described the number and combinations

of the different modalities. The number of monitoring

combinations was calculated, and their synergy was visualized

in a Circos plot (Krzywinski et al., 2009).

For objective II, we summarized the monitoring setting,

study setting, and clinical characteristics of the selected studies

between the diseases and reported the results as frequencies or

medians (together with interquartile range, q1-q3). Furthermore,

we described the secondary injuries studied in observational and

interventional studies. Finally, we summarized the interventions

that were applied in the MMM studies.

For objective III, we discussed the added value of MMM on

clinical outcome in intervention studies.

3 Results: Study selection

After the abstract, references, and citation identification,

209 full-text studies were read. From these, 97 studies whose aim

or objective(s) were not related to MMM were excluded. These

excluded studies were predominantly (52 studies) validation

(superiority/inferiority) studies comparing non-invasive TCD-

based ICP with invasive ICP monitoring (25 studies).

Supplementary Table S3 lists the modalities used for validation.

The study selection flowchart is shown in Supplementary Figure S1.

In addition, the number of included studies by year can be found in

Supplementary Figure S2. For the final analysis, 112 MMM studies

were available, of which 59 concerned TBI (53%), 53 SAH (47%),

13 ICH (12%), 5 AIS (4.5%), and 9 HIBI (8%).

4 Results objective I and II: Cerebral
multimodality monitoring
combinations and monitoring setting

We identified 11 monitoring modalities that update

continuously or on a regular daily basis. The anatomical

locations are graphically presented in Figure 1, showing eight

invasive (ICP, PbtO2, Cerebral T, rCBF, SvjO2, CMD, ECoG,

dEEG) and three non-invasive (TCD, NIRS, sEEG) modalities.

The synergy of the combinations is shown in Figure 2. The

individual modalities were integrated into 47 unique

combinations (Figure 3). In 58 studies (52%), two modalities

were applied, three in 28 studies (25%), and only 26 studies

(23%) utilized more than three modalities (Supplementary Figure

S3). ICPmonitoring was the most frequently combined modality, in

92 studies (82%), with the highest number in TBI patients

(53 studies, 90%). The second most applied modality was PbtO2

in 71 studies (63%). SvjO2monitoring was only applied in six studies

(5.4%) and mainly combined with ICP (5 studies) and PbtO2

(5 studies) monitoring. Invasive neuronal activity monitoring

(ECoG and dEEG studies, 17 studies) was more common than

non-invasive neuronal activity monitoring (sEEG, 10 studies).

Regarding non-invasive modalities, TCD was most often studied

(25 studies), predominantly in patients with SAH, ICH, and AIS.

TCD was not studied in HIBI patients. We studied only modalities

that were part of the research protocol. However, 21 SAH studies

also mentioned other modalities (mainly ICP, Cerebral T, and

TCD), which were only part of the clinical protocol. These

modalities were not considered as often only limited, or no

continuous information was provided. Supplementary Table S5

lists these modalities for the individual studies. Lastly, only 58%

of the studies analyzed more than 24 h of data per patient. A

summary of the monitoring settings is given in Table 1 and

Supplementary Table S4A.

5 Results: Objective II study setting
and clinical characteristics

The study setting and clinical characteristics are summarized

in Table 2 and Supplementary Table S4B. Most were single-

center studies (90 studies, 80%) with a median sample size of 36
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(q1-q3, 20–74) patients. In 34 studies (30%), patients were

enrolled over a period of more than 5 years. TBI studies

included more patients compared to SAH studies (TBI 43

(22–100) patients versus SAH 26 (17–69) patients). In

addition, TBI studies more often had a multicenter design

(TBI, 37% versus SAH, 15%).

Eighteen studies (16%) included combinations of acute brain

injured patients. Especially, ICH and AIS were combined with

other acute brain injuries. There were only four single disease

studies of ICH and only three of AIS. Although HIBI is the least

contributing group, relatively more single disease studies were

included (5 studies) compared to ICH and AIS.

Clinical characteristics differed between diseases. TBI studies

included relatively younger male patients (71%<50 years, 75%

male), whereas SAH studies included older female (70%

50–59 years, 31% male) patients. HIBI studies included middle-

aged, slightly more male patients (67%, 40–49 years, 61% male).

Studies that included ICH patients included a wide range of ages

(40–69 years, 53% male). AIS included predominantly patients

within the range 50–59 years and female (39% male).

