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Introduction: Since low body weight is an important determinant of success inmany
sports such as gymnastics, martial arts and figure skating, athletes can benefit from
effective weight loss strategies that preserve muscle mass and athletic performance.
The present study investigates the effects of increased protein intake and exogenous
ketosis on body composition, energy expenditure, exercise capacity, and
perceptions of appetite and well-being during a hypocaloric diet in females.

Methods: Thirty-two female recreational athletes (age: 22.2 ± .5 years; body weight:
58.3 ± .8 kg; BMI: 20.8 ± .2 kg·m−2) underwent 4 weeks of 30% caloric restriction and
were randomized to receive either an increased daily amount of dietary protein
(PROT, ~2.0–2.2 g protein·kg−1·day−1), 3 × 20 g·day−1 of a ketone ester (KE), or an
isocaloric placebo (PLA). Body composition was measured by DXA, resting energy
expenditure (REE) by indirect calorimetry, exercise capacity during a VO2max test,
appetite hormones were measured in serum, and perceptions of general well-being
were evaluated via questionnaires.

Results: The hypocaloric diet reduced bodyweight by 3.8 ± .3 kg in PLA, 3.2 ± .3 kg in
KE and 2.4 ± .2 kg in PROT (Ptime<.0001). The drop in fat mass was similar between
treatments (average: 2.6 ± .1 kg, Ptime<.0001), whilemusclemasswas only reduced in
PLA and KE (average: .8 ± .2 kg, Ptime<.05), and remained preserved in PROT
(Pinteraction<.01). REE [adjusted for lean mass] was reduced after caloric restriction
in PLA (pre: 32.7 ± .5, post: 28.5 ± .6 kcal·day−1·kg−1) and PROT (pre: 32.9 ± 1.0, post:
28.4 ± 1.0 kcal·day−1·kg−1), but not in KE (pre: 31.8 ± .9, post: 30.4 ± .8 kcal·day−1·kg−1)
(Pinteraction<.005). Furthermore, time to exhaustion during the VO2max test
decreased in PLA (by 2.5 ± .7%, p < .05) but not in KE and PROT (Pinteraction<.05).
Lastly, the perception of overall stress increased in PLA and PROT (p < .05), but not in
KE (Pinteraction<.05).

Conclusion: Increased protein intake effectively prevented muscle wasting and
maintained exercise capacity during a period of caloric restriction in female
recreational athletes. Furthermore, exogenous ketosis did not affect body
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composition, but showed its potential in weight management by preserving a drop in
exercise capacity and REE and by improving overall stress parameters during a period
of caloric restriction.
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Introduction

Since low body weight is an important determinant of success in
many sports, athletes try to reduce body weight either to comply with
the physical appearance standards, to compete in a lower weight class
or to increase physical performance. In order to reduce body weight a
negative energy balance is required. This can be achieved either by
cutting energy intake, by increasing energy expenditure, or a
combination of both. Since athletes are subjected to high training
loads with a concomitant high energy expenditure, the obvious way to
lower body weight is via energy intake restriction. However, sustained
hypocaloric diets might come with certain pitfalls as in general they
induce not only losses in fat mass but also in lean mass in a ratio of
approximately 3:1 (Weinheimer et al., 2010). A small fraction of the
reduction in lean mass is accounted for by the drop of bone mass, but
the majority results from muscle wasting. It is well established that
caloric restriction impairs muscle protein synthesis (Pasiakos et al.,
2010; 2013; Areta et al., 2014) and, on the other hand, enhances
protein breakdown (Carbone et al., 2013; 2014). This negative balance
results in muscle wasting which is detrimental to exercise
performance, and often also elevates injury risk (Fogelholm, 1994).
A strategy to circumvent this problem is to increase the daily intake of
high-quality protein (for a review on dietary protein, see (Phillips and
Van Loon, 2011)). Indeed, a high-protein diet in young, physically
active volunteers effectively prevented muscle atrophy during short-
term caloric restriction (Mettler et al., 2010; Pasiakos et al., 2013;
Longland et al., 2016). These observations underpin current
recommendations with regard to protein intake during weight loss
in athletic populations (Helms et al., 2014; Manore, 2015; Hector and
Phillips, 2018). Nonetheless, it is important to note that these
recommendations largely result from observations in young males,
while well-controlled weight loss studies in females are
underrepresented. It was shown in overweight and obese females
that hypocaloric high-protein diets were successful in reducing fat
mass while simultaneously preserving lean mass (Piatti et al., 1994;
Josse et al., 2011; Campbell and Meckling, 2012). However, whether
the same effect occurs in already lean female athletes remains to be
determined. Some prospective case studies showed promising
experiences of female figure competitors who were able to preserve
muscle mass during a caloric deficit by increasing protein intake
(Halliday et al., 2016; Petrizzo et al., 2017; Rohrig et al., 2017; Tinsley
et al., 2019). However, these athletes also adhered to a strenuous
resistance training regimen combined with several performance
enhancing supplements, making it difficult to define the effects of
increased protein intake per se. Furthermore, prospective case studies
do not allow to determine any causal relationships, and therefore high
quality intervention trials in female athletes are required.

