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Chemosensory proteins (CSPs) can bind and transport odorant molecules,

which are believed to be involved in insect chemoreception. Here, we

investigated three CSPs in perception of volatiles in Empoasca onukii.

Expression profiles showed that although EonuCSP4, EonuCSP 6-1 and

EonuCSP6-2 were ubiquitously expressed in heads, legs, thoraxes and

abdomen, they were all highly expressed in the antennae of E. onukii.

Further, fluorescence competitive binding assays revealed that EonuCSP4

and 6-1 had binding affinities for three plant volatiles, suggesting their

possible involvement in the chemosensory process. Among them,

EonuCSP6-1 showed relatively high binding affinities for benzaldehyde.

Behavioral assays revealed that the adults of E. onukii showed a significant

preference for two compounds including benzaldehyde. The predicted three-

dimensional (3D) structures of these 3 CSP have the typical six α-helices, which

form the hydrophobic ligand-binding pocket. We therefore suggest that

Eoun6-1 might be involved in the chemoreception of the host-related

volatiles for E. onukii. Our data may provide a chance of finding a suitable

antagonist of alternative control strategies which block the perception of

chemosensory signals in pest, preventing the food- orientation behaviors.
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Introduction

Molecular sensing of chemicals is important for locating

food, searching mating partners, selecting oviposition sites,

socializing among groups, and avoiding predators of insects

(Bruce et al., 2005; Ebrahim et al., 2015; Pelosi et al., 2018).

The communication of the insect chemosensory system is

characterized by stability, sensitivity and specificity (Carey

et al., 2010; Mao et al., 2010; Leal 2013). Multiple olfactory

proteins involved in the odorants perception were identified

(Hua et al., 2021; Zhan et al., 2021; Zhang et al., 2021).

Firstly, hydrophobic odorants enter the insects through the

olfactory pores of cuticular chemosensilla (Stocker 1994;

Wang et al., 2020). Secondly, odorant binding proteins

(OBPs) and chemosensory proteins (CSPs) bind to

hydrophobic odorants and transport them to the olfactory

sensory neurons (OSNs) (Vogt and Riddiford 1981; Zhang et

al., 2018; Zhang et al., 2021). Then, odorant receptors (ORs) as

odorant-gated ion channels play roles in insect olfaction. They

are formed by a heteromultimeric complex of the odorant

receptor co-receptor (Orco) and a ligand-selective Or, which

are activated when the odorant binds to the binding site

(Laughlin et al., 2008; Sato et al., 2008; Wicher et al., 2008;

Stengl and Funk 2013; Butterwick et al., 2018; Del Mármol et al.,

2021) and convert the chemical signals into nerve impulses (Ha

and Smith 2009). Next, odorants are degraded by odorant

degrading enzymes (ODEs) (Ishida and Leal 2005; Wang M.

M. et al., 2021). Subsequently, nerve impulses are transmitted to

the central nervous system (CNS) to guide the insects’ behaviors

(Leal et al., 2005).

CSPs are small water-soluble proteins and are major binding

proteins in insects with small molecular weight of ~12 kDa. CSPs

possess a conserved cysteine CSP motif (C1-X6-8-C2-X16-21-C3-

X2-C4) that form two disulfide bridges (C1-X6-8-C2, C3-X2-C4)

(Zhou et al., 2006). The disulfide bonds in the CSP motif are

inter-helical with two small loops, forming a rigid hydrophobic

pocket involved in ligand binding (Lartigue et al., 2002). This

folding conformation are different from those of insect OBPs

(Tegoni et al., 2004). Some CSPs function in chemosensory signal

transduction and solubilization of pheromone components

(Zhan et al., 2021; Zhang et al., 2021). Other CSPs are

involved in insect physiological processes and behavior, such

as moulting, tissue formation, regeneration, reproduction and

resistance (Li et al., 2015; Zhu et al., 2016; Pelosi et al., 2018).