6 Results objective II: Secondary
injuries

Secondary brain injuries are heterogeneous in presentation,

with a complex interplay between impairments in diffusion,

perfusion, metabolic derangements, and neuronal damage. We

studied the different conditions and phenomena defined by the

authors of the observational (68 studies) and interventional

(44 studies) studies. Authors reported hypo-/hyper perfusion,

cerebrovascular autoregulation impairment, ICP plateau waves,

FIGURE 1
Graphical representation of cerebral multimodality monitoring modalities. The eleven applied monitoring modalities with numbers and (raw)
signals. Each modality presents the standard visualization on the bedside monitoring screen. For the readability of the figure, only two neuronal
activity monitoring electrodes are displayed. In common practice, the numbers for sEEG are application of 21 electrodes, for ECoG and dEEG 4-
8 electrodes. Cerebral T, cerebral temperature; CMD, cerebral microdialysis; dEEG, depth electroencephalography; ECoG,
electrocorticography; ICP, intracranial pressure; NIRS, near-infrared spectroscopy; PbtO2, partial pressure of brain tissue oxygenation; rCBF,
regional cerebral blood flow; sEEG, surface electroencephalography; SvjO2, jugular bulb venous oximetry; TCD, transcranial Doppler. Professional
illustration by Anna Sieben (Sieben Medical Art).
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spreading depolarization, diffuse cerebral ischemia, vasospasm,

and metabolic distress. Due to the inconsistencies in definitions

and nomenclature of (single) modalities, no detailed group

results across the diseases are presented, but examples are

given to explain these inconsistencies.

Authors either allocated patients with/without a specific

secondary brain injury and compared differences in MMM

signals between the groups, or authors selected a whole group

of a particular disease. Then, they reported the secondary brain

injuries based on the thresholds of each modality.

In general, the number of secondary brain injuries is large

because each modality has its own threshold for impairment, or a

combination of modalities defines an impairment. In other

words, the definitions of secondary brain injuries are limited

by the number of available modalities. For example, Lindner et al.

(2021) defined mitochondrial dysfunction (single modality) as:

CMD lactate/pyruvate (L/P)-ratio ≥ 40 + CMD-pyruvate ≥
70 μmol/L, whereas Khellaf et al. defined mitochondrial

dysfunction (three modalities) as: CMD L/P-ratio>25 for more

than 2 h, ICP <20 mmHg; PbtO2 <15 mmHg; PRx <0.3; brain
extracellular glucose >1 mmol/L (Khellaf et al., 2022).

In addition, there were inconsistencies in nomenclature for

impairments using single modalities. For example, Hosmann

et al. (2022) define indications for cerebral ischemia as CMD

L/P-ratio >40 CMD-glycerol >100 μmol/L, CMD-

lactate >4 mmol/L, whereas Nyholm et al. (2017) defined

cerebral ischemia as CMD-L/P ratio >40 and CMD-

pyruvate <50 mol/L). For brain tissue hypoxia monitored by

PbtO2 there were in general two definitions used:

PbtO2 <15 mmHg (Burnol et al., 2021; Hosmann et al., 2021)

or <20 mmHg (Le Roux et al., 2014; Gagnon et al., 2020; Sekhon

et al., 2020; Gouvea Bogossian et al., 2021).

7 Results objective III: Interventions,
potential therapies

We identified systemic- (24 studies), cerebral (10 studies)

interventions, and interventions guided by MMM (11 studies).

Table 3 and Supplementary Table S4C summarize the study

classifications. In addition, one study was classified as MMM-

guided and a cerebral intervention.

A total number of 20 different systemic- or cerebral

interventions were applied. An example of a systemic

intervention is the administration of red blood cell (RBC)

transfusion (Sekhon et al., 2015; Kurtz et al., 2016; McCredie

et al., 2017; Gouvêa Bogossian et al., 2022). An example of a

cerebral intervention is the application of prostacyclin with a

beneficial effect on neuronal cell membrane destruction

(Koskinen et al., 2019). Examples of MMM-guided interventions

are the studies of Veldeman et al. They evaluated outcome between

periods before and after introducing an invasive MMM-guided

protocol to avoid PbtO2 < 10 mmHg and CMD L/P-ratio >
40 in severe SAH patients with suspicion of delayed cerebral

ischemia (Veldeman et al., 2020a; Veldeman et al., 2020b).

Interventions in the MMM studies serve mainly three purposes.

Firstly, monitoring the effectiveness of an intervention. Secondly,

collecting monitoring data in combination with an intervention for

outcome evaluation/prediction. A third purpose is monitoring the

need for an intervention. In other words, interventions guided by

MMM to investigate the interplay between monitoring and a

combination of (in general, systemic) interventions. Figure 4

illustrates the purposes of the interventions across theMMM studies.

