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Objective:Previous behavioral studies have reported the potential of

transcranial alternating current stimulation in analyzing the causal

relationship between neural activity and behavior. However, the efficacy of

tACS onmotor performance and learning in healthy individuals remains unclear.

This systematic reviewexamines the effectiveness of tACS on motor

performance and motor learning in healthy individuals.

Methods: Literature was systematically searched through the Cochrane Library,

PubMed, EMBASE, and Web of Science until 16 October 2022. Studies were

eligible for review if they were randomized, parallel, or crossover experimental

designs and reported the efficacy of tACS on motor performance and motor

learning in healthy adults. Review Manager 5.3 was used to evaluate the

methodological quality and analyze the combined effect.

Results: Ten studies (270 participants) met all the inclusion criteria. The results

showed that motor performance was not significantly greater than that with

sham tACS stimulation [I2 = 44%, 95% CI (–0.01, 0.35), p = 0.06, standardized

mean difference = 0.17], whereas motor learning ability improved significantly

[I2 = 33%, 95% CI (−1.03, −0.31), p = 0.0002, SMD = −0.67]. Subgroup analysis

found that gamma bend tACS could affect the changes in motor performance

(I2 = 6%, 95% CI (0.05, 0.51), p = 0.02, SMD = 0.28), and online tACS did as well

[I2 = 54%, 95% CI (0.12, 0.56), p = 0.002, SMD = 0.34].

Conclusion: The results showed that tACS effectively improves motor

performance (gamma band and online mode) and motor learning in healthy

individuals, which indicates that tACS may be a potential therapeutic tool to

improve motor behavioral outcomes. However, further evidence is needed to

support these promising results.
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1 Introduction

Motor performance and motor learning play a leading role in

improving the quality of daily life in healthy adults, including

physiological aspects, psychological health, and cognitive

performance (Li et al., 2022; Orssatto et al., 2022; Wiegel

et al., 2022; Zhou et al., 2022). Studies in the field of sports

sciences have indicated that transcranial alternating current

stimulation (tACS) can be a promising noninvasive brain

stimulation tool to improve motor performance and motor

learning, slowing declines in physical function (Urrútia and

Bonfill, 2010; Antal and Herrmann, 2016).

TACS is a unique noninvasive form of brain stimulation

that modulates the internal nerve oscillation by delivering a

low-intensity sinusoidal alternating current to the scalp

(Elyamany et al., 2021), forcing the membrane potential

oscillation away from its resting potential to slightly

increased depolarization or hyperpolarization (Wu et al.,

2021). In the depolarization state, neurons are more likely

to respond to other neurons; this reaction is called stochastic

resonance (Fertonani and Miniussi, 2017). The final effect of

this reaction is that the firing time of neurons is locked to the

increased stimulation frequency (Del Felice et al., 2019).

Therefore, tACS plays a regulatory rather than dominant

role and has great potential in the analysis of the causal

relationship between neural activity and behavior

(Herrmann et al., 2013).

In terms of motor performance and motor learning, there are

further limitations and gaps in the existing research related to the

effects of tACS. For motor performance, Rumpf et al. found no

change in motor performance after applying 10 or 20 Hz tACS

with an intensity of 1 mA to stimulate the left primary motor

cortex (M1) during the motion sequence task (Rumpf et al.,

2019). In contrast, Miyaguchi et al. used different amplitudes for

tACS stimulation but found significant differences in motor

performance between groups and significantly reduced task

errors (Miyaguchi et al., 2019). The results were in accordance

with Del Felice et al.‘s study, even in patients with Parkinson’s

disease (Del Felice et al., 2019).

For motor learning, Krause et al. found that 10 Hz tACS

stimulation can significantly reduce the reaction time and

enhance motor learning ability after applying 1 mA, 10 Hz,

or 20 Hz tACS stimulation to the left M1 (Krause et al., 2016).

Antal et al. applied 1, 10, 15, 30, and 45 Hz tACS stimulation to

the left M1. Transcranial magnetic stimulation (TMS) was

used to detect the changes in spinal cord excitability before

and after the reaction time task (RTT). Excitability

significantly increased with only 10 Hz tACS stimulation,

which indicated that 10 Hz tACS stimulation could improve

motor learning (Antal et al., 2008). These results may be

associated with stimulus parameters.

