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Computed tomography (CT) imaging results are an important criterion for the

diagnosis of lung disease. CT images can clearly show the characteristics of lung

lesions. Early and accurate detection of lung diseases helps clinicians to

improve patient care effectively. Therefore, in this study, we used a

lightweight compact convolutional transformer (CCT) to build a prediction

model for lung disease classification using chest CT images. We added a

position offset term and changed the attention mechanism of the

transformer encoder to an axial attention mechanism module. As a result,

the classification performance of the model was improved in terms of height

and width. We show that the model effectively classifies COVID-19, community

pneumonia, and normal conditions on the CC-CCII dataset. The proposed

model outperforms other comparable models in the test set, achieving an

accuracy of 98.5% and a sensitivity of 98.6%. The results show that our method

achieves a larger field of perception on CT images, which positively affects the

classification of CT images. Thus, the method can provide adequate assistance

to clinicians.
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1 Introduction

According to real-time statistics from the World Health Organization (WHO) and

Hopkins University, as of 1 August 2022, there were an estimated 570 million confirmed

COVID-19 cases worldwide, with −6.4 million deaths (Dong et al., 2020; Zhu et al., 2020).

With an increasing number of new cases recorded worldwide, COVID-19 has

considerably impacted industries. Additionally, people’s everyday lives have been

seriously affected. Therefore, the primary means of prevention and detection entail

controlling the spread of COVID-19. In clinical settings, nasopharyngeal and

oropharyngeal swabs are the main screening methods for COVID-19 (Xu et al.,

2020). However, many circumstances might cause a false negative test result (Bai

et al., 2020). For example, at the initial stage, when the virus enters the human body,
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the amount of virus present in the human body is within an

undetectable level. And different sampling times and locations

may yield insufficient viral amounts in the samples. In addition,

the laboratory equipment and the testing capabilities are poor,

and a quality management system has not been established. Thus,

these restrictions increase the risk of COVID-19 transmission

and cause patients to receive delayed treatment or a wrong

diagnosis.

The advantages of computed tomography (CT) are

noninvasiveness, high resolution, and timeliness, which help

diagnose COVID-19. CT expedites the diagnostic processes

and is an effective supplement to nucleic acid detection. CT

images can clearly find lesions, observe their size, shape, texture,

and other characteristics, and accurately segment them

(Bernheim et al., 2020; Rubin et al., 2020; Wong et al., 2020).

Analyzing the degree of pulmonary involvement and the severity

of infection helps support the follow-up clinical treatment of

patients. However, community pneumonia (CP) is also associated

with cough, sputum,malaise, and fever (Afshar et al., 2020; Zhang

et al., 2020a; Brunese et al., 2020; Han et al., 2020; Mahmud et al.,

2020; Oh et al., 2020; Ozturk et al., 2020; Calderon-Ramirez et al.,

2021; Ozyurt et al., 2021), and CT images of community

pneumonia are very similar to COVID-19. This not only

makes it more difficult to read the images (Shi et al., 2020)

but also greatly increases the workload of the doctors. Further,

manually labeling the infected area is time-consuming, and the

accuracy is subject to the doctor’s subjectivity.

Deep learning (Li et al., 2009; Li et al. 2010; Li et al. 2015;

Ardakani et al., 2020) has demonstrated excellent capabilities in

auxiliary lung diagnosis recently. It can automatically mine high-

dimensional features related to clinical outcomes from CT

images. The deep learning-based COVID-19 image

classification model has successfully assisted in patient disease

diagnosis (Esteva et al., 2017; Litjens et al., 2017; Ardila et al.,

2019; Esteva et al., 2019; Qin et al., 2019; Topol 2019; Mei et al.,

2020; Sun et al., 2022). An automatic and accurate method for

COVID-19 detection based on the ResNet50 model was

proposed (Li et al., 2020). And 4,356 chest CT images of

3,322 patients were used to distinguish between COVID-19,

CP, and non-pneumonia. The sensitivity, specificity, and area

under the curve (AUC) scores of the model were 90%, 96%, and

0.96, respectively. A method for COVID-19 detection based on

the DenseNet201 depth transfer model was proposed (Jaiswal

et al., 2020). The model was trained using the Image Net dataset

and was 96.3% accurate in classifying and recognizing chest CT

images. Further, Wu et al. integrated COVID-19 classification

and lesion segmentation into the COVID-CS network, and the

two tasks shared the same backbone network (Wu et al., 2021).

