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China, 2School of Physics and Telecommunication Engineering, South China Normal University (SCNU),
Guangzhou, China, 3Department of Ultrasonography, The Second Affiliated Hospital of Guangzhou
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Purpose: Under the influence of COVID-19 and the in-hospital cost, the in-home
detection of cardiovascular disease with smart sensing devices is becoming more
popular recently. In the presence of the qualified signals, ballistocardiography
(BCG) can not only reflect the cardiac mechanical movements, but also detect
the HF in a non-contact manner. However, for the potential HF patients, the
additional quality assessment with ECG-aided requiresmore procedures and brings
the inconvenience to their in-home HF diagnosis. To enable the HF detection in
many real applications, we proposed a machine learning-aided scheme for the HF
detection in this paper, where the BCG signals recorded from the force sensor
were employed without the heartbeat location, and the respiratory effort signals
separated from force sensors provided more HF features due to the connection
between the heart and the lung systems. Finally, the effectiveness of the proposed
HF detection scheme was verified in comparative experiments.
Methods: First, a piezoelectric sensor was used to record a signal sequences of
the two-dimensional vital sign, which includes the BCG and the respiratory effort.
Then, the linear and the non-linear features w.r.t. BCG and respiratory effort signals
were extracted to serve the HF detection. Finally, the improved HF detection
performance was verified through the LOO and the LOSO cross-validation settings
with different machine learning classifiers.
Results: The proposed machine learning-aided scheme achieved the robust
performance in the HF detection by using 4 different classifiers, and yielded
an accuracy of 94.97% and 87.00% in the LOO and the LOSO experiments,
respectively. In addition, experimental results demonstrated that the designed
respiratory and cardiopulmonary features are beneficial to the HF detection (LVEF
≤49%).
Conclusion: This study proposed a machine learning-aided HF diagnostic scheme.
Experimental results demonstrated that the proposed scheme can fully exploit the
relationship between the heart and the lung systems to potentially improve the in-
home HF detection performance by using both the BCG, the respiratory and the
cardiopulmonary-related features.
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1 Introduction

Heart failure (HF) is a kind of clinical syndrome caused by the
abnormal cardiac structure or function, which leads to ventricular
filling or ejection dysfunction. As the send-stage manifestation of all
cardiovascular diseases, chronic HF brings serious burdens including
the poor prognosis and the high mortality to many patients’ families
and our society (Hao et al., 2019). Also, as reporting in a global survey
over 40 countries (Savarese et al., 2022), the reduced left ventricular
ejection fraction (LVEF≤49%) resulted by theHF can bring significant
mortality rate.Therefore, early detection ofHF is essentially important
recently, especially for elderly patients with HF (LVEF ≤49%).

To better detect the body situation, some patients with
hypertension and myocardial infarction and other heart diseases are
suggested to perform regular medical checkups and early detection of
HF in hospitals. For the dynamic management of chronic HF, regular
review in hospitals to prevent the decompensation event is necessary
(Society of Cardiology, 2018). Specifically, in the clinical diagnosis for
theHF, echocardiography is regarded as one of the gold standards, and
usually used to assess the systolic and diastolic capacity of the heart. In
addition to the echocardiography, many techniques including X-rays,
electrocardiogram (ECG) and brain natriuretic peptides (BNP) can
be utilized as clinical key indicators to aid the HF diagnosis. However,
the in-hospital HF diagnosis is challenging recently. On the one hand,
under the influence of COVID-19, it may be inconvenient to the in-
hospital routine check-ups related to the HF. On the other hand, many
elderly patients are limited in the mobility, and unable to afford the
high diagnostic cost for the inpatient check-ups.Therefore, it is worthy
to develop the off-hospital/in-home HF detection scheme currently
(Dickinson et al., 2018).

For the off-hospital/in-home HF detection, considering the
benefits that the ballistocardiography (BCG) signals can conveniently
monitor the body vibration caused by cardiac contraction and blood
circulation, BCG iswidely utilized for the in-homedetection of various
cardiac diseases recently (Wen et al., 2019). Specifically, Starr et al.
first notified the clinical significance of BCG signals recorded by a
mechanical bed, where the mathematical relationship between BCG
and cardiac output (CO) was revealed (Starr et al., 1939), and the
morphology difference between patients suffering from different types
of cardio vascular (CV) diseases was analyzed (Starr and Schroeder,
1940), respectively. Also, the BCG signals were used to evaluate
the cardiac contractility by the combined features with the ECG
signals (Inan et al., 2009; Mozziyar et al., 2011; Ashouri et al., 2016).
Since the correlation between the cardiac contractility and the heart
functions, both the BCG and the ECG signals were applied to detect
the HF decompensation (Giovangrandi et al., 2012; Etemadi et al.,
2014; Aydemir et al., 2019). Similarly, Chang et al. calculated the
waveform fluctuation metric at rest (WFMR) through the beat-to-
beat features of the BCG signals to improve the quantitative analysis
of the HF diseases (Chang et al., 2020). Generally, it was strongly
demonstrated that the BCG per beat features can be effectively used
for the HF detection in the above studies. However, considering
the facts that many HF patients usually suffer from the weakened
ventricular contractility, themitral regurgitation and other symptoms,
the resulted rhythm irregularity and the corresponding morphology
diversity across different subjects bring a great challenge in the quality
assessment of the BCG signals.Moreover, the respiratory effort signals,
defined as the signals representing the energy consuming activity