BodoCSP1 is involved in host plant volatiles perception in

Bradysia odoriphaga (Zhang et al., 2021). CforCSP1, 5 and 6

are involved in the chemical communication between Cylas

formicarius and host plant volatiles (Hua et al., 2021). Besides

the chemosensory functions, CSPs are found to have various

physiological functions. In Locusta migratoria, CSPs are involved

in the physiological transition from solitary to the gregarious

phase (Guo et al., 2011). CSP5 in Apis mellifera functions in

embryo development (Maleszka et al., 2007). In Solenopsis

invicta, CSP9 is responsible for cuticle development (Cheng

et al., 2015). In Periplaneta Americana, CSP10 participates in

leg regeneration (Kitabayashi et al., 1998). BmorCSPs of Bombyx

mori are associated with insect resistance to insecticide

abamectin (B1a and B1b avermectins) (Xuan et al., 2015).

The tea green leafhopper, Empoasca onukii (Hemiptera:

Cicadellidae) is a serious pest of tea plants in East Asia. The

nymphs and adults suck the sap from the fresh buds while female

adults lay eggs in tender plant shoots, which leads to early

symptoms of chlorosis and leaf curling, followed by browning,

shriveling and necrosis that ultimately destroy the whole leaf (Jin

et al., 2012). Outbreaks of E. onukii lead to significantly reduction

of tea yields both in summer and autumn, two periods of tea

harvest, with economic losses up to 15%–50% in China (Chen

et al., 2019) and 33% in Japan (Zhang et al., 2019). For now,

chemical insecticides remains the main control strategy for its

management. However, the development of insecticide

resistance/tolerance in the tea green hopper makes its control

difficult. Meanwhile, the excessive use of insecticides damages the

ecological environment and causes the residue problems of tea.

Therefore, it is urgent to develop the safe strategies to control this

pest. Understanding the mechanism and signals that are involved

in the odorant reception of E. onukii may provide the clues of

control methods, which enhance the tea safety.

Twenty-six species-expanded CSP genes have been recently

identified in E. onukii based on genome data (Zhao et al., 2022).

However, there is no information about the CSPs that can bind to

the volatiles from tea, which can be further used to develop the

alternative control strategies against E. onukii.

In the current study, we focused on analyzing the CSPs

distributing in clusters on Chromosome 1. Results showed that

there are 7 CSPs distributing in clusters on chromosome 1.

However, only 3 CSPs were successfully expressed in the

expression vector. Bases on phylogenetic analysis with aphid,

plant bug, and plant hoppers, these 3 CSPs belonged to aphid

CSP4 and aphid CSP6 cluster respectively. We named them as

EonuCSP4, EonuCSP6-1, and EonuCSP6-2. To identify the roles

of these CSPs, we analyzed their expression patterns. Besides,

binding properties of the 3 CSPs were investigated by

fluorescence binding assays. In addition, we use a Y-tube

olfactometer to detect the behavioral responses of E. onukii to

volatiles. These results provide clues for better understanding the

chemosensory mechanisms of E. onukii, which lead to the novel

way of pest control strategies.

Materials and methods

Sample collection, total RNA extraction
and cDNA synthesis

E. onukii adult samples were collected in Fuzhou, Fijian

province, southeastern China in May 2020 (on the tea cultivar
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of Fudingdabai), and maintained on tea plants in lab. The

insectarium environment was set at 25°C ± 1°C and 60 ± 5%

relative humidity (RH) with a photoperiod (light: dark = 14:10).

Total RNA was extracted using Eastep® Super Kit (Promega,

Beijing, China) according to the protocol. The concentration of

RNA was assessed by NanoDrop 2000 spectrophotometry

(NanoDrop, DE, USA) by measuring the OD at 260 nm.

Then, the cDNAs were synthesized using FastKing gDNA

Dispelling RT SuperMix (Tiangen, Beijing, China) according

to the protocol.

Phylogenetic analysis

CSP sequences from plant bugs, aphid and plant hoppers

were from previous study (Wang Q. et al., 2019). Sequences

alignments were conducted with the MUSCLE alignment

program (http://www.drive5.com/muscle/manual/). We used

Neighbor-Joining algorithm (NJ) to construct unrooted

phylogenies of these sequences with MEGA7 (Kumar et al.,

2016). Bootstrap values were calculated with 1000 replicates;

bootstrap values < 50% were deleted from the branches.