Ketone bodies (i.e. β-hydroxybutyrate, (βHB), acetoacetate
(AcAc) and acetone) may provide an alternative strategy to
counteract muscle wasting during caloric restriction. Ketone
bodies are lipid-derived compounds which are produced in the

liver in response to low blood glucose and insulin levels (Evans
et al., 2017). They were shown to exert anti-catabolic actions
under stress conditions. More specifically, ketone salt infusion
decreased urinary nitrogen excretion during prolonged starvation
in obese individuals (Sherwin et al., 1975; Pawan and Semple,
1983) and reduced net muscle protein loss during
lipopolysaccharide-induced inflammation in healthy volunteers
(Thomsen et al., 2018). Also the anabolic potential of ketone
bodies has been demonstrated, as ketone salt infusion suppressed
leucine oxidation and stimulated muscle protein synthesis in
healthy volunteers (Nair et al., 1988). Additionally, oral
ingestion of the ketone ester (R)-3-hydroxybutyl (R)-3-
hydroxybutyrate post-exercise in young healthy volunteers
enhanced stimulation of the mTORC1 axis as shown by
increased phosphorylation of S6K1 and 4E-BP1 (Vandoorne
et al., 2017). Overall, the anticatabolic and anabolic potential
of ketone bodies might make them as effective as an increased
protein intake to counteract muscle loss during a period of caloric
restriction.

To this background, we performed a double-blind, placebo-
controlled study to compare the effects of exogenous ketosis with
those of an increased daily protein intake (i.e. the prevailing strategy to
obtain weight loss in athletic populations) on body composition and
exercise capacity during rapid weight loss. We hypothesized that
exogenous ketosis can facilitate maintenance of muscle mass, as
well as promote exercise capacity during rapid weight loss in
already lean female recreational athletes. We selected this specific
study population to better validate the existing dietary
recommendations in female recreational athletes.

Methods

Subjects

Thirty-three healthy, young female recreational athletes were
recruited according to the following inclusion criteria: between
18 and 35 years old; exercise participation for at least 6 h per week;
body fat percentage between 16% and 25% (based on 12 skinfolds, see
below); stable body weight for at least 3 months prior to the start of the
study; consistent use of oral contraceptives; non-smoking. Candidate
subjects were excluded for participation if they had an obsessive
pursuit of thinness confirmed by the Eating Disorder Inventory 3
(Clausen et al., 2011). Health status was evaluated by a medical
questionnaire and physical examination prior to enrollment in the
study. One subject dropped out for reasons that were unrelated to the
study protocol. Baseline characteristics of the subjects who completed
the full study protocol (n = 32) were: age: 22.2 ± .5 years; body weight:
58.3 ± .8 kg; height: 1.67 ± .01 m; BMI: 20.8 ± .2 kg·m−2; body fat
percentage: 21.4 ± .6%, and were similar between the experimental
groups. The study was approved by the KU Leuven Biomedical Ethics
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Committee (S61133). Subjects gave written consent to participate after
being fully informed of all procedures and potential risks associated
with the study.

Study design and experimental conditions

A schematic overview of the double-blinded placebo-controlled
study design is presented in Figure 1. Subjects were instructed to
maintain their habitual level of physical activity, as well as their
exercise training routine throughout the full study period. The
protocol started with a baseline registration week during which the
subjects recorded their habitual diet and physical activities. They
completed an on-line food diary (Mijn Eetmeter, Stichting
Voedingscentrum Nederland, https://mijn.voedingscentrum.nl). To
improve the accuracy of the dietary analysis, the subjects received a
kitchen scale to weigh all consumed foods and energy-containing
drinks. Daily physical activity level was monitored using an
accelerometer (Actigraph, wGT3X, Pensacola, United States)
together with a training diary (see below). After the baseline
registration week, the subjects were enrolled in a diet stabilization
week. They received a fully-standardized diet containing 50%
carbohydrates, 35% fat and 15% protein to deliver 100% of their
estimated ‘optimal energy intake’. Optimal energy intake was
determined as the mean of daily energy intake and energy
expenditure. Daily energy intake was taken from the 7-day food
diary filled out during the registration week. Daily energy
expenditure was calculated as the sum of resting energy
expenditure, which was measured by indirect calorimetry (see
below), physical activity-induced energy expenditure, which was
obtained from the accelerometer data during the registration week,
and estimated diet-induced thermogenesis. Following the stabilization
period, a 4-week caloric restriction period was started. Energy intake
was reduced to 70% of the optimal energy intake in the stabilization
week, including the 291 kcal·day−1 delivered by the supplements.
Subjects with similar body weight, % body fat and energy intake
were first allocated to triplets, whereafter they were randomly split
over the three experimental conditions: i) increased daily protein
intake with placebo supplementation (PROT: n = 10), ii) ketone ester
supplementation (KE: n = 11) and iii) placebo supplementation (PLA:

n = 11). Subjects in PLA and KE received .8–1.0 g protein·kg−1·day−1
while subjects in PROT received 2.0–2.2 g protein·kg−1·day−1. Protein
intake was distributed over the different meals and snacks during the
day. Fractional energy intake via carbohydrates was 50% in all groups.
Energy intake via fat was adjusted according to protein intake in order

FIGURE 1
Study design and timing of measurements. EI, energy intake; MCTs, medium chain triglycerides; PAEE, physical activity-related energy expenditure; βHB,
β-hydroxybutyrate; REE, resting energy expenditure.