of the respiratory muscles (de Vries et al., 2018), and also is one
of the important reference indicators for the clinical HF diagnosis
(Siniorakis et al., 2018; Hamazaki et al., 2019), are rarely studied and
developed in many existing works.

To overcome those above shortcomings, we proposed a non-
contact sensing aided scheme for the in-home HF detection without
quality assessment of BCG signals in this paper. Specifically, the
piezoelectric sensing was used to acquire cardiopulmonary signs
of various HF patients, where the signs contain the BCG and the
respiratory effort information. Unlike the existingworks, the proposed
scheme performed the feature extractions from the BCG and the
respiratory effort signals without the heartbeat location, where the
extracted features finally identified the symptoms of the HF by
using several typical classifiers. To validate the performance of the
proposed HF detection scheme, the control experiments in terms
of the leave-one-out (LOO) and the leave-one-subject-out (LOSO)
rules were investigated. Experimental results demonstrated that the
proposed scheme, in comparison with the existing studies, shows
robust to HF (LVEF ≤ 49%) with low absolute global longitudinal
strain (absolute GLS < 20%). Furthermore, the statistical analysis
revealed that the respiratory and the cardiopulmonary features have
the great diagnostic significance for the HF diseases.

2 Materials and methods

2.1 Experimental devices and protocol

Theoverall experimental procedure is shown in Figure 1, the non-
contact sensing device consists of a vital sign acquisitionmodule and a
signal processingmodule.The vital sign acquisitionmodule wasmade
by a piezoelectric sensor with a sampling rate of fs = 1kHz, and used to
collect the vital signs under the head and neck. The aim of the signal
processing module is to convert the collected signals as 12-bit analog-
to-digital data. Furthermore, the echocardiography was recorded by
EPIQ 7C (Philips).

Specifically, each subject was first asked to supine on an
instrumented bed and keep soldier sleeping position for the
5 min baseline restoration and followed by vital sign signal

FIGURE 1
Heart failure detection by using non-contact recorded vital signs.

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphys.2022.1068824
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Feng et al. 10.3389/fphys.2022.1068824

TABLE 1 A description of the subjects. BMI: bodymass index. LVEF: left ventricular ejection fraction. GLS: global longitudinal strain. Value performance bymean ±
standard deviation.

Gender

Number (male Age Height Weight BMI LVEF GLS Doppler

/female) (year) (cm) (kg) (kg/m2) (%) (%) ultrasonography

HF 30 20/10 61.80 ± 13.63 156.29 ± 8.24 61.63 ± 12.38 23.62 ± 4.02 38.99 ± 4.02 11.41 ± 3.76 Low, medium, and
large volumes of

regurgitation in 15, 6
and 9 cases,
respectively

non-HF 24 19/5 45.79 ± 14.03 166.58 ± 8.65 67.29 ± 11.86 24.25 ± 3.29 69.21 ± 3.71 21.16 ± 2.40 No abnormal, small
and moderate

regurgitation in 9, 13
and 2 cases,
respectively

acquisition. Before and during the 10 min period of the vital signs
collection, all subjects did not have any exercise and kept the fixed
positions. The recorded data are involved the non-contact sensing
device and the echocardiography, where the collected vial signs
contain the information of both the BCG and the respiratory effort
from the head andnecks of the subjects (Liu et al., 2021). After the data
acquisition, some professional cardiologists made the HF diagnosis by
the echocardiography signals, and other recorded data was selected
by the above results. For a simpler interpretation, GLS was taken as
absolute value in this study. Finally, the selected data from the non-
contact sensing device was used in the following procedures of the
proposed scheme.

2.2 Inclusion and exclusion criteria

To reduce the influence of other extraneous factors, the enrolled
standards for the HF group are as follows.

• TheHF diagnosis guidelines (Society of Cardiology, 2018).
• LVEF ≤49% and GLS <20% (Park et al., 2018).
• The diagnosed HF patients with complications of many
heart diseases including the coronary artery disease, and the
structural heart abnormalities resulted by the heart attack or the
hypertension (all subjects received medications, and some of
them has the coronary PCI or pacemakers.).

As a control group, the standards for the healthy group are as
follows.