In view of the above, the efficacy of tACS on motor

performance and motor learning skill needs to be explored.

The present study systematically evaluated the effectiveness of

tACS on motor performance and motor learning to determine

the optimal treatment parameters of tACS for healthy adults,

with the expectation of enriching the application of tACS in

sports science.

2 Methods

Consistent with the preferred reporting items for systematic

reviews and meta-analyses (PRISMA) statement (Moher et al.,

2009), we conducted a systematic review and meta-analysis,

which were registered with PROSPERO (registration number:

CRD42022342884).

2.1 Inclusion criteria

The inclusion criteria strictly followed participants,

interventions, controls, outcomes, and study design

(PICOS) principles: 1) Participants: healthy adults; 2)

Intervention: tACS; 3) Control: sham stimulation of tACS;

4) Outcomes: related outcome indicators of motor function

[outcomes related to motor performance: task error, number

of parts, accuracy, error rate (ER), time on target, seated chest

pass throw (SCPT), seated backward overhead medicine ball

throw (SBOMBT), squat jump (SJ), counter-movement jump

(CMJ), counter-movement jump arm-swing (CMJ-AS);

outcome related to motor learning: reaction time (RT)]; 5)

Study design: random experiment, parallel, or cross-

experimental design. Review articles, case studies, and

animal studies were all excluded.

2.2 Source of information

As of 16 October 2022, the Cochrane Library, PubMed,

EMBASE, and Web of Science were searched without using filters.

2.3 Search strategy

We searched using the following keywords: “transcranial

alternating current stimulation” OR “tACS” OR “HD-tACS”

and “motor behavior” OR “motor performance” OR
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“resistance” OR “strength” OR “weight” OR “power” OR

“training” OR “training” OR “motor learning” OR “sequence

learning” OR “motor skill” OR “motor acquisition”.

2.4 Study selection

KunHu and RuihanWan oversaw the initial screening via titles

and abstracts from the electronic databases, independently and

jointly excluding unrelated studies by reading titles and abstracts.

For articles with unclear relevance, their full texts were retrieved to

further evaluate their relevance. Then, all included articles were

divided into relevant, possible, or irrelevant. The two authors

determined the extent to which related research was subject to

the PICOS principle. Finally, they carefully judged possible related

studies and excluded unrelated studies. The places with different

opinions were finally decided by the third author (Feng Guo).

2.5 Data extraction

The form on extracted information was jointly designed by two

authors (Kun Hu and Ruihan Wan). The main extracted contents

were as follows: characteristics of the participants (sample size, age,

gender and group), tACS intervention program (electrode size,

electrode position, intensity, and stimulus mode), exercise

program (isometric force task, physical task, and so on), and

main results (task error, accuracy, and so on). All the contents

were extracted by the two authors. If the relevance was unclear, then

the two authors would have a discussion to further reduce the risk of

data extraction bias.

2.6 Quality assessment

Risk of bias was assessed in accordance with the criteria set

out in the Cochrane Guidelines (Higgins and Green, 2011) (a)

random sequence generation; (b) allocation concealment; (c)

blinding of participants and personnel; (d) blinding of the

outcome assessments; (e) incomplete outcome data; (f)

selective reporting; and (g) other biases. The two evaluators

(Kun Hu and Ruihan Wan) evaluated the eligible studies

independently, and divided these into low, high, and unclear

risk prejudices on the basis of the criteria (Higgins and Green,

2011). Any disagreement was discussed by the two evaluators and

finally decided by the third author (Feng Guo).

2.7 Quantitative analysis

Review Manager software (RevMan 5.3; Cochrance

Collaboration) was used for quantitative analysis. The main

contents were as follows: subject characteristics, eligibility

criteria, intervention programs, and main outcomes. Then, the

heterogeneity of the study was evaluated to determine whether it

was suitable for comprehensive analysis. To make the content of

studies with large differences more comparable, the random-

effects model was applied. The standardized mean difference

(SMD) and 95% confidence interval (95% CI) were used to avoid

the different measurement units of the data in the extracted

research. Heterogeneity was evaluated by using chi-squared

statistics (Chi2) and the heterogeneity index (I2). Significant

heterogeneity exists when I2 is greater than 50% (Higgins and

Green, 2011). The sources of heterogeneity were identified

through subgroup analysis. Finally, sensitivity analysis was

applied to exclude low-quality studies. In addition to

evaluating the heterogeneity between studies, all values were

analyzed by two-tailed analysis with a significance level of 5%

(The p-value of the final result was calculated by RevMan 5.3. If

p˂0.05, it indicated that tDCS had a significant effect on motor

performance and motor learning.).