The classification test set obtained an average sensitivity and

specificity of 95.0% and 93.0%, respectively. Some researchers

built Dense Net-121 to identify the CT images of COVID-19 in a

comparative experiment to achieve self-supervised learning and

an accuracy of 85.5% (Chen et al., 2021).

However, the classification of COVID-19 still has the

following problems. At present, many algorithms (Li et al.,

2020; Wang et al., 2020; Hassani et al., 2021) can be used to

partially solve the problem of scarce COVID-19 data. But most

methods are difficult to accurately capture the essential feature

space of various categories of data in a small amount of image

data. And, most of the existing algorithms have poor

classification performance for common pneumonia and

COVID-19, which seriously affects the overall classification

performance of the algorithms. It will hurt the subsequent

research and eventually make the algorithms difficult to be

applied in the clinic.

Therefore, to increase the recognition ability of the model for

common pneumonia and COVID-19, and further improve the

accuracy and efficiency of COVID-19 image recognition, we

employ a novel method to solve the above problems in the CT

image classification of COVID-19. A new sequence pooling

approach and convolution are proposed herein, i.e., a smaller

and more compact transformer based on CCT suitable for

datasets lacking pneumonia images. First, the self-attention

mechanism in CCT is decomposed into two one-dimensional

(1D) self-attention mechanisms: height axis and width axis (Ho

et al., 2019; Huang et al., 2019). Subsequently, while the axial

attention mechanism replaces the original self-attention

mechanism, location coding is added to obtain a larger receptive

field. Finally, the position offset item is added to the position-coding

to obtain the dependence of the precise position information during

training. Herein, the addition of the axial attention mechanism

considerably improved the accuracy of COVID-19 detection on

chest CT images, achieving better performance results for both

COVID-19 model accuracy and other pneumonia screenings. The

main innovations herein are as follows. 1. A new sequence pooling

strategy and convolution are proposed along with a smaller and

more compact transformer based on CCT; this transformer is

suitable for datasets lacking pneumonia images. 2. We improved

the self-attention mechanism of the transformer encoder to an axial

attention mechanism and added a position offset term. The long-

range location dependencies of accurate location information are

obtained during training to improve the model’s classification

performance. 3. Compared to the Vision Transformer (ViT)

structure and the traditional Convolutional Neural Network

(CNN), the performance on the small COVID-19 dataset is

stronger.

2 Materials and methods

Our proposed sequence pooling method and convolution

module of the CCT model can reduce the class token and

embedding requirements. The convolution module can be

adapted to the small COVID-19 dataset. The model belongs

to the lightweight transformer structure and comprises a

convolution module, embedding, transformer encoder,
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sequence pooling, and multilayer perceptron (MLP) (Ramchoun

et al., 2017) head (Figure 1).

2.1 Improved compact convolutional
transformer model structure

We propose a patching method based on small-scale

convolutional modules in the CCT to completely preserve

local information. This method does not affect how the

transformer encoder calculates patch interactions. First, after

the input feature vector of the convolution module is normalized,

the convolution operation and the ReLU function are used for

feature extraction. Second, down-sampling through max-pooling

extracts essential information. Third, the residual structure of

ResNet50 is employed as an additional feature extraction to

prevent the transformer structure data from being unable to

be trained during the backpropagation process. Finally, the

output vector processed by the convolution module meets the

input dimension requirements of the embedding layer.

Subsequently, the 3D vector is down-sampled, and the ReLU

activation layer is performed. After convolution and flattening

operations, the vector dimension of the same size as a position

embedding layer of the improved model is obtained (Figure 2).