• Normal blood glucose, lipids, blood pressure, blood routine, liver
function, and kidney function.
• Normal ECG (note: occasional atrial premature can be included
as appropriate).
• No history of the medication affecting the cardiovascular system.
• No structural heart disease and normal cardiac function on
the echocardiography (LVEF >50%), mild or less valvular
regurgitation can be included. The criteria using the HFA-PEFF
score is applied to classify the subjects with preserved LVEF
(HFpEF) from all potential healthy candidates with LVEF >50%
(Pieske et al., 2019).

FIGURE 2
Overall diagram.

2.3 Study population

A total of 54 subjects in the age range of 23–92 years participated
in the study, i.e., 24 healthy subjects and 30 HF (LVEF ≤49%) patients.
The details of the subjects are listed in Table 1. All subjects who
participated in this study were recruited by the Second Affiliated
Hospital of Guangzhou University of Chinese Medicine (Guangdong
Hospital of Chinese Medicine) in Guangzhou, China, including the
volunteers, the routine physical examiners, and the HF patients.
The study protocol has been reviewed and approved by the Ethics
Committee of Guangdong Provincial Hospital of Traditional Chinese
Medicine (ZE 2022–123). All subjects obtained the informed consent
before their participation in this study. The flowchart diagram of the
proposed non-contact HF diagnosis method is shown in Figure 2.
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2.4 Pre-processing

The key purpose of performing the pre-processing is to process
and divide the collected data into several data sets for theHFdetection,
where the first step is associated with the signal separation, and the
second one is related to the sample grouping.

For the first step, similar to (Jingxian et al., 2020), the peak-to-
mean ratio detection of the 1s time-scale signals was performed to
remove the artifact interference and separate the BCG signals and the
respirator effort contributions from the collected data. Specifically, the
morphological and the low-pass filters were sequentially exploited to
obtain the respiratory effort signals. Then we removed the separated
respiratory effort signals from the collected signals and obtained the
new vital sign sequences. Given such new sequences, a 4th-order
Butterworth filter (2 Hz ∼8.5 Hz) was applied to get the improved
BCG signals.The results of the above signal separation can be found in
Figure 3, where Figure 3A shows the 30s sign signals acquired via the
piezoelectric sensing, and Figures 3B, C are the de-noised BCG and
the respiratory effort signals, respectively.

Similar to (Chang et al., 2020), the BCG and the respiratory
effort signals were first divided into multiple consecutive epochs
of 30s in a non-overlapped manner. As a result, the total number
of the recordings was 577, where each recording included the 30s
synchronously BCG and the respiratory effort epoch. In details,
290 recordings were associated with the HF patients while others
are related to the non-HF subjects. Among them, recordings were
evenly distributed from each subject to ensure no bias in the data
and furthermore the universality of the experimental results. In the
traditional studies, the HF diseases can be easy detected by the typical
waveforms of the BCG signals (Carlson et al., 2020; Liu et al., 2021).

However, the corresponding BCG signals are usually irregular in
rhythm and morphology due to disordered cardiac movement (HF
patients with LVEF ≤49% and GLS <20%) (Siniorakis et al., 2018;
Hamazaki et al., 2019;McDonagh et al., 2021).The irregular heartbeat
waveforms of the BCG signals bring challenges for heartbeat location
in the HF detection. By (Aydemir et al., 2019; Mai et al., 2022), we
use signal-to-noise ratio (SNR) to access the signal quality of each
BCG epoch. When SNR≪ 4 dB, the whole (or part of) epoch of BCG
signals are almost unable to identify. Figures 3B, C, E–H depicts the
recorded BCG and the respiratory signals in terms of healthy subjects,
HF patients with the heartbeat in BCG signals easily or difficult to
be identified. It is noted that the heartbeat in BCG of 13 out of 30
HF patients was difficult to recognize due to the heart abnormality,
as shown in Figure 3D, where the related existing methods are
difficult to be applied (Aydemir et al., 2019; Chang et al., 2020).
Therefore, to illustrate the robustness of our HF diagnostic method,
we divided all 577 recordings into two groups in this experiment,
i.e., Datasets 1 consists of 176 HF recordings (recognizable heartbeat
in BCG) and 287 non-HF recordings, and Datasets 2 includes 114
HF recordings (unrecognizable heartbeat in BCG) and 287 non-HF
recordings.

2.5 Feature extraction

2.5.1 BCG features
Unlike the existing HF detection methods depended on the

heartbeat location of the BCG signals in (Etemadi et al., 2014;
Aydemir et al., 2019; Chang et al., 2020), our proposed scheme
focused on the large scale features of the BCG signals, i.e., the

FIGURE 3
Non-contact vital sign signal processing and analysis. (A) Example of a non-contact vital sign signal collected. (B, C) Example of BCG and respiratory signals
isolated from a healthy subject, GLS = 21.30%, LVEF = 76%. (D) Distribution of the J-peaks of the BCG for those who are difficult located (red circles) and
those who are easier located (blue circles) in terms of LVEF, GLS. (E, F) Example of BCG and respiratory signals from a patient with HF with BCG can be
located, GLS = 9.62%, LVEF = 30%. (G, H) Example of BCG and respiratory signals from a patient with HF with heartbeat are very difficult to locate, GLS =
16.07%, LVEF = 46%. Res: respiratory signal.
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30 s epoch, where the hearbeat location was no longer needed. The
corresponding features in the experiments were extracted in both
linear and non-linear domains, as shown in Table 2.