3D modeling

We used the strategies to predict the 3D modeling of the

CSPs, which was described before (Zhang et al., 2020). By

homology searching, the CSPs that we identified have > 40%

homology with the CSP templates in the Protein Data Bank

(http://www/rcsb.org/pdb). Based on the high sequence

similarity (Supplementary Table S2) with the 3 E. onukii

CSPs, NMR solution structure of CSPsg4 (PDB ID: 2gvs.1.A)

was used as the template to build the 3D structures of the 3 CSPs

using the online program SWISS MODEL. Information of the

template was shown in Supplementary Table S2. The final 3D

model was assessed using Verification Server (http://services.

mbi.ucla.edu/SAVES/).

Expression patterns analysis

Body parts were collected from both adult males and females

including head, thorax, abdomen, leg. Different parts were

dissected from 1 to 5 days old adults (300 males and

300 females). Five biological replicates were prepared. Total

RNA was extracted following the protocols above (section of

Total RNA extraction and cDNA synthesis). We performed the

qPCR to analyze the expression patterns of the 3 CSP genes

(primers are listed in Supplementary Table S1). qPCR was

performed on ABI Prism 7500 Fast Detection System

(Applied Biosystems, Carlsbad, CA, United States). Each

reaction contained 10 μl of 2 × GoTaq qPCR Master Mix,

0.4 μl of each primer (10 μM), 7 μl of nuclease-free water,

0.2 μl of CXR References Dye and 2 μl of sample cDNA

(500 ng μl−1). The thermocycler program had an initial

95 denaturation step followed by 40 cycles consisting of a 10 s

denaturation at 95, a 40 s annealing at 60, and a 30 s extension

step at 72. The relative expression levels of BodoCSP1 were

analyzed using the 2−ΔΔCT method (Li et al., 2021). β-actin gene

was used as a control to normalize target gene expression and

correct for sample-to-sample variation.

Bacterial expression and purification of
recombinant CSP proteins

Primers designed for constructs were shown in Supplementary

Table S1. Purified PCR products were ligated into the expression

vector pET32a (+) with TRX-6 His tag (~17 kDa) and the resulting

construct were transformed into Escherichia coli BL21 (DE3)

competent cells. These recombinant plasmid CSPs were firstly

confirmed by sequencing. Bacteria transformed with recombinant

plasmids were cultured in 1000 ml Luria−Bertani (LB) medium

containing 100 μg/ml of ampicillin. Then the recombinant protein

was induced at 16°C for 24 h with 1 mM isopropyl β-d-1-
thiogalactopyranoside (IPTG) when OD600 reached 0.4–0.6. We

performed the centrifugation to collect the cells at 8000g for 5 min at

4°C and then sonicated in ice. The recombinant protein was further

purified by Ni-NTA resin (GE). The poly-histidine tag was not

removed following studies before (Terpe. 2003; Li et al., 2016; Tian

and Zhang. 2016; Cui et al., 2018; Zhang et al., 2020). Purified

protein was verified by sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE). Finally, purified protein was dialyzed

with Buffer B. The molecular weights of recombinant EonuCSP

proteins are consist with the predicted molecular weight of

EonuCSPs (predicted at https://web.expasy.org/protparam/) plus

a TRX-6 His tag (~ 17 kDa).

Competitive fluorescence binding assays

Based on the results of previous studies (Zhao et al., 2002;

Zhang et al., 2012; Zhao et al., 2014; Cai et al., 2017; Xu et al.,

2017), we chose 15 typical volatile components as ligands for the

fluorescence competitive binding assays (Table 1). These volatile

components are the volatile components in tea (Cai et al., 2017)

with purity > 98% (Table 1). N-phenyl-1-naphthylamine (1-

NPN) was used as the fluorescent probe. The excitation

wavelength in the fluorescence spectrometer was set to

337 nm, which was the results of an optimization that we

achieved in lab. The scanning wavelength was 420–600 nm.

The tested chemicals were dissolved in methanol in

preparation for 1 mM stock solution. To measure the affinity

of 1-NPN to the CSP proteins, 2 μM solution of purified protein

in buffer B was titrated with aliquots of 1 mM1-NPN dissolved in
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methanol to final concentrations ranging from 2 to 20 μM. Then

the affinities of ligands were tested by competitive binding assays

through titrating the chemical competitor from 2 to 20 μM into

the 1-NPN and EonuCSPs mixed solution (both at 2 μM). We

determined the binding constants of 1-NPN by Scatchard

formula. The dissociation constant (Kd) for binding between

CSPs and 1-NPN was determined with the Scatchard linear

regressive equation in the software GraphPad Prism 5.0

(GraphPad Software Inc., La Jolla, CA). The binding affinities

of the competitors were evaluated from the corresponding IC50

according to the equation: Ki = IC50/(1 + [1-NPN]/K1-NPN).