3 Results

A total of 1780 articles were initially screened from the

electronic databases. After removing duplicate articles (n = 189)

and relevant articles (n = 1,591), 19 articles were retained based

on titles and abstracts. Articles that did not meet the inclusion

criteria were excluded by browsing the full text (n = 6),

including for qualitative analysis (n = 13). Ten eligible

articles were analyzed quantitatively, as shown in Figure 1.

3.1 Research characteristics

Table 1 provides a detailed description of the participants’

characteristics of the effects of tACS on motor performance and

motor learning. A total of 270 participants were involved in this

analysis (170 males [63%]; 100 females [37%]), and the average

age was between 20.7 ± 0.75 (Miyaguchi et al., 2019) and 66.8 ±

5.7 (Rumpf et al., 2019) years old. The control group of all studies

was the sham group, and the experimental group of six studies

(60%) was divided into two groups—alpha (a) (10 Hz), beta (ß)

(20 Hz) group (Krause et al., 2016; Rumpf et al., 2019), or β
(20 Hz), gamma (?) (>30 Hz) group (Miyaguchi et al., 2018;

Miyaguchi et al., 2020; Giustiniani et al., 2021; Ma et al., 2021)—

according to stimulus frequencies; three studies (30%) had one

experimental group (γ group) (Miyaguchi et al., 2019; Miyaguchi

et al., 2019; Miyaguchi et al., 2022); one (10%) study also had one

experimental group (β group) (Yamaguchi et al., 2020).

Table 2 describes the research characteristics of the impact of

tACS on motor performance and motor learning in detail. All the

included studies were randomized, among which 6 articles (60%)

were crossover studies (Miyaguchi et al., 2018; Miyaguchi et al.,

2019; Miyaguchi et al., 2019; Miyaguchi et al., 2020; Ma et al.,
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2021; Miyaguchi et al., 2022) and four articles (40%) were parallel

studies (Krause et al., 2016; Rumpf et al., 2019; Yamaguchi et al.,

2020; Giustiniani et al., 2021). Eight studies (80%) were related to

motor performance (Miyaguchi et al., 2018; Miyaguchi et al.,

2019; Miyaguchi et al., 2019; Rumpf et al., 2019; Yamaguchi et al.,

2020; Giustiniani et al., 2021; Miyaguchi et al., 2020; Miyaguchi

et al., 2022), and 2 (20%) studies were related to motor learning

(Krause et al., 2016; Ma et al., 2021). With regard to the exercise

program included in the study, the exercise tasks of all studies in

motor performance were inconsistent, including visuomotor

control task (VCT), visuomotor tacking (VMT), Purdue

Pegboard Test (PPT), motor sequence learning task (MSLT),

physical test (PT), and isometric force task (IFT); in motor

learning, all the research tasks were RTTs. The stimuli in the

seven studies were located at the left M1 (Krause et al., 2016;

Miyaguchi et al., 2018; Miyaguchi et al., 2019; Miyaguchi et al.,

FIGURE 1
Study flow diagram.

TABLE 1 Demographic information of the participants.

References N Group Female/Male Ageb

Miyaguchi et al. (2019) a 20 70Hz/sham 6/14 21.3 ± 1

Miyaguchi et al. (2020) 32 20Hz/80Hz/sham 0/32 21.3 ± 1.5

Rumpf et al. (2019) 33 10Hz/20Hz/sham 10 Hz:9/720 Hz:14/3 10 Hz:68.5 ± 5.220 Hz:66.8 ± 5.7

Giustiniani et al. (2021) 17 50Hz/sham 50 Hz:7/4Sham:3/3 27.29 ± 10.65

Miyaguchi et al. (2018) 20 20Hz/70Hz/sham 0/20 21.5 ± 1.7

Ma et al. (2021) 50 20Hz/70Hz/sham 20 Hz:15/1470 Hz:6/15 20 Hz:22.1 ± 2.0270 Hz:22.43 ± 2.25