To give insight into the range of systemic-, cerebral-, and

MMM-guided interventions, we classified them into nine

categories: ABP management, biomarkers, fluid management,

mixed (combination of different) interventions, RBC-transfusion,

FIGURE 2
Combinations of cerebral unimodal monitoring modalities in
the literature over the last 7 years (112 studies). Circos-plot
visualizing connections between unimodal continuous cerebral
monitoring modalities. ICP monitoring is the modality most
combined, followed by PbtO2. As an illustration to understand the
distribution of each part: ICP monitoring appears in study 1 in
combination with modalities II and III, and in study 2, ICP appears
withmodalities IV and V. ICPmonitoring is then displayed on 2/6 of
the circle (ICP + ICP + II + III + IV + V, 6 of which 2x ICP). The colors
represent intracranial volume (red), cerebral oxygenation (green),
regional cerebral blood flow (purple), cerebral metabolism (dark
blue), neuronal electrical activity (orange), and cerebral
temperature (yellow). Cerebral T, cerebral temperature; CMD,
cerebral microdialysis; dEEG, depth electroencephalography;
ECoG, electrocorticography; ICP, intracranial pressure; NIRS,
near-infrared spectroscopy; PbtO2, partial pressure of brain tissue
oxygenation; rCBF, regional cerebral blood flow; sEEG, surface
electroencephalography; SvjO2, jugular bulb venous oximetry;
TCD, transcranial Doppler.
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physical (movement) interventions, vasospasm therapy, ventilation

management, and other interventions. The number of studies per

group is mostly less than five. The largest groups are the mixed

interventions used to guide MMM (11 studies), followed by

ventilation management interventions (10 studies). On the other

hand, biomarkers and physical (movement) interventions were

studied in only three studies. The specific interventions and the

corresponding number of studies per category are shown in Table 4.

8 Results objective III: Clinical
outcome in interventional studies

Clinical outcome is a study endpoint in 18 (41%) of the

44 interventional studies. Systemic- and cerebral

interventions evaluated MMM for either outcome

prediction (1 study) (Lubillo et al., 2018) or monitoring the

effectiveness of an intervention in both the MMM signals and

clinical outcome (8 studies) (Hockel et al., 2016; Jakkula et al.,

2018; Ding et al., 2019; Sekhon et al., 2019; Svedung Wettervik

et al., 2020b; Dagod et al., 2021; Kovacs et al., 2021). For

MMM-guided intervention studies, clinical outcome resulted

from the interplay between MMM and interventions. Nine (9/

11, 82%) of the MMM-guided included clinical outcome as an

endpoint, of which seven showed an improved outcome in

favor of the MMM-guided group (78%, 7/9 studies). Five

(45%) studied an ICP and PbtO2-guided treatment in either

TBI (Lin et al., 2015; Okonkwo et al., 2017; Sekhon et al., 2017)

or SAH (Rass et al., 2019; Gouvea Bogossian et al., 2021)

patients. Two of these compared pre-/post implementation of

an MMM-guided protocol. Okonkwo et al. (2017) studied the

feasibility and safety of an ICP and PbtO2 protocol in a

randomized controlled trial (RCT). Their study showed

lower mortality and improved outcome, but the effects did

not reach statistical significance. This was attributed to the

small sample size. In addition, Rass et al. (2019) studied the

brain hypoxia burden in two centers and found no difference

in PbtO2-levels and clinical outcome. The remaining four

MMM-guided studies that showed an improved clinical

outcome included the following modalities: (I) CMD in

combination with ICP, PbtO2, TCD (Veldeman et al.,

2020a; Veldeman et al., 2020b) (II) ICP, PbtO2, Cerebral T,

and SvjO2 (Fergusson et al., 2021), and (III) ICP, PbtO2, rCBF,

and TCD (Bele et al., 2015).

9 Discussion

The principal insights gained from our analysis of the MMM

literature are that: (Insight I) most reports of MMM involve just

two monitoring modalities, one of which is typically ICP

monitoring; (Insight II) we found relatively often 10 (8.9%)