[1 – NPN] is the free concentration of 1 – NPN, while K1-NPN is

the dissociation constant of the protein/1-NPN complex (Zhang

et al., 2021). Tested compounds with Ki < 20 μM shows relatively

high binding affinities to EonuCSPs.

Y-tube olfactometer assay

We use a Y-tube olfactometer (1.5 cm in diameter, arms with

8 cm length, and a stemwith 18 cm length) to detect the behavioral

response of E. onukii to volatiles. The incoming air to the tube was

firstly filtered using active carbon and then humidified with the

ultrapure water. The air through the arms was blown at a constant

flow (300 ML/min). A total of 20 μL tested volatile oil (10 μg/μL in

methanol (HPLC)) pipetted onto 1 cm diameter filter paper. This

filter paper was placed in the chamber, which connected to one

arm of the Y-tube olfactometer. As control, the same filter paper

treated with 20 μL of methanol was placed in the chamber

connected to another arm of the Y-tube. This experiment was

performed in the dark room, which employed a light-emitting

diode as the light source. Each adult was introduced into the

middle of the stem of the Y-tube and the individuals that made a

choice within 8 min were recorded. Individuals moving toward the

odorant source for half of the arm distance and stayed for 1 minute

were recorded as odorant choice. For each volatile component,

90 adult were used. After 10 insects were tested, the Y-tube

olfactometer was washed with 75% ethanol and air-dried, and

tested volatiles were placed in another arm for the subsequent tests.

Odor resource are shown in Table 1.

Result

Sequence and homology analysis

The full length cDNAs encoding EonuCSP4, 6-1, and 6-2

were amplified (Supplementary Figure S1), cloned and further

verified by sequencing. The gene sequences were submitted to

GenBank with accession number MF509603.1, MF509616.1 and

MF509617.1. According to the genome annotation of E. onukii

(Zhao et al., 2022), these 3 CSPs are located on Chromosome 1,

TABLE 1 Binding affinities of all tested ligands to the 3 CSPs in E. onukii.

Ligands Source CAS number Purity (%) EonuCSP4 EonuCSP 6-1 EonuCSP6-2

IC50 (μM) Ki (μM) IC50 (μM) Ki (μM) IC50 (μM) Ki (μM)

Methyl Salicylate TCI 119-36-8 >99% U.d. U.d. U.d. U.d. U.d. U.d.

Ocimene MACKLIN 13877-91-3 ≥90% 21.96 18.93 U.d. U.d. U.d. U.d.

Cis-3-Hexenyl n-valerate TCI 35852-46-1 >98% U.d. U.d. U.d. U.d. U.d. U.d.

β-ionone MACKLIN 79-77-6 95% U.d. U.d. U.d. U.d. U.d. U.d.

Ethyl Benzoate J&K 93-89-0 >99% U.d. U.d. U.d. U.d. U.d. U.d.

Benzaldehyde MERCK 100-52-7 99% U.d. U.d. 21.32 18.54 U.d. U.d.

Cis-3-Hexrnyl Butyrate MACKLIN 16497-36-4 ≥98% U.d. U.d. U.d. U.d. U.d. U.d.

(-)-Linalool MACKLIN 126-91-0 ≥95% U.d. U.d. U.d. U.d. U.d. U.d.

Ethyl Decanoate TCI 110-38-3 >98% U.d. U.d. U.d. U.d. U.d. U.d.

Cis-3-Hexenyl Hexanoate MACKLIN 31501-11-8 98% U.d. U.d. U.d. U.d. U.d. U.d.

Cis-3-Hexen-1-ol ALADDIN 928-96-1 98% U.d. U.d. U.d. U.d. U.d. U.d.

Limonene MACKLIN 5989-27-5 >99% U.d. U.d. U.d. U.d. U.d. U.d.

Farnesene ALADDIN 502-64-4 98% 20.17 17.85 U.d. U.d. U.d. U.d.

trans-β-Farnesene ALADDIN 18794-84-8 98% U.d. U.d. U.d. U.d. U.d. U.d.