The CCT can adapt to training with smaller datasets by adjusting

the size of patches. The CCT introduces a patching method based on

convolution. The relationship between patches can be encoded while

restraining the local information. This method can effectively

tokenize and maintain the local spatial relationship, thereby

eliminating dependence on the class token and providing greater

model flexibility.

2.2 Transformer encoder

The transformer encoder of the CCT was consistent with that

of the ViT. Multiple encoders exist in the model, with no weight

FIGURE 1
Our compact convolutional transformer models.

FIGURE 2
CCT diagram of convolution module.
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sharing among them. Figure 3 illustrates the structure of the

encoder. Each coding layer comprises two sublayers: multihead

self-attention (MSA) and MLP. Each sublayer is preceded by

layer normalization. The input sequence was set to x; the output y

of a single coding layer was obtained. The formula is as follows:

xl−1′ � xl−1 +W −MSA(LN(xl−1)) (1)
ℓ ∈ 1, 2, . . . , L (2)

xℓ � x′
ℓ
+MLP(LN(xℓ−1)) (3)

In Eqs 2, 3, a structure similar to the residual network (He

et al., 2016) is laid out. This design retains more information,

reduces information loss, and can use a more significant

number of encoders for training. L denotes the number of

encoders.

The transformer can establish distance dependence on the

target while extracting more powerful features by multifocusing

on the global content information. The self-attention mechanism

in the encoder, given a height of h, a width of w, and a channel of

input embedded patches X ∈ Rh×w×cin , and an output formula

yo ∈ Rh×w×cout with position o � {i, j |
i ∈ {1, . . . , h}, j ∈ {1, . . . ,w}} is defined as follows:

q � WQx (4)
k � WKx (5)
v � WVx (6)

yo � ∑
p

softmax(qTo kp)vp (7)

The q, k, and v vectors in Eqs 4–6 are the query, key, and

value, respectively. WQ, WK and WV ∈ R(cin×coutn) are the weight
matrices learned during training. In Eq. 6, v is multiplied by the

input xi and the trainable matrix WV to obtain the input

eigenvector. The dot product of q and k is used to calculate

the weight of v. In Eq. 7, p � (w, h), q and k are normalized by

SoftMax and multiplied by v to obtain the attention value. In

contrast to convolution, the self-attention mechanism may

obtain nonlocal information from the entire feature

map. However, the calculation of this attention value comes at

a cost. Applying the self-attention mechanism to the visual model

architecture becomes impossible as the feature map increases.

Additionally, the self-attention layer does not use any position

information when calculating the nonlocal context. However, the

position information is vital for obtaining the structure and shape

of the target in the visual model.

Based on the abovementioned reasons, the axial attention

mechanism is divided into two 1D self-attention mechanisms:

the height and width axes. Additionally, a position code was

added to the query mechanism. The structural diagram is shown

in Figure 4. The axial attention mechanism can also match the

original self-attention mechanism dimensions. The width and

height dimensions are considered to reduce the number of

calculations and improve the calculation efficiency. The

position offset terms are set while collating the attention value

to make it more responsive to the position information. This bias

term is usually called relative position coding and can be learned

through training.

The attention model of Ramachandran et al. uses relative

position coding for queries only. This study combines the axial

attention mechanism and position coding to apply them to all

queries, keys, and values. For any given input feature map x, an

axial position-sensitive attention mechanism with position

encoding along the width-axis, the equation is as follows:

yij � ∑
p�1

p�1
softmax(qTijkiw + qTijr

q
iw + kTijr

k
iw)(viw + rviw) (8)

where rq, rk, rv ∈ RW×W, rqiw, r
k
iw, and rviw are learnable vectors

representing the position codes of queries, keys, and values. For

example, the attentionmechanisms of the height andwidth axes have

the same definition. One axial attention layer spreads information on

a specific axis, and both axial attention layers use an MSA

mechanism. After the position offset term is an introduction to

the axial attention mechanism Compared to the original self-

FIGURE 3
Encoder structure drawing.
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attention mechanism, the global receptive field acquisition feature

can be realized, thus reducing the computational complexity.