Krause et al. (2016) 36 10Hz/20Hz/sham 10 Hz:5/720 Hz:4/8Sham:5/7 10 Hz:26.17 ± 1.1820 Hz:26.42 ± 1.18Sham:25.33 ± 0.94

Miyaguchi et al. (2019) a 20 70Hz/sham 6/14 20.7 ± 0.75

Miyaguchi et al. (2022) 22 70Hz/sham 10/12 21.3 ± 1.5

Yamaguchi et al. (2020) 20 Beta-band/sham Beta-band:5/5 Sham:5/5 Beta-band: 24.1 ± 1.7Sham:5/524.7 ± 2.5

ais used to distinguish the author who published two articles in the same year.
bData are represented as the means±SDs.
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2019; Rumpf et al., 2019; Yamaguchi et al., 2020; Ma et al., 2021);

one study simultaneously stimulated the left and right M1

(Giustiniani et al., 2021); the stimulation position of two

studies was the supplementary motor area (SMA) (Miyaguchi

et al., 2020; Miyaguchi et al., 2022). The stimulation intensity was

1 mA (Krause et al., 2016; Miyaguchi et al., 2018; Miyaguchi et al.,

2019; Miyaguchi et al., 2019; Rumpf et al., 2019; Miyaguchi et al.,

2020; Miyaguchi et al., 2022), 1.5 mA (Giustiniani et al., 2021)

and 2 mA (Yamaguchi et al., 2020), and the area of the

stimulation electrode was 25 cm2 (Miyaguchi et al., 2018;

Miyaguchi et al., 2019; Miyaguchi et al., 2019; Miyaguchi

et al., 2020; Giustiniani et al., 2021; Miyaguchi et al., 2022)

and 35 cm2 (Krause et al., 2016; Rumpf et al., 2019;

Yamaguchi et al., 2020). We could not determine the intensity

and area of stimulation in Ma’s study (Ma et al., 2021). The

stimuli in the six studies (60%) were online stimuli (Miyaguchi

et al., 2018; Miyaguchi et al., 2019; Miyaguchi et al., 2019;

Miyaguchi et al., 2020; Ma et al., 2021; Miyaguchi et al.,

2022); the stimuli in the four studies (40%) were offline

stimuli (Krause et al., 2016; Rumpf et al., 2019; Yamaguchi

et al., 2020; Giustiniani et al., 2021).

3.2 Main results and quantitative synthesis

3.2.1 Effect of tACS on motor performance
In terms of the impact of tACS on motor performance,

eight studies were included in this analysis (Miyaguchi et al.,

2018; Miyaguchi et al., 2019; Miyaguchi et al., 2019; Rumpf

et al., 2019; Miyaguchi et al., 2020; Yamaguchi et al., 2020;

Giustiniani et al., 2021; Miyaguchi et al., 2022). The outcomes

of each study were inconsistent. Giustiniani et al. included five

outcomes (Giustiniani et al., 2021) from seated chest pass

throw (SCPT), seated backward overhead medicine ball throw

(SBOMBT), squat jump (SJ), counter-movement jump (CMJ),

and counter-movement jump arm-swing (CMJ-AS). The

outcome indicators of the other seven studies are task error,

number of parts, accuracy, time of target and error rate

(Miyaguchi et al., 2018; Miyaguchi et al., 2019; Miyaguchi

et al., 2019; Rumpf et al., 2019; Miyaguchi et al., 2020;

Yamaguchi et al., 2020; Miyaguchi et al., 2022). The

experimental groups in most studies included two groups,

namely, the α, β, or β, γ groups (Miyaguchi et al., 2019; Rumpf

et al., 2019; Miyaguchi et al., 2020; Giustiniani et al., 2021);

three experimental groups were γ groups (Miyaguchi et al.,

2018; Miyaguchi et al., 2019; Miyaguchi et al., 2022); and only

one experimental group was used by Yamaguchi, which is the β
group (Yamaguchi et al., 2020). Therefore, a total of

15 datasets were included in this synthesis. Compared with

the sham group, no significant effect was found on the

improvement of exercise performance for application of

tACS (Z = 1.85, p = 0.06). Nevertheless, moderate

heterogeneity (Chi2 = 24.81, p = 0.04, I2 = 44%) was

observed. Thus, quantitative synthesis could be included

(Figure 2).