FIGURE 3
Unique cerebral multimodality monitoring combinations. The 47 unique combinations of MMM are shown. The first upper row shows the total
number of studies per combination. The second to the sixth row shows the number of studies per acute brain injury: TBI, SAH, ICH, AIS, and HIBI.
Each box describes the number of studies. The boxes in black do not include amonitoring combination for a particular disease. The references of the
studies are added to Supplementary Tables S5A–D. The reference numbers per unique combination are: A (11,14,24,33,43,46,47,48,49,53,
69,71,87,90,91,94,97, 104,105,106,107,110); B (51,55); C (4); D (76,31); E (9,38,45,61,62,63,66,67,77,82,101); F (32,37,73); G (8,60); H (17,70,95,98); I
(21); J (78); K (6,74); L (23,57,58); M(10,20); N (68,79); O (30,40,42,100); p (83,86,93,96); Q (35,44); R (1,3,13,19,34,52,56,59,89,102); S (2); T (27); U (29);
V (112); W (64); X (99); Y (5); Z (15); AA (111); AB (16); AC (103); AD (80,92,108,109); AE (81); AF (41); AG (50); AH (12,39); AI (75,88); AJ (18); AK (84); AL
(22); AM(72); AN (36); AO (7); AP (26); AQ (85); AR (54); AS (28); AT (65); AU (25). Note: the sum of studies for the individual diseases not count towards
the total number of studies because a study can include patients with different diseases. AIS, acute ischemic stroke; Cerebral T, cerebral temperature;
CMD, cerebral microdialysis; dEEG, depth electroencephalography; ECoG, electrocorticography; HIBI, hypoxic-ischemic brain injury following
cardiac arrest; ICH, intracerebral hemorrhage; ICP, intracranial pressure; NIRS, near-infrared spectroscopy; PbtO2, partial pressure of brain tissue
oxygenation; rCBF, regional cerebral blood flow; SAH, subarachnoid hemorrhage; sEEG, surface electroencephalography; SvjO2, jugular bulb
venous oximetry; TBI, traumatic brain injury; TCD, transcranial Doppler.
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ECoG and 7 (6.3%) dEEG studies, of which 8 (50%) investigated

cortical spreading depolarization; (Insight III) our results show

that MMM is primarily used in TBI and SAH patients. In

addition, ICH and AIS are sparsely studied as a single study

population but mainly combined with other acute brain injuries.

One of the reasons could be that (non) invasive cerebral

monitoring was not part of HIBI, AIS, and ICH

(international) treatment guidelines and protocols compared

to TBI and SAH patients; (Insight IV) most MMM studies

had an observational design without direct clinical and

therapeutic implications at the bedside; (Insight V) The

sample sizes are in general small with long inclusion periods;

(Insight VI) a large variety of interventions were studied in

limited numbers of studies; (Insight VII) seven of the nine

MMM-guided intervention studies showed a significant

improved clinical outcome in favor of treatment guided

by MMM.

9.1 Strengths and weaknesses of MMM
(studies)

9.1.1 Acceptance of MMM in clinical practice
Almost 10% of the studies were MMM-guided, of which

only one was an RCT. The remaining MMM-guided studies

investigated a clinical intervention protocol guided by MMM

TABLE 1 Monitoring setting of cerebral multimodality monitoring studies (112 studies).

TBIa SAHa ICHa AISa HIBIa

59 studies 53 studies 13 studies 5 studies 9 studies

Unimodal modalities, no. of studies (%)

I. ICP 53 (90) 42 (79) 10 (77) 3 (60) 8 (89)

II. PbtO2 39 (66) 39 (74) 10 (77) 2 (40) 7 (78)

III. Cerebral T 10 (17) 7 (13) 3 (23) 1 (20) 2 (22)

IV. rCBF 5 (8.5) 12 (23) 0 1 (20) 2 (22)

V. TCD 9 (15) 18 (34) 3 (23) 2 (40) 0

VI. SvjO2 2 (3.4) 1 (1.9) 0 0 3 (33)

VII. CMD 21 (36) 27 (51) 3 (23) 1 (20) 3 (33)

VIII. NIRS 9 (15) 8 (15) 2 (15) 0 2 (22)

IX. sEEG 3 (5.1) 5 (9.4) 1 (7.7) 2 (40) 2 (22)

X. ECoG 2 (3.4) 5 (9.4) 2 (15) 3 (60) 0

XI. dEEG 4 (6.8) 5 (9.4) 1 (7.7) 1 (20) 0

Other neuromonitoring applied (not related to the research protocol), no. of studies (%)

One modality 9 (15) 21 (40) 3 (23) 1 (20) 1 (11)

Two other modalities 2 (3.4) 4 (7.5) 1 (7.7) 0 0

Duration monitoring used for data analysis, no. of studies (%)

0–1 hour 8 (14) 4 (7.5) 3 (23) 2 (40) 1 (11)

2–12 hours 8 (14) 8 (15) 2 (15) 0 0

13–23 hours 2 (3.4) 4 (7.5) 0 1 (20) 0

≥24 hours 31 (53) 29 (55) 6 (46) 0 7 (78)

Not reported 10 (17) 8 (15) 2 (15) 2 (40) 1 (11)

ABP zeroing (when ICP monitoring was applied), no. of studies (%) 53 (90) 53 (79) 10 (77) 3 (60) 8 (89)

Heart 9 (17) 7 (17) 2 (20) 0 1 (13)

Foramen of Monro 5 (9.4) 3 (7.1) 3 (30) 0 0

Both 1 (1.9) 1 (2.4) 1 (10) 0 0

Not reported 38 (72) 31 (74) 4 (40) 3 (100) 7 (88)

aMultiple diseases: several studies report more than one disease. These studies are represented for each diagnosis. The percentages are reported as whole numbers. The percentages not count

to 100% due to rounding. Definitions are listed in Supplementary Table S2.