2.3 Serial pooling

Herein, the feature vector classification results are output

using sequence pooling rather than class tokens (Devlin et al.,

2018). For the L-layer transformer encoder, the output results are

collected in sequence. The model is compact as the data sequence

includes information and category information for different parts

of the input image, thereby compacting the model. Sequence

pooling outputs the sequential embedding of the latent space

generated by the transformer encoder to correlate the input data

better. The output feature mapping is defined as

T: Rb×n×d ↦ Rb×d, and the equation is given as follows:

XL � f(X0) (9)

where XL or f (X0) is the L-layer Transformer encoder, b is the

batch size, n is the sequence length, d is the embedding

dimension, and (XL) ∈ Rd×1. Using the SoftMax activation

function, the equation is given as follows:

X′
L � softmax(g(XL)T) (10)

As (XL) ∈ Rd×1, we get:

Z � X′
LXL � softmax(g(XL)T) × XL (11)

where z ∈ Rb×1×d merge the second dimension to get z ∈ Rb×d.

This output can then be used to obtain the result through a linear

classifier.

2.4 Datasets

2.4.1 Lung data COVID-19 CT-CCII
We used the classification dataset from the China

Consortium for Chest CT Imaging Research (CC-CCII)

(Zhang et al., 2020b; Zhou et al., 2021). Informed consent

from the patients was obtained, reviewed, and approved by

the Medical Ethics Committee. The dataset comprises

FIGURE 4
Axial attention.

Frontiers in Physiology frontiersin.org05

Sun et al. 10.3389/fphys.2022.1066999

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1066999


6752 CT scans of 4,154 participants. For our training test, we

used 5985 CT scans. Among them, the training set is 3,017, and

the test set is 2,968. The training and test set distributions were

consistent, and the ratio of COVID-19, community pneumonia,

and normal in the dataset was 1:1:1. The image size is three-

channel, 512 × 512 × 3. Figure 5 presents an example of the

dataset. Figures 5A–C show CT images of a typical patient, a

patient with COVID-19, a patient with community pneumonia

(mainly bacteria, viruses, chlamydia, and other microorganisms

causing pneumonia), respectively.

2.4.2 Dataset partitioning
To divide the dataset, the K-Fold cross-validation method

was employed. First, the dataset was divided into K sets, and each

fold training used K-1 sets as the training set to train the model

(K = 10). The remaining set was used as a validation set to test the

performance evaluation of each folded training model, and the

content of each validation set remained unrepeated. The data

augmentation methods of random rotation, horizontal flipping,

and contrast adjustment were used in training pre-processing to

improve the model’s generalization ability.

2.4.3 Experimental environment
Ubuntu18.04 was used as the operating system platform,

with Intel(R) Core (TM) i5-6500 CPU, Nvidia GeForce GTX

1080ti GPU, with 11 GB of video memory and 16 GB of RAM.

The model performance can be improved, and the training

time can be reduced with proper parameter configuration.

Stochastic gradient descent was used to train the optimizer,

and exponential decay was used to adjust the learning rate.

The initial learning rate is 0.001. Additionally, 10-fold cross-

validation was used for training with 100 epochs per fold. The

FIGURE 5
CC-CCII chest CT images. (A) Normal conditions; (B) COVID-19; (C) CP.
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details of the experimental training parameters are shown in

Table 1.

2.4.4 Evaluation indicators
To analyze the classification performance of the trained

model for COVID-19, CP, and normal, three performance

metrics were used: accuracy (Acc), sensitivity (Sens), and

AUC of the receiver operating characteristic (ROC). The mPA

is the average sum of each category’s pixel accuracies. The

formulas are as follows:

Acc � TP + TN

TP + FN + FP + TN
(12)

Sens � TP

TP + FN
(13)

mPA � 1
k + 1

∑
k

i�0

TP

TP + FN
(14)

where, TP represents the number of positive examples that are

predicted to be positive examples; FP represents the number of

negatives predicted as positives; FN represents the number of

positive classes predicted to be negative; TN represents the

number of negative classes predicted to be negative; k is the

number of categories.