2.5.1.1 Linear features
2.5.1.1.1 Amplitude

The amplitude coefficient of the given signal x(n) can be expressed
as

F (x (n)) =
rms (x (n))

max (x (n)) −min (x (n))
(1)

where rms (⋅) is the root mean square function, max(⋅) indicates the
maximum value function, and min(⋅) denotes the minimum value
function. According to Eq. 1, we obtained the amplitude features of
each BCG epoch by F(BCG(n)) in the experiments, where the notation
BCG(n) was the separated BCG signals obtained from the above pre-
progressing, and the amplitudes of the HF patient group were lower
than that of the health subject group. This case is usually caused by
that the HF patients suffer from the low myocardial contractility.

2.5.1.1.2 Power
Inspired by themorphological difference betweenHF patients and

healthy subjects (Chang et al., 2020), the volatility and the irregularity
of the BCG singals can be measured and analyzed in the power-
domain. To eliminate individualized differences, in our experiments,
the signal was normalized using Z-score before the power calculation
(Shi et al., 2022). As (Li et al., 2020), the signals x(n) was first divided
into L segments x′ by the sliding window as

x′L = {x
′
1 (i) ,x

′
2 (i) ,…,x

′
L (i) , i = 1,2,…,w∗ fs} (2)

where L = fix(N−w∗ fs+t∗ fs
t∗ fs
) represents the number of segments.N and

w are the length of x(n) and the sliding window (the segment length),
respectively. t indicates the time moving factor of the sliding window,
fs denotes the sampling rate, and fix (⋅) is the rounding function. The
power of each segment was computed as

PowerL (x′) = {power(x
′
1 (i)) ,power(x

′
2 (i)) ,…,power(x

′
L (i)) ,

i = 1,2,…,w∗ fs} (3)

where power (⋅) is the power function. As a result, the statistics
PowerL (BCG(n)) were used to characterize the volatility of the BCG
signals.

2.5.1.2 Non-linear features
2.5.1.2.1 Chaos

Chaos is defined as an uncertain or unpredictable random
phenomenon presented by a deterministic system under many certain
conditions, which can evaluate the level of the time-series signal
disorder (Gupta et al., 2019). As a result, the chaotic features of the
BCG time series, including fuzzy entropy (FE), largest Lyapunov
exponent (LLE) and correlation dimension (CD), can be extracted to
evaluate the disorder degree in BCG.

Firstly, FE (Chen et al., 2007) not only reflects the similarity
between two vectors in the phase space, but also represents the
complexity of the chaos system, defined as

FE (x (n)) = −ln
Cm+1 (r)
Cm (r)

(4)

where m is the embedding dimension, r indicates the similarity
tolerance limit threshold, Cm(r) denotes the average of all fuzzy
affiliations except itself. The FE of a BCG epoch was obtained by
FE (BCG(n)) in this study with the setting m = 2, and r = 0.15. In
addition, similar to the calculation for the power volatility, the FE
of each BCG segment, i.e., FEL (BCG(n)), was computed by using
Eqs. 2, 4, which characterize the volatility of the FE series.

Next, we used two features including the LLE and the CD to better
analyze the BCG signals (Procacia et al., 1983; Rosenstein et al., 1993),
where LLE is the exponential rate of the convergence between two
adjacent trajectories, and CD indicates the correlation between two
phase points in the phase space. Their definition can be respectively
expressed as

LLE (x (n)) = 1
Δt
< lndj (i) > (5)

CD (x (n)) = lim
r→0

lnC (r)
ln (r)

(6)

where < ⋅ > denotes the mean value, Δt is the sampling interval, and
dj(i) indicates the distance of the j-th pair of nearest neighbors after

TABLE 2 BCG features without localization assistance. sd: standard deviation. IQR: interquartile range.

Feature Category Name Description

T1
Linear

F(BCG(n)) BCG amplitude coefficient

T2-T5 PowerL(BCG(n)))
mean, sd, IQR,median

Power volatility of BCG on a fixed time scale

T6

Non-linear

FE(BCG(n)) BCG fuzzy entropy

T7-T10 FEL(BCG(n))
mean, sd, IQR,median

Fuzzy entropy volatility of BCG on fixed time scale

T11 LLE(BCG(n)) BCG largest liapunov exponent

T12 CD(BCG(n)) BCG correlation dimension

T13-T16 MICL−1(BCG(n))
mean, sd, IQR,median

MIC volatility of BCG on a fixed time scale

T17 Skewness(BCG(n)) BCG skewness

T18 Kurtosis(BCG(n)) BCG kurtosis

Frontiers in Physics 05 frontiersin.org

https://doi.org/10.3389/fphys.2022.1068824
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Feng et al. 10.3389/fphys.2022.1068824

i discrete time steps. In the phase space, the function C(r) is the
proportion between the number of the point pairs locating within
the given radius r of the hyper-sphere and the number of all point
pairs. Therefore, according to Eqs. 5, 6, we computed the LLE and the
CD by the maximum value of the parameter embedding dimension
m = 12 and the maximum value of the time delay factor τ = 40 ms as
LLE (BCG(n)) and CD (BCG(n)), respectively.