3-Carene TCI 13466-78-9 90% U.d. U.d. U.d. U.d. U.d. U.d.

“U.d.” means that the Ki exceeded 20 μM. Low Ki values mean high binding affinity for protein and the test volatiles. Purity (%) showed the ligand concentration range.
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with EonuCSP6-1 and 6-2 tandemly distributed (Supplementary

Figure S2). Sequence analysis showed that their ORF sequences

are 372 bp, 396 bp, and 399 bp respectively (Supplementary Table

S3). Meanwhile, the EonuCSP 4, 6-1 and 6-2 proteins were

predicted to contain the signal peptides of 18 amino acides at

their N-terminus. Furthermore, the alignments of these cloned

CSPs were done with homologues from other insects (Figure 1A).

As the results showed, EonuCSP4, 6-1, and 6-2 were found to

contain typical characteristics including 4 conserved cysteine

residues with the following pattern: C1-X6-8-C2-X16-21-C3-X2-

C4 (Figure 1A).

Moreover, we searched the CSPs in other Hemiptera species

including aphid (Acyrthosiphon pisum (Api), Myzus persicae

(Mpe), Aphis gossypii (Ago), Aphis glycines (Agl) and Sitobion

avenae (Sav)), plant bugs (Adelphocoris lineolatus (Alin),

Adelphocoris suturalis (Asu), Apolygus lucorum (Alu)), and

plant hoppers [Empoasca onukii (Eon), Laodelphax striatellus

(Lst), Nilaparvata lugens (Nlu) and Sogatella furcifera (Sfu)].

Based on the results, EonuCSPs are clearly clustered together to

form 2 homologous subgroups named CSP4 and CSP6 supported

by high bootstrap values (Figure 1B).

3D model of the 3 EonuCSP

The 3D structurally determined CSP, chemosensory protein

CSP-sg4 (PBD ID: 2gvs.1.A) was found to share sequence

similarities of more than 45% with the 3 CSPs

(Supplementary Table S2). Thus, we selected this structurally

determined CSP as template to build the 3D structural model of

EonuCSP4, 6-1, and 6-2 using SWISS-MODEL (Figure 2). The

results or Ramachandran plot showed that 87.9%, 85.1%, and

87.2% of the residues were in preferred regions, all the residues

(100%) were in the allowed region (Supplementary Figure S3),

suggesting that the predicted models of the 3 CSPs are generally

reliable. The predicted 3D structures of these 3 CSPs consist of six

α-helices (Figures 1A, 2).

Expression profile of EonuCSP4, 6-1 and
6-2

Based on the previous assessment, EonuCSP4, 6-1, and 6-2

were predominantly expressed in antennae (Zhao et al., 2017).

FIGURE 1
Homology analysis and phylogenetic relationship of EonuCSPs with CSPs from other insects. (A). Secondary structure of E. onukii
chemosensory proteins (EonuCSP4, 6-1, and 6-2). α -helices are displayed as straight. Identical residues are highlighted in white letters with a red
background. Residues with similar physicochemical properties are shown in red letters with a blue frame. The conserved cysteines are labeled with
asterisk. (B). Phylogenetic relationships of the CSPs. Species includes hoppers (N. lugens (Nlug), S. furcifera (Sfur), and L. striatellus (Lstr)], aphids
(A. pisum (Apis), M. persicae (Mper), A. gossypii (Agos), A. glycines (Agly), and S. avenae (Save)), and plant bugs (N. lugens (Alug), L. striatellus (Lstr), and
S. furcifera (Sfur)). E. onukii CSPs was marked with arrowhead. CSPs are classified into 8 subfamilies in Aphid based on previous study (Wang Q. et al.,
2019), which were marked in red. The 3 CSPs belonged to aphid CSP4 and aphid CSP6 cluster respectively. Bootstrap values were calculated with
1000 replicates; bootstrap values < 50% were deleted from the branches.
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For more accurate estimation of the expression profiles, we

analyzed the expression patterns of the CSPs in multiple body

parts. Results showed that none of the 3 CSP genes were

expressed in a specific body part (Figure 3). EonuCSP4 was

expressed higher in the head and abdomen (p < 0.05); while

EonuCSP6-1 and EonuCSP6-2 exhibited a higher expression in

thorax than in other body parts (p < 0.05; Figure 3).