3.2.2 Influence of tACS with different
frequencies on motor performance

The tACS studies included in this meta-analysis were

mainly divided into three different stimulus frequencies

TABLE 2 Characteristics of the included studies.

References Design Task Outcomes Target Intesity
(mA)

Electrode
size (cm2)

Stimulus
mode

Miyaguchi et al.
(2019) a

Crossover VCT Task error Left M1 1 25 online

Miyaguchi et al. (2020) crossover PPT Number of parts SMA 1 25 online

Rumpf et al. (2019) RCT MSLT Accuracy Left M1 1 35 offline

Giustiniani et al. (2021) RCT PT SCPT/SBOMBT/SJ/CMJ/
CMJ-AS

Left and
right M1

1.5 25 offline

Miyaguchi et al. (2018) crossover IFT ER Left M1 1 25 online

Ma et al. (2021) crossover RTT Accuracy Left M1 N/D N/D online

Krause et al. (2016) RCT SRTT RT Left M1 1 35 offline

Miyaguchi et al.
(2019) a

crossover VCT Task error Left M1 1 25 online

Miyaguchi et al. (2022) crossover PPT Number of parts SMA 1 25 online

Yamaguchi et al. (2020) RCT VMT Time to target Left M1 2 35 offline

ais used to distinguish when the author published two articles in the same year.

RCT = randomized controlled trial, VCT = Visuomotor control task, PPT = Purdue Pegboard Test,MSLT = Motor sequence learning task, PT = Physical test, IFT = Isometric force task,

RTT = Reaction time task, SRTT = Serial reaction time task, VMT = Visuomotor tracking, SCPT = Seated chest pass throw, SBOMBT = Seated backward overhead medicine ball throw, SJ =

Squat jump, CMJ = Countermovement jump, CMJ-AS = Countermovement jump with arm swing, ER = Error rate, RT = Reaction time,M1 = Primary motor cortex, SMA = Supplementary

motor area, N/D = Not describe.
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(alpha, beta, and gamma bands). Among the 15 datasets,

only one dataset was the alpha (10 Hz) band (one

dataset could not be included in the synthetic

analysis), and the other datasets were the beta (20 Hz)

and gamma (>30 Hz) bands. Therefore, we tried to

incorporate tACS research at beta and gamma

frequencies into quantitative synthesis, with a total of

14 datasets.

3.2.2.1 β-tACS (20 Hz)

Four datasets (28.6%) were included in this study. Compared

with the sham group, no significant effect was observed on the

improvement of motor performance for β-tACS (Z = 0.21, p =

0.84) with more significant heterogeneity (Chi2 = 12.76, p =

0.005, I2 = 76%) (Figure 3).

3.2.2.2 γ-tACS(>30 Hz)

Ten datasets (71.4%) were included in this study. Compared

with the sham group, γ-tACS had significant effect on improving

motor performance (Z = 2.40, p = 0.02), and had good

heterogeneity (Chi2 = 9.58, p = 0.39, I2 = 6%) (Figure 4).

3.2.3 Effects of different tACS stimulationmodes
on motor performance

The studies included in this meta-analysis were mainly

divided into two types of stimuli (online and offline). Fifteen

datasets were included in the quantitative synthesis.

3.2.3.1 Online

Seven datasets were included in the synthetic analysis.

Compared with the sham group, online stimulation

FIGURE 2
Forest plot for the effect of tACS on improving motor performance. Notes: Giustiniani (1) (2) (3) (4) (5)-The five outcome measures in
Giustiniani’s study were SCPT, SBOMBT, SJ, CMJ, CMJ-AS; Miyaguchi 2018 (1) (2)- The 20 Hz and 70 Hz stimuli in this study, respectively; Miyaguchi
2020 (1) (1)- The 20 Hz and 80 Hz stimuli in this study, respectively; Rumpf (1) (2)- The 10 Hz and 20 Hz stimuli in this study, respectively; Miyaguchi
et al. published two studies in 2019 distinguished by a and (B)

FIGURE 3
Forest plot for the effect of β-tACS on improving motor performance.
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significantly improved motor performance (Z = 3.02, p = 0.002)

but with moderate heterogeneity (Chi2 = 13.06, p = 0.04, I2 =

54%) (Figure 5).