2.5.1.2.2 Maximum information coefficient
Themaximum information coefficient (MIC) (Reshef et al., 2011)

is a generalization of mutual information. In order words, the
MIC can describe the association degree between two series (0: no
correlation, 1: strong correlation) by a maximum information-based
non-parametric exploration. The MIC between two random variables
x1 and x2 can be expressed as

MIC (x1,x2) = max
pq<B(s)
{M(D)p,q} (7)

where B(s) = s0.6 is a function of the sample number. M(D) is the
mutual information on the grids p*q. Using Eqs. 2, 7, theMIC values of
the two adjacent segments can be calculated to form an L− 1 sequence,
i.e.,MICL−1 (x(n)). As a result, we computed theMIC parameter of the
BCG signals asMICL−1(BCG(n)).

In the presence of the 4s sliding window and the 3s/2s/1s time
moving factors, we calculated the mean, the standard deviation, and
the interquartile range (IQR), and the median statistics for the above
features, i.e., PowerL(BCG(n), FEL (BCG(n)), and MICL−1(BCG(n))),
to serve the following experiments and analysis.

2.5.1.2.3 Higher order statistics
Similar to (Bruser et al., 2012), the skewness and the kurtosis of

the given signals x(n) can be respectively calculated as

Skewness (x (n)) =
m3 (x (n))

m2(x (n))3/2
(8)

Kurtosis (x (n)) =
m4 (x (n))
m2(x (n))2

(9)

where mk (x(n)) denotes the kth sample moment around the mean of
the signals x(n).

2.5.2 Respiratory and cardiopulmonary features
Considering the facts that HF patients often suffer from the

Respiratory aggravation symptoms, such as the chest tightness, the
wheezing, the breath shortness, and the dyspnea due to the cardiac
insufficiency (McDonagh et al., 2021), there are many connections
between the respiration/cardiopulmonary-related features and the HF
diseases. However, these features obtained from wearable devices
lack attention recently and are rare to be applied into the HF
detection. Motivated by this fact, in this study, we proposed to
use these respiration-related features to improve the performance
of the HF detection. These associated features can be found in
Table 3. Similar to the above BCG-related features, many details of the
respiration/cardiopulmonary-related feature calculation/extraction
are presented as follows.

2.5.2.1 Respiratory features
Considering that the breath shortness in HF patients leads to the

enhanced respiratory effort, we chooosed the amplitude coefficient of
the respiratory signals, i.e., F(Res(n)), to characterize the respiratory
strength in the proposed scheme, The corresponding feature details
can be found in Eq. 1.

Similarly, the FE of the respiratory-related epochs, FE(Res(n)), was
calculated by Eqs. 2, 4 to characterize the volatility of the respiratory-
related signals. Specifically, the corresponding window length and the
timemoving factor were set at 6s and 1s, respectively. Asmentioned in
the BCG-related feature extractions, many typical statistics including
the skewness and the kurtosis related to the respiratory FE were
calculated for the classifiers.

2.5.2.2 Cardiopulmonary features
Similar to the respiratory effort, the connection between the heart

and the lung systems can support that using the cardiopulmonary
analysis to improve the heart detection performance. However, unlike
the above feature extractions only relying on the BCG/respiratory
signals, the cardiopulmonary features are associated with both the
heart and the lung systems. As a result, the cardiopulmonary
joint analysis can not only provide more benefits of reducing the
effect caused by the occasional interference/noise in the BCG or
the respiratory signals, but also eliminate the potential errors due
to individual difference. The cardiopulmonary features, specifically,

TABLE 3 Respiratory and cardiopulmonary features. sd: standard deviation. IQR: interquartile range.

Feature Category Name Description

T19

Respiratory

F(Res(n)) Respiratory effort amplitude coefficient

T20 FE(Res(n)) Respiratory effort fuzzy entropy

T21-T24 FEL(Res(n))
mean, sd, IQR,median

Fuzzy entropy volatility of respiratory signals on fixed time scales

T25 Skewness(Res(n)) Respiratory effort skewness

T26 Kurtosis(Res(n)) Respiratory effort kurtosis

T27

Cardiopulmonary

Fratio(Res(n),BCG(n)) Ratio of respiratory to BCG amplitude coefficient

T28 Powerratio(Res(n),BCG(n)) Ratio of respiratory to BCG signal power

T29-T32 PowerratioL (Res(n),BCG(n)) Volatility of respiration to BCG power ratio on a fixed time scale

mean, sd, IQR,median

T33 FEsum(Res(n),BCG(n)) Sum of respiratory and BCG signal fuzzy entropy
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include the relative amplitude and power of respiratory effort and
BCG, and quantify the overall complexity of these two kinds of signals.