ABP, arterial blood pressure; AIS, acute ischemic stroke; HIBI, hypoxic ischemic brain injury; Cerebral T, cerebral temperature; CMD, cerebral microdialysis; dEEG, depth

electroencephalography; ECoG, electrocorticography; MMM,multimodality monitoring; ICH, intracerebral hemorrhage; ICP, intracranial pressure; NIRS, near-infrared spectroscopy; No.,

number; PbtO2, partial pressure of brain tissue oxygenation; rCBF, regional cerebral blood flow; SAH, subarachnoid hemorrhage; sEEG, surface electroencephalography; SvjO2, jugular bulb

venous oximetry; TBI, traumatic brain injury; TCD, transcranial Doppler.

Frontiers in Physiology frontiersin.org07

Tas et al. 10.3389/fphys.2022.1071161

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1071161


(e.g., comparing the pre-/post implementation of a protocol).

This reflects the acceptance of MMM in current clinical

practice, even with general lack of Class I evidence. The

recent Seattle International Severe Traumatic Brain Injury

Consensus Conference (SIBICC) included in their tier-based

protocol not only ICP but also PbtO2 for monitoring

(Hawryluk et al., 2019). While no (phase-III) clinical

outcome benefits of MMM-guided treatment exist yet, there

TABLE 2 Study setting, and clinical characteristics of cerebral multimodality monitoring studies (112 studies).

TBIa SAHa ICHa AISa HIBIa

59 studies 53 studies 13 studies 5 studies 9 studies

Multicentre studies, no. of studies (%) 22 (37) 8 (15) 3 (23) 3 (60) 3 (33)

Study enrollment period, no. of studies (%)

0–1 year 11 (19) 9 (17) 3 (23) 1 (20) 2 (22)

2–3 years 13 (22) 9 (17) 4 (31) 1 (20) 6 (67)

4–5 years 7 (12) 10 (19) 1 (7.7) 1 (20) 0

≥6 years 18 (31) 16 (30) 3 (23) 1 (20) 1 (11)

Not reported 10 (17) 9 (17) 2 (15) 1 (20) 0

Sample sizes, median (q1 – q3) 43 (22–100) 26 (17–69) 47 (25–69) 23 (18–59) 18 (11–65)

Sex, male (%), median (q1 – q3) 75 (60–81) 31 (24–50) 53 (49–60) 39 (20–60) 61 (33–70)

Age range, no. of studies (%)

18–29 years 1 (1.7) 0 0 0 0

30–39 years 20 (34) 4 (7.5) 1 (7.7) 1 (20) 0

40–49 years 21 (36) 7 (13) 3 (23) 0 6 (67)

50–59 years 14 (24) 37 (70) 5 (38) 4 (80) 2 (22)

60–69 years 0 3 (5.7) 4 (31) 0 1 (11)

Not reported 3 (5.1) 2 (3.8) 0 0 0

Multiple pre-defined diseases per study, no. of studies (%) 16 (27) 15 (28) 9 (69) 2 (40) 3 (33)

aMultiple diseases: some studies report more than one disease. These studies are represented for each diagnosis. Supplementary Tables S5A–D lists the studies.

The percentages are reported as whole numbers. The percentages not count to 100% due to rounding. Definitions are listed in Supplementary Table S2

AIS, acute ischemic stroke; HIBI, hypoxic-ischemic brain injury following cardiac arrest; ICH, intracerebral hemorrhage; No., number; MMM, multimodality monitoring; SAH,

subarachnoid hemorrhage; TBI, traumatic brain injury; q1-q3, interquartile range

TABLE 3 Study classification of cerebral multimodality monitoring studies (112 studies).