3.2.3.2 Offline

For meta-analysis, eight datasets were included in the

quantitative synthesis. Compared with the sham group,

offline stimulation did not improve motor performance

(Z = 1.06, p = 0.29) and had no significant heterogeneity

(Chi2 = 4.90, p = 0.67, I2 = 0%) (Figure 6).

3.2.4 Influence of tACS on motor learning
With regard to the effect of tACS on motor learning,

this analysis included two studies. The experimental

groups in both studies had two groups; thus, the

experimental group in Krause’s study was α and β-tACS
stimulation (Krause et al., 2016); in the study of Ma (Ma

et al., 2021), β and γ stimuli were used in the experimental

group. Four datasets are therefore included in this synthesis.

Compared with the sham group, tACS significantly

improved motor learning ability (Z = 3.68, p = 0.0002) but

had moderate heterogeneity (Chi2 = 4.48, p = 0.21, I2 = 33%)

(Figure 7).

3.2.4.1 Risk of bias in included studies

As shown in Figure 8, reporting bias (selective report

results), detection bias (blinding of the outcome

assessments), performance bias (blinding of participants

and personnel), and other biases were all low-risk biases.

For random sequence generation and allocation

concealment, Miyaguchi (2018), Miyaguchi (2019)a,

Miyaguchi (2019)b, Miyaguchi (2020) and Miyaguchi

(2022) did not report these biases (Miyaguchi et al.

published two studies in 2019, which we distinguished by a

and b) (Miyaguchi et al., 2018; Miyaguchi et al., 2019;

Miyaguchi et al., 2019; Miyaguchi et al., 2020; Miyaguchi

FIGURE 4
Forest plot for the effect of γ-tACS on improving motor performance.

FIGURE 5
Forest plot for the effect of online stimulation on improving motor performance.
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et al., 2022); thus, they were unclear risk biases. In addition,

in the attrition bias (incomplete outcome data), one

subject was dropped from the experiment in Rumpf’s

study, resulting in high-risk bias being reported (Rumpf

et al., 2019).

4 Discussion

To our knowledge, the present study was the first to

systematically evaluate the efficacy of tACS on motor

performance and motor learning in healthy individuals.

FIGURE 6
Forest plot for the effect of offline stimulation on improving motor performance.

FIGURE 7
Forest plot for the effect of tACS on improving motor learning. Notes: Krause (1) (2)- The 10 Hz and 20 Hz stimuli in this study, respectively; Ma
(1) (2)- The 20 Hz and 70 Hz stimuli in this study, respectively.

FIGURE 8
Risk of bias in included studies.
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Significant conclusions can be shown that tACS can effectively

improve motor performance (beta band and online mode) and

motor learning in healthy individuals compared with the sham

group.

Although the mechanism of tACS action remains unclear,

previous studies have shown that entrainment of stimulation

frequencies by brain oscillations and coupling or decoupling of

distant oscillatory connections between distant brain regions

may be involved (Weinrich et al., 2017; Schwab et al., 2019;

Elyamany et al., 2021). Therefore, the effectiveness of tACS on

motor performance in the current study was divided into two

main categories, including online effects (during the

stimulation period) and offline effects (outlast the

stimulation period); Considering the difference in

stimulation frequency, the current study classified it into

three categories—α (10 Hz), β (20 Hz), and γ-tACS
(>30 Hz) —to analyze on the premise of roughly the same

stimulation position and intensity.

Although the synthesis results showed low heterogeneity

(Figure 2), the uncertainty of the synthesis of the study can be

diminished. In the 15 datasets of eight studies, only one dataset

was α-tACS; β-tACS and γ-tACSs are mainstream, consistent

with the current research status. The current belief is that β-tACS
and γ-tACS stimuli affect motor performance and motor

learning (Pogosyan et al., 2009; Joundi et al., 2012; Pollok

et al., 2015; Moisa et al., 2016; Santarnecchi et al., 2017).

Therefore, we mainly discussed β-tACS and γ-tACSs.
In terms of motor performance, as shown in Figure 3, β-

tACS did not improve motor performance in healthy

individuals and presented a significant heterogeneity, which

may be linked to the differences in exercise program, tACS

stimulation location, and stimulation mode. Notably,

Miyaguchi et al. (2020) found that β-tACS was positively

correlated with exercise performance and γ-tACS was

negatively correlated with motor performance. These results

were in line with Muthukumaraswamy’s study

(Muthukumaraswamy et al., 2011). β-band activity was also

deemed anti-dynamic activity, and γ-band activity was

essentially pro-dynamic activity (Miyaguchi et al., 2018).