Assuming that the ROC curve is formed by continuous links

of points whose coordinates are

{(x1, y1), (x1, y2), . . . , (xm, ym)}. The AUC formula is as

follows:

AUC � 1
2
∑
m−1

i�1
(xi+1 − xi) × (yi + yi+1) (15)

FLOPs � (2 × I − 1) × O (16)

where, where I and O represent the input and output neuron

numbers, respectively.

3 Results

3.1 Ablation experiment

COVID-19 pneumonia and other pneumonia lesions exhibit the

same characteristics of being in the lung area. However, the chest CT

scans contain other interfering areas. To ensure that the lung areawas

unaffected by the interference area, preprocessing was performed

during classification training to segment the lung area from the chest

CT image. Next, ablation experiments were conducted to verify the

segmentation effect of the new, improved model. The segmentation

test results are presented in Figure 6. Figure 6A shows the CT images

before segmentation, and Figure 6B shows the CT images after

segmentation in Figure 6A from left to right. The results show that

the newly proposedmethod can segment tiny lesion details, achieving

the highest segmentation performance.

We compared our model to other models to more accurately

evaluate its performance. The results are presented in Table 2. First,

the convolutional neural network was used to extract enough local

information after preprocessing the image features through the

convolution module during input. Next, the vector was input into

the improved transformer structure, and the initial self-attention

mechanism was replaced with the axial attention mechanism.

Further, a position offset term was added to improve the model

performance. Compared with the CCT model, the accuracy and

sensitivity of our improved model are increased by 1.7% and 2.3%,

respectively, and the number of floating-point operations (FLOPs) is

less than the model calculation amount of the CCT model.

Concerning the recognition speed of a single image, the

lightweight CCT single image recognition speed is the fastest, only

0.014 s. This is faster than all other models, and its recognition

accuracy has not dropped. The comparative results show that our

proposed improved method achieves the best results in screening

COVID-19 and CP.

In the medical image application of the transformer, the

input patch size parameter setting affects the model performance.

The self-attention mechanism in the transformer structure has

the advantage of obtaining global contextual connections. The

matrices of different models were used to evaluate the

performance. A total of 2968 CT images were tested. The

confusion matrix in Figure 7 shows the difference between the

actual and predicted values. The horizontal axis represents the

model prediction results, corresponding to the number of

predictions of different categories. The vertical axis represents

the ground-truth labels (normal, COVID-19, and CP). A 3 ×

3 matrix was used to compute the TP, FP, and FN values of the

multiclassification task. The numbers on the blue back-ground

are the number of correct predictions by the model. The values in

the other regions correspond to the values at which the model

predicted incorrectly, and the confusion matrix clearly shows the

number of types of model mispredictions. The results show that

the discrepancies between the chest CT images taken under

normal conditions and during pneumonia have different

presentation characteristics, leading to differences. Thus, it is

easier to make sound judgments about the model. However, a

small number of patients with mild COVID-19 or CP are

mistaken for normal owing to a lack of apparent symptoms

on chest CT images. Each model showed varying degrees of

misidentification, misidentifying both COVID-19 and CP as

TABLE 1 Training parameter settings.

Type Setting

Batch size 16

Learning rate 0.001

Optimizer SGD

Epoch 100

Ubuntu 18.04 PyToch1.6.0
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usual. This misidentification is due to certain similarities between

chest CT images of COVID-19 patients and other pneumonia

patients, such as ground-glass opacity and lung parenchyma

features. Among them, Mobilenet-v3 and our model have fewer

misidentifications. The test results in Figure 7E show

1034 COVID-19 CT images. Five and seven CT images were

wrongly identified as normal and CT, respectively. The

misdiagnosis rate is lower than in other compared models.

Our improved model achieved the highest accuracy and the

lowest misdiagnosis rate.