TBIa SAHa ICHa AISa HIBIa

59 studies 53 studies 13 studies 5 studies 9 studies

No. of studies (%)

Observational 36 (61) 28 (53) 9 (69) 4 (80) 6 (67)

Systemic intervention 15 (25) 14 (26) 4 (31) 1 (20) 2 (22)

Cerebral intervention 5 (8.5)b 5 (9.4) 0 0 0

Interventions guided by MMM 4 (6.8)b 6 (11) 0 0 1 (11)

Intervention studies - Clinical outcome endpoint 7 (30) 9 (36) 1 (25) 0 3 (100)

Safety endpoint 8 (14) 10 (19) 2 (15) 1 (20) 2 (22)

aMultiple diseases: several studies report more than one disease. These studies are represented for each diagnosis. Supplementary Tables S5A–D lists the studies.
bOne study was classified as both interventions guided by MMM and cerebral intervention (Khellaf et al., 2022).

The percentages are reported as whole numbers. The percentages not count to 100% due to rounding. Definitions are listed in Supplementary Table S2

AIS, acute ischemic stroke; HIBI, hypoxic-ischemic brain injury following cardiac arrest; ICH, intracerebral hemorrhage; MMM, multimodality monitoring; No., number; SAH,

subarachnoid hemorrhage; TBI, traumatic brain injury
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are three large phase-III trials currently underway. All study in

TBI patients whether a combined ICP and PbtO2-guided

tiered management protocol is associated with a beneficial

outcome (ClinicalTrials.gov, 2021a; ClinicalTrials.gov, 2021b;

Udy, 2021). ICP and PbtO2 monitoring were also mostly

applied in the MMM studies. This is not surprising as ICP/

CPP monitoring is the cornerstone of TBI monitoring and

treatment guidelines (Carney et al., 2017; Hawryluk et al.,

2019). sEEG has infrequently been used, which is surprising as

non-convulsive status epilepticus has been reported in

10–20% of NICU patients (Laccheo et al., 2015). Epileptic

activity is not only related to cortical damage and poor

outcome but might also confound the interpretation of

MMM results (Nolan et al., 2021). The least studied

modality is SvjO2. Although SvjO2 has a lengthy history of

use, the availability of non-invasive alternatives like NIRS or

the increasing use of PbtO2 may explain this (Bhatia and

Gupta, 2007).

9.1.2 Multiple research questions per study
cohort

Our results showed that limited (20%) multicenter studies

were included, of which more than ten concerned COSBID (Co-

Operative studies on Brain Injury Depolarizations) or CENTER-

TBI (Collaborative European Neuro Trauma Effectiveness

Research in TBI) study cohorts. Both cohorts are

collaborations between different international centers studying

a diversity of research questions. In addition, single-center

studies also reuse their cohort by publishing different research

questions, for example, the series from Svedung Wettervik et al.

FIGURE 4
Purposes of interventions across the MMM studies. MMMwas
examined in three different ways across the studies. Firstly, MMM
was the outcome, and the intervention’s effectiveness was studied.
Secondly, MMM was considered along with the intervention
for its effect on clinical outcome. Thirdly, thresholds of MMMwere
used to dictate intervention, and the need for intervention was
studied. Created with BioRender.com. MMM, multimodality
monitoring.

TABLE 4 Systemic-, cerebral- interventions, and interventions guided by cerebral multimodality monitoring in 44 studies.

Intervention group Interventions No. of
studies

References

ABP-management Arterial blood pressure-management 4 (Jakkula et al., 2018; Calviello et al., 2019; Sekhon et al., 2019;
Kovacs et al., 2021)b

Biomarkers Neuroglobin, prostacyclin, succinate 3 (Ding et al., 2019; Koskinen et al., 2019; Khellaf et al., 2022)a

Fluid management CSF drainage, hypertonic saline, and/or fluid management 5 (Akbik et al., 2017; Carteron et al., 2018; Hoiland et al., 2021; Rass
et al., 2021; Bernini et al., 2022)

Mixed interventions Nimodipine, ICP/CPP management (vasopressors, sedation,
etc.), hyperoxia, glucose, head elevation/flat position

11 (Bele et al., 2015; Lin et al., 2015; Okonkwo et al., 2017; Sekhon
et al., 2017; Rass et al., 2019; Veldeman et al., 2020a; Veldeman
et al., 2020b; Fergusson et al., 2021; Gouvea Bogossian et al.,
2021; Khellaf et al., 2022; Winberg et al., 2022)a

RBC transfusion Red blood cell transfusion 4 (Sekhon et al., 2015; Kurtz et al., 2016; McCredie et al., 2017;
Gouvêa Bogossian et al., 2022)

Physical (movement)
interventions

Intrahospital transport, head elevation/flat position 3 (Burnol et al., 2021; Dagod et al., 2021; Hosmann et al., 2021)

Vasospasm therapy Nimodipine, endovascular therapy, papaverine-
hydrochloride

4 (Hockel et al., 2016; Albanna et al., 2017; Hockel et al., 2017;
Hosmann et al., 2020)