These findings indicate that different stimulus frequencies

played a major role in motor performance (Miyaguchi

et al., 2020). In contrast, γ-tACS resulted in improved

motor performance, and the results were not significantly

heterogeneous (Figure 4). Interestingly, ten datasets of six

studies were included, and five datasets were from the same

study. The other five datasets come from five studies by the

same team: Miyaguchi (2018), Miyaguchi (2019) a, Miyaguchi

(2019) b Miyaguchi (2020) and Miyaguchi (2022) (Miyaguchi

et al. published two studies in 2019, which we distinguished by

a and b) (Miyaguchi et al., 2018; Miyaguchi et al., 2019;

Miyaguchi et al., 2019; Miyaguchi et al., 2020; Miyaguchi

et al., 2022). The effect of tACS stimulation at different

frequencies (70 Hz or 80 Hz) on motor performance was

significantly different, which was not reflected by

Giustiniani et al., who applied a frequency of 50 Hz

(Giustiniani et al., 2021). This result may have occurred

because 50 Hz tACS was thought to increase the speed of

visual motion (Moisa et al., 2016) and time-dependent

modulation of γ-aminobutyric acid (Nowak et al., 2017),

indicating that tACS stimuli in the γ-band have great

frequency specificity. Further attention should be given to

the detailed frequency study of γ-tACS.
In relation to the stimulation of tACS onmotor performance,

online tACS can significantly improve the motor performance of

healthy individuals (Figure 5). No significant effect was observed

on offline tACS for motor performance, which indicated that the

stimulation mode was the main influencing factor in the study of

tACS on motor performance.

At present, it remains controversial whether tACS plays a

role during or after stimulation (post-effect) (Fertonani et al.,

2017; Samaei et al., 2017; Galli et al., 2019). TMS-induced

motor-evoked potential (MEP) measurement of tACS online

and offline effects has been widely recognized (Pozdniakov

et al., 2021). Growing evidence has confirmed the frequency-

specific online effect of tACS through TMS-induced MEP

(Feurra et al., 2011; Feurra et al., 2013; Shpektor et al.,

2017; Feurra et al., 2019). For example, Feurra et al.

explored the effect of online tACS stimulation at different

frequencies on the spinal cord excitability of M1 via TMS and

found that 20 Hz tACS stimulation increased the excitability of

the cortical spinal cord, while 5, 10, and 40 Hz had no effect on

MEP (Feurra et al., 2011), which was also verified in Feurra

et al.‘s two studies (Feurra et al., 2013; Feurra et al., 2019). In

addition, no consistent conclusion was derived on offline

tACS. Antal et al. explored the changes in spinal cord

excitability of the motor cortex through TMS-induced MEP,

and no significant change was found in spinal cord excitability

when stimulated by tACS at 1, 10, 15, 30, and 45 Hz after

intergroup analysis (Antal et al., 2008). Heise et al. evaluated

spinal cord excitability before, during, and after stimulation at

20 Hz tACS and found that spinal cord excitability increased

significantly during immediately after stimulation (Heise et al.,

2016). These results show that tACS stimulation seems to have

a certain timeliness. Hence, although online tACS achieves a

significant improvement in motor performance, future

research still needs to focus on the timeliness of tACS,

which will have far-reaching significance for the

standardization of clinical application.

In terms of motor learning, as shown in Figure 7, a

significant improvement was found in healthy individuals.

The analysis included only four datasets of two studies;

thus, the lack of sample size was a key problem. In

addition, inconsistent with a previous study, only one of

the four datasets was γ-tACS, which made determining the

role of tACS in motor learning ability impossible. Sugata et al.

and Giustiniani showed the potential of the high-frequency
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band γ-tACS on sequential learning tasks (Sugata et al., 2018;

Giustiniani et al., 2019). Transcranial electrical stimulation

(TES) has a good regulating effect on neuroplasticity (Galea

et al., 2009; Zuchowski et al., 2014; Wessel et al., 2016), and

tACS can exert a more selective effect on target neurons, so

that the “characteristic frequency” of neurons tends to the

stimulation frequency (Antal et al., 2016; Naro et al., 2017). In

addition, previous studies have found that oscillatory activity

in gamma and beta bands plays an important role in motor

learning (Pollok et al., 2014; Pollok et al., 2015; Naro et al.,

2016; Naro et al., 2017; Nowak et al., 2017; Wessel et al., 2020).