Bacterial expression and purification of
the 3 EonuCSP

The high expression of the 3 CSPs in the antennae suggested

that they were potentially involved in peripheral olfactory

reception for E. onukii. In order to screen the putative ligands

for these CSPs, we first expressed the 3 CSPs in a bacterial system.

pET-32a (+)/EonuCSPs were successfully induced and expressed

in BL21 (DE3) cells. All these 3 EonuCSPs were mainly present in

the supernatant. Subsequently, expression and purification of

EonuCSP4, EonuCSP 6-1 and EonuCSP6-2 recombinant proteins

containing His-Tag were assessed by SDS-PAGE with the

molecular weight of ~30.61 kDa, ~32.06 kDa, and ~32.12 kDa

respectively (Figure 4).

Fluorescence binding assay

For the ligand binding assay, the binding affinity of the

fluorescent probe 1-NPN with the 3 purified CSP proteins

were firstly measured (Figure 5A). Results revealed that the

3 purified CSP proteins (EonuCSP 4, 6-1 and 6-2) were

capable of binding 1-NPN with the dissociation constants

FIGURE 2
Three-dimensional structure of EonuCSPs. N-terminus, C-terminus, and helices are labeled. The six α-helices are labeled as α1- α6.

FIGURE 3
Expression profiles of the 3 CSPs in E. onukii. Transcript levels of the CSPs were normalized byβ-actin.
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(Kd) were 11.02, 12.52 and 10.22 μM respectively. Then, the

fluorescence competitive binding assay was performed to

determine the binding affinities of EonuCSP4, 6-1 and 6-2

(Figure 5B). Results revealed that different CSP protein

displayed various binding spectrum (Table 1; Figure 5B). And

of the 15 tested compounds, each CSP showed a relatively narrow

binding spectrum (Table 1; Figure 5B). For EonuCSP4, the

binding test results indicated that this CSP showed much

higher affinity to farnesene (Ki = 17.85) and ocimene (Ki =

18.93); whereas EonuCSP6-1 showed binding to benzaldehyde

(Ki = 18.54). However, EonuCSP6-2 showed little binding to all

the tested compounds, with Ki >20.

Behavioral trials

The behavioral responses of E. onukii adults to the tested

compounds were investigated in a Y-tube olfactometer. Results

showed that the adults of E. onukii displayed a significant

preference for benzaldehyde and cis-3-hexenyl n-valerate

(Figure 6), suggesting that other volatiles had no significant

effect on the behavior of these insects at concentration of

10 μg/μl.

Discussion

CSPs of insects could recognize, bind, and transport the

chemicals to odorant receptors, which play vital roles in

chemoreception (Leal 2013; Pelosi et al., 2018; Zhang et al.,

2021). Insect CSPs are also widely expressed in various tissues,

which are proved to be involved in multiple physiological

processes (Iovinella et al., 2013; Zhao et al., 2017). In this

study, 3 CSPs of E. onukii were cloned from E. onukii, and

the respective proteins they encoded were determined to have

four typical conserved cysteine spacing motif, which showed a

relative high identity with other insect CSPs (Zhang et al., 2020;

Hua et al., 2021; Zhan et al., 2021). We investigated the biological

binding characteristics of the 3 E. onukii CSPs to various plant

volatiles. In addition, the 3 CSPs were functionally characterized

using behavior bioassays to investigate the involvement of the

examined CSPs in plant–volatile detection and plant host

orientation behavior.

CSPs of insects exhibit broad expression profiles in various

tissues (Wang Z. et al., 2021). qRT-PCR results also showed that

the expression of EonuCSP 4, 6-1 and 6-2 were expressed in

various body parts. Based on the transcriptomes of E. onukii,

these three CSPs were also expressed in both antennae and body

(Zhao et al., 2017). These broad and diverse expression profiles of

EonuCSP 4, 6-1 and 6-2 may consistent with their potential

multiple roles in chemoreception and contact chemoreception.