Ventilation management Hyperoxia, hypercapnia, hypocapnia 10 (Westermaier et al., 2016; Zhang et al., 2016; Ghosh et al., 2017;
Sahoo et al., 2017; Brandi et al., 2019; Calviello et al., 2019;
Svedung Wettervik et al., 2020b; Stetter et al., 2021; Gargadennec
et al., 2022; Hosmann et al., 2022)b

Other therapies Analgesia, hypothermia, enteral nutrition, decompressive
craniectomy

4 (Flynn et al., 2015; Kofler et al., 2018; Kovac et al., 2018; Ianosi
et al., 2020)

aOne study included both cerebral intervention and MMM-guided treatment (mixed interventions).
bOne study included two study groups studying two interventions.

ABP, arterial blood pressure; CSF, cerebral spinal fluid; RBC, red blood cell; No., number; ICP, intracranial pressure; CPP, cerebral perfusion pressure; MMM, multimodality monitoring.
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(Svedung Wettervik et al., 2019; Svedung Wettervik et al., 2020b;

SvedungWettervik et al., 2020a). The strength of a recycled study

cohort is that it saves time andmoney; and could result in a broad

understanding of the neuromonitoring signals. Also, the different

studies were performed under the same conditions, which

improves the ability to compare the studies. On the other

hand, the weakness is that reusing study cohorts overestimate

the feasibility of MMM for clinical use.

9.1.3 Data quality
We found that 30% of the studies enrolled patients over a

period of more than 5 years. The long inclusion period, in

combination with the low number of patients, might be

explained because several studies use large (observational)

databases to select patients with a particular condition (e.g.,

ICP plateau waves). In addition, insufficient data quality

might contribute. A number of studies excluded patients due

to poor data quality of both invasive and non-invasive

monitoring modalities. For example, rCBF monitoring

(Hemedex Inc.; Cambridge, MA) requires regular calibrations,

which causes a regular artifact in the data, whereby Foreman et al.

could use only 62% of the rCBF monitoring time (Foreman et al.,

2018). Other examples are the exclusion of five (21%) NIRS data

recordings (McCredie et al., 2017); the exclusion of five (4.8%)

PbtO2 recordings due to malfunctioning PbtO2 probes (Rass

et al., 2019); the exclusion of 17 (10%) recordings because of poor

ECoG data quality (Hartings et al., 2020); and exclusion of 8.8%

(637/7223) of the hourly analyzed CMD samples because of

insufficient quality (Winberg et al., 2022). Finally, 30%

(100–2435/3483 h) of the ICP and Cerebral T data was

excluded due to artifacts (Birg et al., 2021). Misplaced probes

were less often reported (Gagnon et al., 2020; Winberg et al.,

2022) but also contributed to the removal of patient data. A

weakness of MMM (studies) is that although most studies were

performed in NICU, collecting continuous, high-quality data

from multiple monitors seems complex as several studies report

artifacts or poor data quality, limiting its feasibility in clinical

practice. Moreover, post-hoc manual removal of a large number

of artifacts lead to a false clinical conclusion.

9.1.4 Data duration and the start of monitoring
The data covered for analysis for more than 24 h of

monitoring was only 58%. The short analysis periods contrast

with continuous or regularly daily updated monitoring data.

Important to realize is that we used the data analysis period for

comparisons instead of the total monitoring period (of which

data were limited reported). The short analysis periods are

related to, firstly, the type of monitoring. For example, 79%

(15/19 studies) of the TCD studies reported time periods <24 h of
monitoring. Recent technological advances in automated stable

TCD insonations will probably allow longer recordings (Zeiler

et al., 2019). Secondly, the study design. For example, studies

selected monitoring epochs around specific interventions or

physiological changes (such as pre-/post-hypocapnia

intervention) (Brandi et al., 2019) or pathophysiological

insults (such as delayed cerebral ischemia) (Patet et al., 2017).

Thirdly, the timing of the applied monitoring (if reported) after

the estimated time of ictus. The strength of MMM would be to

have continuous monitoring available, informing about different

aspects of the brain and evaluate changes over time. However,

since limited studies analyze whole signal recordings and very

few studies reported the delay between the estimated time of ictus

and the start of study monitoring, it is a weakness of the current

MMM studies that it is often unknown which pathophysiological

condition the patients were studied in time. Therefore, we

recommend to report the disease time course for

multimodality studies. In this way, we will gain insight into

time-specific monitoring patterns related to pathophysiological

changes.