These oscillatory activities are thought to be induced by the

activation of excitatory glutamatergic cells and inhibitory

GABAergic interneurons in M1 (Buzsáki et al., 2012;

Guerra et al., 2016). Among them, Naro and Wessel found

that a 50 Hz stimulation frequency can promote motor

learning ability (Naro et al., 2016; Naro et al., 2017; Wessel

et al., 2020). In accordance with a previous study, α and β-
tACSs could significantly improve motor learning ability

(Pollok et al., 2014; Sugata et al., 2014; Pollok et al., 2015;

Krause et al., 2016). Among them, alpha oscillations affect

vision and sensorimotor activity (Sugata et al., 2014); beta

oscillations affect motor performance and motor learning

(Houweling et al., 2008; Sugata et al., 2014). In brief, γ-
tACS should receive more attention for motor learning,

especially the impact of frequency specificity.

5 Limitations

This systematic review and meta-analysis has several

limitations. First, some methodological variables of this study

were not standardized and unified, particularly the stimulation

frequency and stimulation mode (online and offline), which may

directly affect the accuracy and reliability of the results of this

study. There were no significant findings in this area; thus, a more

precise experimental design should be conducted to systematically

standardize this problem in the future. Second, few quantitative

analyses were included, which increased the incidence of false

negative or false positive synthesis results. Therefore, the authors

are cautious about the results of these tACS analyses on motor

learning. More research evidence is needed to support our results

in the future. Third, this study did not report the safety issues of

tACS (skin sensation, phosphenes, other sensation, etc.). Thus,

caution should be taken in the application of tACS in healthy

people and even special populations. In a previousmeta-analysis of

tACS on cortical spinal cord excitability, the authors reported that

tACS had certain effects on skin sensation and perceiving

phosphenes in healthy adults (Wischnewski et al., 2019).

Therefore, safe application of tACS in healthy people and even

special populations is needed clinically. The physiological

mechanism by which tDCS improves motor performance and

motor learning is still unknown. At present, the most widely used

technology to observe spinal cord excitability during stimulation is

TMS-induced MEP, but this technology still has certain

limitations. The authors suggest that future research should

combine tACS technology with neuroimaging technology. For

example, simultaneous use of electroencephalogram (EEG) with

high temporal resolution can immediately explore brain changes

during tACS stimulation and reveal the physiological mechanism

of tACS. Combined with functional near-infrared spectroscopy

(fNIRS), which has low movement requirements and small

movement artifacts, it can meet more task designs and reveal

the physiological mechanism of tACS application in certain groups

(such as high-level athletes, dyskinesia patients, hyperkinesia

patients, etc.).

6 Conclusion

This systematic review and meta-analysis found that online

tACS and gamma band tACS can significantly improve motor

performance. In addition, tACS has a certain effect on motor

learning, but the authors remain cautious about this conclusion.

In the future, more research evidence is needed to verify the

efficacy of tACS on motor learning.

Abr7 Abbreviations: tACS-transcranial alternating current

stimulation, M1-primary motor cortex, TMS-transcranial

magnetic stimulation, RTT-reaction time task, SRTT-Serial

reaction time task, SMD-standardized mean difference, SMA-

supplementary motor area, SCPT-seated chest pass throw,

SBOMBT-seated backward overhead medicine ball throw,

SJ-squat jump, CMJ-counter-movement jump, CMJ-AS-

counter-movement jump arm-swing, MEP-motor-evoked

potential, TES-transcranial electrical stimulation, EEG-

electroencephalogram, fNIRS-functional near-infrared

spectroscopy, RCT-Randomized controlled trial, VCT-

Visuomotor control task, PPT-Purdue Pegboard Test,

MSLT-Motor sequence learning task, PT-Physical test, IFT-

Isometric force task, VMT-Visuomotor tracking, ER-Error

rate, RT-Reaction time.
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