Similar results were observed in Bradysia odoriphaga, B. mori,

and Nilaparvata lugens, in which CSPs was expressed in

antennae and the body (e.g. heads, wings, abdomen, and legs)

(Gong et al., 2007; Waris et al., 2018; Younas et al., 2018; Zhang

et al., 2021), suggesting the potential roles in contact

chemoreception. Because EonuCSP 4, 6-1 and 6-2 expression

were also found in heads, antennae and legs, we speculated that

these 3 CSPs function in chemosensation.

The predicted 3D structure of the 3 CSPs exhibited conserved

structural features, including six α-helices that form the

hydrophobic ligand-biding pocket (Lartigue et al., 2002;

Zhang et al., 2021). To further infer the potential roles of

EonuCSP 4, 6-1 and 6-2, the fluorescence competitive binding

FIGURE 4
Recombinant protein analyzed by SDS-PAGE. (A). Expression and purification of recombinant protein EonuCSP4; (B). Expression and
purification of recombinant protein EonuCSP6-1; (C). Expression and purification of recombinant protein EonuCSP6-2. Lane M: molecular marker.
Lane 1: cell pellet before induction with IPTG. Lane 2: cell pellet after induction with IPTG. Lane 3: purified protein, whichwas alsomarked in red lines.
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FIGURE 5
Fluorescence competitive ligand-binding assays of EonuCSPs. (A). Binding curve and the Scatchard plot of N-phenyl-1-naphthylamine (1-NPN)
to EonuCSP4, 6-1, and 6-2 respectively. (B). Competitive binding curves of EonuCSP4, 6-1, and 6-2 with various ligands including ester substances
(Cis-3-Hexenyl n-valerate, Ethyl Benzoate, Methyl Salicylate, Cis-3-Hexenyl Hexanoate, Cis-3-Hexrnyl Butyrate, and Ethyl Decanoate), alkene
substances (Limonene, Ocimene, Farnesene, trans-β-Farnesene, and 3-Carene), and aldehydes, ketones and alcohols [(-)-Linalool, Cis-3-
Hexen-1-ol, β-ionone, and Benzaldehyde]. Dissociation constants (Ki) of all examined ligands were evaluated. Low Ki values mean high binding
affinity for protein and the plant volatiles.

FIGURE 6
Response of E. onukii to 10 μg/μL compounds. Asterisks indicate significant differences; *p < 0.05, and **p < 0.01. NS indicates no significant
difference (χ2 test). Two compounds, Benzaldehyde (chi-square: 5; p value: 0.026) and Cis-3-Hexenyl n-valerate (chi-square: 8.8; p value: 0.003),
showed significant differences in this assay.
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assay were performed. Of the 15 tested compounds, only

3 compounds showed relatively high binding affinities (Ki <
20 μM) for EonuCSP4 (binding to farnesene and ocimene) and

EonuCSP6-1 (benzaldehyde), whereas EonuCSP6-2 showed weak

binding to all the tested compounds (Ki > 20 μM). These results

indicated that EonuCSP4 and EonuCSP6-1 might have the

appropriate binding sites for the compounds, which involved

in chemoreception of E. onukii. Behavioral responses also

showed that adult E. onukii exhibited a significant preference

for benzaldehyde, which was confirmed by previous studies (Cai

et al., 2017). Benzaldehyde is a prominent scent compound which

greatly contribute to the fruity, floral smells of flowers, plants,

and fruits. Also, benzaldehyde has a typical almond-like odor,

which is one of the key volatile components in all types of tea,

especially green tea, black tea, and oolong tea (Yang et al., 2013;

Wang X. et al., 2019). Thus, these findings indicated that

EonuCSP6-1 is a chemoreception protein, which may be

involved in attraction of E. onukii adults to host. Behavioral

responses also indicated that adult E. onukii exhibited a

significant preference for Cis-3-Hexenyl n-valerate. However,

we did not identified the potential CSPs that involved in binding

this compound.

In summary, we report the expressions and ligand binding

capabilities of 3 CSP of E. onukii, proving the potential olfactory

roles of CSPs in host-location behavior of tea leafhopper. Totally,

three volatiles exhibited strong binding abilities for CSPs in E.

onukii, and one of them were able to elicit behavioral responses.

These results provide clues into the mechanism of olfactory

recognition of E. onukii. Besides, this study indicate that the

CSPs in E. onukii are involved into the functions of host plant

volatiles perception, and can be used as a molecular target for

screening behaviorally active compounds for alternative control

strategies.
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