9.1.5 Signal integration
We defined MMM as “the application and reporting results

of at least twomodalities (i.e., modalities were part of the research

protocol) without aiming for superiority/inferiority between

modalities”. However, almost 30% of the studies monitored

patients with additional neuromonitoring modalities for other

(clinical) purposes. Therefore, the results included these

additional modalities as “other modalities”. For example, ICP

monitoring is standard of care in TBI patients and has been

reported only in the methods of the study as part of their “clinical

management”. However, when the aim or objective(s) of the

study was to study the relationship between CMD and PbtO2,

ICP was not classified as part of their study modalities.

The strength of MMM would be to integrate multiple

monitoring signals. However, we observed that the analysis

was mainly group comparisons, correlations, and uni- or

multivariate (regression) analysis. Hemphill et al. proposed

advanced analysis in NICU in 2011. They discussed that

advanced analysis can be divided into unsupervised data-

driven (e.g., hierarchical clustering), supervised data-driven

(e.g., decision trees, neural networks), or model-based

methods (e.g., dynamic system models Dynamic Bayesian

networks). Regression analysis is also part of data-driven

methods, but these are only appropriate for linear predictions

(Hemphill et al., 2011; Volovici et al., 2022), whereas time series

of different modalities include multiple features (dimensions)

and interactions. For these complex interactions, model-based

methods are more appropriate (Hemphill et al., 2011; Acosta

et al., 2022). We included an explorative study using hierarchical

clustering (Rajagopalan et al., 2022). They successfully classified

four clusters, each corresponding with a specific (patho)-

physiological state (cerebral ischemia, intracranial

hypertension without ischemia, hyper-glycolysis, and normal

cerebral physiology) from cerebral MMM data. In addition,

Åkerlund et al. (2022) applied an unsupervised statistical

clustering model on clinical variables in a TBI population.
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They concluded that this approach might contribute to a

refinement in disease classification and a better understanding

of pathological processes and their relation with clinical outcome.

For future studies, it might be interesting to integrate different

domains such as neuromonitoring data, clinical variables,

medication (e.g., sedatives, analgesia, vasopressor medication),

ventilation, or advanced cardiac monitoring signals for a further

understanding of complex disease entities. However, for

successful models, a large number of patients with complete

and annotated data sets are required (Acosta et al., 2022).

9.2 Limitations

Our current MMM overview is based on a stepwise search

covering a 7 years period. However, we should acknowledge that

this approach has limitations. Firstly, we studied the literature

starting from the projections of Le Roux et al. to give an overview

of the literature, knowing it limits conclusions about MMM

advances over time. In addition, only adult patients were

included, while reviewing pediatric studies would be of

interest too. Secondly, although the review outline and

interpretation of the review results were discussed within the

coauthors’ group, the studies were screened and classified by a

single author. In addition, we did not use a formal (PRISMA-

guided) systematic review and meta-analysis, given the

heterogeneity in study design, patient population, and

monitoring devices applied. However, we performed a

reproducible and extensive literature search with pre-defined

inclusion criteria covering the past 7 years.

9.3 Future perspectives

For the upcoming years, it would be recommended to

focus on, firstly, data quality, collection of both MMM signals

and other continuous trends (medication, ventilation,

advanced cardiac monitoring), and advanced analytics.

Interdisciplinary collaborations can achieve this. Secondly,

increasing sample sizes, homogeneity of studied diseases, and

shortening inclusion periods. This can be achieved by

increasing the number of multicenter studies. Thirdly,

introducing new refined definitions of secondary injuries

to improve the comparison between studies. Fourthly, one

of the stated near future MMM reflections was the increased

validation of direct current EEG methodology (i.e., the ability

to detect a wide range of EEG frequencies) (Kovac et al., 2018)

to detect cortical spreading depolarization. The included

explorative studies showed promising results regarding the

pathophysiology of cortical spreading depolarization.

Therefore, future exploration could indicate a potential

new treatment target for acute brain injury patients

(Winkler et al., 2017; Hartings et al., 2020); and, finally,

the start of new phase-III MMM studies that might result

in new outcome benefits and therapies for acute brain injured

patients.

10 Conclusion

Cerebral MMM in neurocritical care patients with acute brain

injury focuses predominantly on bimodal monitoring, studied

mainly in TBI and SAH patients. Definitions of secondary

injuries are limited by the number of modalities and differ in

entity due to different thresholds. In addition, the applied

interventions are large in variety, but they are limited in the

number of studies. Although the improved clinical outcome in

MMM-guided intervention studies strengthens the belief in this

application, further interdisciplinary collaborations are needed to

overcome the heterogeneity. Future research should focus on

improved data collection, sample sizes, refining definitions of

secondary injuries, and standardized interventions. Only then can

we proceed with complex outcome studies with MMM-guided

treatment.
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