3.2 Real dataset model performance
comparison

(1) COVID-CT dataset

We investigated the performance of different models on the

COVID-CT dataset. Yang et al. collected 349 COVID-19 and

397 normal chest CT images in the COVID-CT dataset for

216 patients (Yang et al., 2020). However, some image data in

this dataset were marked or missing. Image quality may have

some impact on the training of the model. He et al., 2020 used

contrastive self-supervised learning for training and achieved a

model accuracy of 86%. Shalbaf et al. used 15 CNN benchmark

models for fine-tuning training with the best accuracy and

sensitivity of 84.7% and 82.2%, respectively (Gifani et al.,

2021). Table 3 shows the comparison between our method

and the methods above. The findings demonstrate that their

training programs have engaged in significant workloads and

relatively complex data preprocessing. However, our improved

method achieves the best performance results in the COVID-CT

dataset.

(2) SARS-CoV-2 CT-scan dataset

The SARS-CoV-2 CT-scan dataset comprises 2,482 chest CT

images, including 1252 COVID-19 and 1,230 non-COVID-

FIGURE 6
Example of ablation experiment comparison. (A) The CT image of the COVID-19 patient; (B) the result.

TABLE 2 Performance comparison of different models.

Modle Acc/% Sens/% AUC FLOPs (G) Time (s)

Efficientnet-b7 Tan and le., 2019 88.4 88.3 0.972 1.02 0.023

Mobilenet-v3 Howard et al., 2019 97.8 97.6 0.997 0.33 0.019

ViT (Nielsen et al., 2015) 95.7 95.6 0.992 0.73 0.017

CCT (Esteva et al., 2019) 96.8 96.3 0.993 1.03 0.015

Ours 98.5 98.6 0.999 0.91 0.014
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19 CT images. Soares et al. proposed the xDNN model and

divided the dataset into training and test sets in a 4:1 ratio (Soares

et al., 2020). After training, the accuracy and sensitivity rates of

the model were 97.38% and 95.53%, respectively, and the

essential auxiliary diagnosis ability was realized. Panwar et al.

proposed an improved VGG model and used the dataset for

training and testing, and the final sensitivity was 94.04% (Panwar

et al., 2020). The comparison results between our method and the

above methods are presented in Table 4. The results show that

our improvedmethod achieves the best performance results, with

accuracy and sensitivity values of 98.01% and 98.23%,

respectively.

FIGURE 7
Confusion matrix. (A) Efficientnet-b7; (B) Mobilenet-v3; (C) ViT; (D) CCT; (E) Ours.
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3.3 Subjective evaluation

The classification performance of our models was assessed

using a more specific evaluation. Ten lead physicians with over

5 years of clinical experience in radiology were invited to perform

independent image analysis (sharpness, resolution, invariance,

and acceptability). The scoring method of subjective evaluation is

presented in Table 5. One hundred CT images of the lesion area

were randomly selected, and 10 sets of test samples were

constructed equally.

The subjective quality evaluation results of clinicians are shown

in Table 6. The results show that our proposed lightweight CCT

achieves the best subjective quality evaluations regarding sharpness,

resolution, invariance, and acceptability. This is thanks to our

improved ViT as a network framework, using an attention

mechanism to compute from image height and width separately,

adding a position offset term to improve the model classification

performance, and our proposed method has the best performance in

maintaining edge and texture feature classification.

4 Discussion

The automatic classification and recognition of chest CT images

were improved by improving the CCT model. The self-attention

mechanism of the encoder was enhanced to a position-sensitive axial

attention mechanism. Meanwhile, the previous architecture was

expanded by adding position offset terms to the self-attention

mechanism to improve the classification ability of the ability.

Some interference areas were observed in the lung CT images of

the patients. Therefore, to keep the model from becoming infected,

when the data from the literature were employed simultaneously,

sufficient feature extraction of the model was achieved by horizontal

and vertical flipping, small angular rotations, and normalized data

amplification. Further, it improved the generalization ability of the

model to prevent overfitting.

This study CCT employs a new sequence pooling policy,

convolution, and smaller, more compact transformers than ViT.

Additionally, it compensates for the lack of medical image datasets

by eliminating class tokens and positional embedding requirements.