According to the above considerations, the amplitude coefficient
is defined as the ratio of the amplitude coefficients related to the
respiratory and the BCG signals as

Fratio (Res (n) ,BCG (n)) =
F (Res (n))
F (BCG (n))

=

rms (Res (n))
max (Res (n)) −min (Res (n))

rms (BCG (n))
max (BCG (n)) −min (BCG (n))

(10)

Similarly, the corresponding power features and the
corresponding chaos features was respectively calculated as

Powerratio (Res (n) ,BCG (n)) =
∑N

n=1
(Res (n))2/N

∑N
n=1
(BCG (n))2/N

(11)

FEsum (Res (n) ,BCG (n)) = FE (Res (n)) + FE (BCG (n)) (12)

Usually, HF patients have shortness of breath and a
reduced volume per beat, which results in the larger values of
Fratio (Res(n),BCG(n)) and Powerratio (Res(n),BCG(n)) than that of the
healthy candidates. Consequently, it is thus expected that the above
cardiopulmonary features (10)–(12) can complement the individual
differences possibly induced by single-channel features of BCG or
respiratory signals. Also, we calculated the relative power volatility of
respiration and BCG using Eqs. 2, 11, the recommended window
and time moving factor are recommended to be adjusted as 2s.
The statistics of PowerratioL (Res(n),BCG(n)) were calculated for the
following classifiers in the experiments.

2.6 Classifiers

Based on the above extracted features related to the
BCG/respiratory/cardiopulmonary signals, we applied four
supervised classifiers to evaluate the performance of the HF detection.
The classifiers include the K-Nearest Neighbor (KNN), the Support
Vector Machine (SVM), the Random Forest (RF) and the eXtreme
Gradient Boosting (XGBoost), where the features require to be
normalizedwithin [0,1] before performing the classification (Shi et al.,
2022).

Among these four classifiers, theKNN(Ertuğrul andTağluk, 2017)
algorithm is the fastest algorithm, where the principle is to classify the
new data points by those nearest K classified data points. However,
the KNN has the limited performance in the complex classification
boundary. To achieve better classification in the complex data space,
SVM (Palaniappan et al., 2014) utilizes the sparsity between classified
data points, i.e., only a few of points play important role to the
classification boundary. Unlike the iterative processing of the SVM
may cost much system resources, the RF (Sun et al., 2020) algorithm
is based on the multiple decision tress without iterations. By the
gradient boosting in the optimization theory, the XGBoost (Chen and
Guestrin, 2016) classifier is a distributed enhancement with many
benefits including the low complexity and the high flexibility.

2.7 Performance metrics

Similar to (Magrelli et al., 2021), the performance metrics include
accuracy (Acc), sensitivity (Sen), specificity (Spe), F1 score (F1) and
area under the curve (AUC), defined as

Acc = TP+TN
TP+TN+ FP+ FN

(13)

Sen = TP
TP+ FN

(14)

Spe = TN
TN+ FP

(15)

F1 = 2TP
2TP+ FP+ FN

(16)

where TP represents the number of correctly predicted positive
samples, TN indicates the number of correctly predicted negative
samples, FP is the number of negative samples predicted to be positive,
and FN denotes the number of positive samples predicted to be
negative. AUC is the area of receiver operating characteristic curve
(ROC).

For the fairness in the evaluation, the LOO and the LOSO
methodswere used for the training and the testing phases, respectively.
During the model training and testing phases, we also optimized each
classifier by using the grid search method and obtained their highest
classification accuracy.

3 Results

3.1 Performance of HF detection with
different classifiers

Firstly, we examined the performance of the proposed HF
detection scheme in the presence of 4 different classifiers by the BCG,
the respiratory and the cardiopulmonary-related features. Specifically,
the performance metrics including the accuracy, the sensitivity, the
specificity, the F1 score, and the AUC, are presented in Table 4 and
Figure 4. These results showed that all 4 classifiers could provide the
accuracy of over 91.16% under the LOO setting. Among them, the
best performance was brought by the XGBoost classifier at 94.97%
accuracy. In order to verify the stability of the performance, the LOSO
cross-validation results were also given in Table 4 to provide person
independent classification results. Under the LOSO setting showing
the generalization ability of the proposed scheme, the best accuracy
results of the proposed HF detection scheme were provided by the
XGBoost. In addition, for all 4 classifiers, the performance brought by
the BCG and respiration-related (respiratory and cardiopulmonary)
features outperformed that of the BCG features under both the
LOO and the LOSO setting. The above results indicated that the
proposed scheme, which is based on the BCG, the respiratory and
the cardiopulmonary features, significantly improved the detection
performance of the HF diseases.