However, when the input dimension is large, the model operation

cost increases considerably, and global pooling does not use location

informationwhen extracting feature information, possibly leading to

information loss. Therefore, the self-attention mechanism in the

encoder was improved to an axial attention mechanism. The self-

attention mechanism was divided into two 1D self-attention

mechanisms, the high and wide axes, which were calculated from

the two dimensions of the width and height axis. Consequently, the

number of calculations and computational efficiency were

improved. Additionally, the position deviation was attached to

the query, key, and value; an accurate deviation was used to

obtain the position information, ensuring that more spatial

structural information could be obtained.

According to the results in Tables 2–4, adding the axial

attention mechanism considerably improved the accuracy of

TABLE 3 Model comparison of COVID-19 CT dataset.

Model Acc/% Sens/%

He et al., 2020 86 —

Gifani et al., 2021 84.7 82.2

Ours 87.3 86.7

TABLE 4 Model comparison of SARS-CoV-2 CT-scan dataset.

Model Acc/% Sens/% Specificity/%

Soares et al., 2020 97.38 95.53 —

Panwar et al., (2020) — 94.04 95.86

Ours 98.01 98.23 98.62

TABLE 5 Subjective quality evaluation of a scoring method.

Score Features of the
restored image

0 Severely distorted images

1 Images with severe distortion in some areas

2 Slightly distorted images

3 Difficult to spot distorted images

4 Images with better visual effects

5 Very sharp images

TABLE 6 Subjective quality evaluation of different algorithms.

Method Sharpness Resolution Invariance Acceptability

Efficientnet-b7 3.4 ± 0.35 3.6 ± 0.18 0.5 ± 0.41 3.8 ± 0.54

Mobilenet-v3 3.6 ± 0.72 3.9 ± 0.26 0.6 ± 0.55 3.9 ± 0.18

ViT 3.6 ± 0.39 4.1 ± 0.51 0.6 ± 0.89 4.1 ± 0.36

CCT 3.8 ± 0.65 4.2 ± 0.13 0.7 ± 0.21 4.1 ± 0.68

Proposed 3.9 ± 0.74 4.3 ± 0.29 0.7 ± 0.96 4.2 ± 0.71
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COVID-19 detection in chest CT images. In small datasets, the

performance was better than that of the standard transformer

structural network and comparable to that of the traditional

CNN. Although the transformer framework classification model

may be suitable for small datasets by changing the patch size or

encoder structure, some problems remain. For example, a

maximum of three categories of models were trained;

however, more categories could be used. As lung CT images

of patients with mild COVID-19 symptoms are very similar to

normal lung CT images, some of the discriminating errors from

the lung CT images of patients with mild symptoms were present

when the test set was used to validate the model. Consequently,

datasets can be added later to improve the model performance.

Although deep learning can represent a predictable information

relationship, which has good prospects for medical applications,

it is challenging in the context of data differences and other

factors in medical images.

5 Conclusion

Although transformers are generally considered to be suitable

only for large-scale or medium-scale training, this study shows that

our proposed lightweight CCT classification recognition model

works successfully on small data regimes and outperforms larger

convolutional models. The performance obtained using the

proposed model on the small COVID-19 dataset outperforms the

standard ViT structured network and is comparable to the

performance of traditional CNNs with significantly reduced

computational cost and memory constraints. Experiments show

that adding a position offset term by using the axial attention

mechanism as a Transformer encoder to compute from the

image height and width, respectively, can effectively improve the

model classification performance. Our proposed classification

method achieves the best performance with 98.5% accuracy and

98.6% sensitivity. The subjective quality assessment by physicians is

optimal proving that our method is more suitable for clinical

practice. Future studies can utilize a lightweight, compact method

for initial screening and segmentation network to segment focal

features of COVID-19 from chest CT images. We wish to

implement a user interface system for digital image processing

using a GUI. The main contents include the design of histogram

grayscale transformation, edge detection, smooth filtering, and

threshold segmentation for lung CT The main contents include

the design of histogram grayscale transformation, edge detection,

smooth filtering, and threshold segmentation for lung CT images.
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