Comparing with that one of the main limitations in the
existing BCG-based HF detection algorithm is the additional quality
assessment, our proposed detection scheme can avoid this limitation
by using more linear and non-linear features of both the heart
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TABLE 4 LOO and LOSO classification results for HF diagnostics based on BCG and respiratory-related features using 4 classifiers. Resp: Respiratory and
cardiopulmonary features.

Classifiers Features LOO LOSO

Acc(%) Sen(%) Spe (%) F1 (%) AUC(%) Acc(%) Sen(%) Spe (%) F1 (%) AUC(%)

KNN BCG 87.88 88.62 87.11 88.01 92.84 74.18 78.97 69.34 75.45 79.14

BCG & Resp 92.20 92.07 92.33 92.23 97.78 81.63 82.76 80.49 81.91 90.25

SVM BCG 87.88 88.97 86.76 88.05 94.20 75.56 80.00 71.08 76.69 83.33

BCG & Resp 91.16 92.07 90.24 91.28 96.89 83.36 82.76 83.97 83.33 91.06

RF BCG 85.10 87.59 82.58 85.52 93.19 74.18 76.55 71.78 74.87 81.94

BCG & Resp 93.93 94.83 93.03 94.02 98.64 85.44 86.55 84.32 85.67 93.98

XGBoost BCG 89.43 90.00 88.85 89.54 94.94 74.18 74.48 73.86 74.35 82.94

BCG & Resp 94.97 96.55 93.38 95.08 99.05 87.00 86.21 87.80 86.96 94.37

FIGURE 4
ROCs of HF diagnostics based on BCG and respiratory-related features using 4 classifiers in all datasets. (A) ROCs using BCG features in LOO setting. (B)
ROCs using BCG and respiratory-related features in LOO setting. (C) ROCs using BCG features in LOSO setting. (D) ROCs using BCG and
respiratory-related features in LOSO setting.
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TABLE 5 LOO and LOSO classification results for HF diagnostics over 2 datasets using 4 classifiers. Datasets 1: HF patients of BCG easily localized and healthy
subjects samples. Datasets 2: HF patients of BCG not easily localized and healthy subjects samples.

Classifiers Datasets LOO LOSO

Acc(%) Sen(%) Spe(%) F1(%) AUC(%) Acc(%) Sen(%) Spe(%) F1(%) AUC(%)

KNN Datasets1 91.79 85.23 95.82 88.75 97.82 77.32 62.50 86.41 67.69 85.89

Datasets2 95.76 93.86 96.52 92.64 99.21 91.02 81.58 94.77 83.78 96.65

SVM Datasets1 88.55 81.82 92.68 84.46 94.77 79.05 71.02 83.97 72.05 86.33

Datasets2 96.51 94.74 97.21 93.91 99.44 92.27 84.21 95.47 86.10 96.45

RF Datasets1 90.71 86.36 93.38 87.61 98.12 82.94 72.16 89.55 76.28 91.70

Datasets2 96.76 90.35 99.30 94.06 99.74 92.77 85.09 95.82 87.00 97.71

XGBoost Datasets1 95.15 94.32 95.82 93.79 98.89 83.37 77.84 86.76 78.06 91.72

Datasets2 99.00 99.12 98.95 98.26 99.73 94.01 86.84 96.86 89.19 98.59

FIGURE 5
ROCs of LOO and LOSO for HF diagnostics over 2 datasets using 4 classifiers. (A) ROCs through LOO in Datasets 1. (B) ROCs through LOO in Datasets 2. (C)
ROCs through LOSO in Datasets 1. (D) ROCs through LOSO in Datasets 2.
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FIGURE 6
The importance ranking of all features in the XGBoost model under LOO and LOSO. The together top 10 important features contribute 71.00% and 65.88%
to the classification, respectively. (A) The importance ranking of classifier features in LOO settings. (B) The importance ranking of classifier features in LOSO
settings.

and the lung systems. To verify the corresponding effectiveness,
two types of dataset, i.e., the Datasets 1 (recognizable heartbeat
in BCG) and the Datasets 2 (unrecognizable heartbeat in BCG)
were used in performing our proposed HF detection method. The
detailed experiment results are shown in Table 5 and Figure 5,
which demonstrated that the Datasets 2 provided better classification
performance than the Datasets 1 in all 4 classifiers under both the
LOO and the LOSO settings. Among them, the best performance
was brought by the XGBoost classifier at 99.00% and 94.01% under
the LOO and the LOSO settings, respectively. All the above results
showed that our proposed scheme addressed the limitation related
to the heartbeat location in the existing BCG-based HF detection
algorithms.

3.2 Feature importance of LOO and LOSO
experiments

In the following experiments, we mainly focused on analyzing
the features’ contributions to the classification/detection of the HF
diseases, where the XGBoost weights were used to evaluate the
features’ contributions.Thedetails of the feature importance are shown
in Figure 6 under the LOO and the LOSO settings, respectively.
Specifically, the importance scores of all features were firstly obtained
from the XGBoost classifier after the training phase, and then the
mean value of each feature’s importance was computed. Similar
to (Aydemir et al., 2019), the common top 10 features in the two
experimental settings were analyzed. Among them, there are 5 features
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FIGURE 7
Value distribution of each feature over the HF and non-HF classes. (A–E) are BCG features; (F, G) are respiratory signal features; (H–J) are cardiopulmonary
features. Non-parametric tests were used between groups.

about respiratory effort (there were 2 respiratory signal independent
features and 3 cardiopulmonary features). Considering the facts that
there are mostly non-linear features, implying that assessing the
complexity, fluctuation of BCG and respiratory effort is key to assist
in the detection of HF. More importantly, Powerratio (Res(n),BCG(n))
features appear to be significantly more informative than the others,
reflecting that a comprehensive assessment of individual relative
power between respiratory effort and BCG signals is an important
reference for the detection of HF.

4 Discussion

This study proposed a non-contact piezoelectric sensing-based
HF detection scheme, which can provide the robust performance
for HF (LVEF ≤ 49%) detection without the quality assessment
of BCG signals. Considering that the HF is the end-stage of all
cardiovascular diseases, many HF patients usually have mitral and
tricuspid regurgitation and suffer from low vascular compliance
(Cruickshank, 2007). These kinds of heart diseases may cause
the irregularity in the beat-to-beat BCG morphology, and bring
challenge in the HF detection (Aydemir et al., 2019; Chang et al.,
2020). To reduce the above challenge, we proposed a HF detection
method, which is available to the BCG signals with different complex
morphologies by using many linear and non-linear features. From
the viewpoint of the BCG feature extraction, it is considered that
HF patients may have the reduced amplitude, the reduced power,
the significant morphology diversity and the poor regularity due to
the reduced ventricular systolic function and the unstable myocardial
motor performance. To better exploit the signal morphology, we also
extracted the non-linear BCG features including the FE, the LLE
and the CD of the chaos, and the high order statistic kurtosis. As
shown inFigures 7A–E, both of the fourChaos features (FE (BCG(n)),
CD (BCG(n)), LLE (BCG(n)), FEL (BCG(n))mean) had the low p-
values (p <0.0001) between the HF and the healthy cohorts, and the
high order feature Kurtosis (BCG(n)) showed the p-values as p < 0.05.

Therefore, by using more non-linear and high order statistic features,
our proposed HF detection method is robust to the BCG signals.

On the other hand, HF patients with the lower CO usually result
in the reduced gas exchange capacity of the lungs, that the human
body compensates by accelerating the respiratory rate and amplitude
to the regulate hypoxia. Consequently, the presence or the absence
of the breath shortness is considered an important reference in the
clinical diagnosis of the HF (McDonagh et al., 2021). However, there
is a lack of analysis and usage of the respiratory characteristics in
the existing HF detection studies related to the wearable devices.
Motivated by that and considering that the HF patients are easy
to show the breath shortness and the enhanced respiratory effort
in the supine posture, the proposed HF detection algorithm was
designed for the acquisition of sign data in the supine (soldier sleeping
position) posture (Liu et al., 2015). Figures 7F, G shows that due
to the HF patients have enhanced respiratory effort, respiratory
signal complexity features (FEL (Res(n)))mean, FEL (Res(n)))median)
were lower than the healthy group (p <0.0001). According to the
relationship between the heart and the lung systems, the used
features are not only associated with the BCG signals, but also related
to the respiratory effort signals including many cardiopulmonary
features (the relative power Powerratio (Res(n),BCG(n)), the relative
amplitude Fratio (Res(n),BCG(n)) and the overall complexity
FEsum (Res(n),BCG(n)))). The detailed results are shown in
Figures 7H–J, where the HF and the healthy cohorts had significant
difference in statistic with the low p-values (p <0.0001). They
also demonstrated that the respiratory-related (respiratory and
cardiopulmonary) features provide the key contribution and should
be analyzed in the HF detection.

Compared with the existing studies of wearable sensor-aided HF
detection, the proposed scheme has the advantage of automatic HF
classification in a non-contact manner, and also performs feasible to
the detection of HF patients with potential irregular heart rhythm
(whose recorded BCG are unable to identify). It is thus expected that
the proposed scheme has the potential for people with limitedmobility
carrying out in-home HF detection.
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5 Conclusion

In this paper, a machine learning-based scheme was proposed
for the HF detection by using the BCG, the respiratory and the
cardiopulmonary features. Comparing with existing studies focusing
on the BCG signals, our proposed scheme fully exploit the relationship
between the heart and the lung systems. The experiment results
verified that these above features can significantly improve the
accuracy performance and the robustness of the HF detection. In
the further step of our study, quantitative analysis for possible
classification between HF patients with LVEF ≤ 40% and LVEF > 40%
will be considered.
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