TABLE 1 Macro-nutrient composition of the experimental diets. Data are mean ±
SEM. Energy intake refers to the energy intake exclusive 291 kcal·day−1 delivered
by the ketone and placebo supplements. Macronutrient composition is
expressed in g per day. In week 0, the subjects received 100% of the estimated
optimal energy intake in the form of a well-balanced mixed diet. In weeks one to
four, total energy intake, i.e. nutrition plus supplement drinks, was reduced by
30% (.8–1.0 g protein · kg BW−1·day−1) and subjects received either placebo (PLA:
n = 11), an increased amount of dietary protein (PROT: n = 10) or a ketone ester
(KE: n = 11). 1 kcal = 4.18 kJ.

PLA PROT KE

Energy intake (kcal·day−1)
Week 0 2,328 ± 49 2,446 ± 59 2,354 ± 65

Week 1 1,361 ± 29 1,451 ± 34 1,394 ± 49

Week 2 1,354 ± 36 1,447 ± 30 1,390 ± 47

Week 3 1,372 ± 33 1,437 ± 38 1,384 ± 51

Week 4 1,358 ± 34 1,412 ± 37 1,346 ± 42

Protein (g·day−1)
Week 0 85 ± 2 90 ± 2 86 ± 3

Week 1 56 ± 2 119 ± 2 56 ± 2

Week 2 56 ± 2 120 ± 2 56 ± 2

Week 3 54 ± 1 118 ± 2 55 ± 2

Week 4 56 ± 1 116 ± 2 55 ± 1

Carbohydrates (g·day−1)
Week 0 307 ± 7 322 ± 8 313 ± 9

Week 1 169 ± 4 180 ± 5 172 ± 5

Week 2 169 ± 5 180 ± 5 172 ± 6

Week 3 170 ± 6 178 ± 6 170 ± 6

Week 4 172 ± 5 180 ± 7 171 ± 6

Fat (g·day−1)
Week 0 92 ± 2 96 ± 3 92 ± 2

Week 1 51 ± 1 28 ± 2 53 ± 3

Week 2 51 ± 1 28 ± 2 53 ± 2

Week 3 53 ± 2 28 ± 2 54 ± 3

Week 4 50 ± 2 25 ± 2 49 ± 2
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to obtain 30% caloric restriction in all subjects. Three times daily, i.e.
immediately before breakfast, lunch, and dinner, the subjects ingested
a ketone ester or an isocaloric placebo (see below). Supplement intake
was blinded to both the subjects and the investigators. At the start
(pretest) and at the end (posttest) of the caloric restriction period, the
subjects participated in an experimental session which involved body
composition and resting energy expenditure (REE) measurements,
blood sampling, exercise testing, and questionnaires addressing
general well-being.

Nutritional protocol

During the stabilization and the caloric restriction period, the
subjects received an individual food plan. All meals, snacks and drinks
were provided by the investigators. The subjects were instructed not to
consume any foods or drinks other than prescribed by the study
protocol, except water or other zero-calorie drinks. To avoid vitamin
or mineral deficiencies, the subjects received a daily supplement at
breakfast (Omnibionta three Defense, Omnibionta, Overijse,
Belgium). Subjects also completed a food diary to register any
deviation from the nutritional plan. Table 1 shows the energy and
macronutrient intake of the subjects during the study period, taking
into account reported non-compliances. Protein intake on average was
.97 ± .01 g·kg−1·day−1 in PLA and KE, vs. 2.10 ± .01 g·kg−1·day−1
in PROT.

Ketone ester and placebo supplements
Subjects in KE received a 20 g ketone ester (R)-3-hydroxybutyl

(R)-3hydroxybutyrate (TdeltaS Ltd, Thame, Oxfordshire, UK) three
times daily. We used this orally absorbable ketone ester because it was
proven to be safe and well-tolerated in humans (Clarke et al., 2012)
and shown to be more effective than ketone salts to raise blood βHB
and with less incidence of gastrointestinal problems (Stubbs et al.,
2017). Supplements were taken immediately before breakfast, lunch
and dinner. Subjects in PLA and PROT received an isocaloric placebo
drink containing 12.8 g pure medium chain triglycerides (Now Foods,
Bloomingdale, United States). To match the taste and appearance of
the placebo drink with the ketone ester, bitter sucrose octaacetate
(Sigma-Aldrich, Bornem, Belgium) was added. Supplement drinks
were blinded for both subjects and researchers.

Experimental session
During the stabilization period, the subjects participated in a

familiarization session in order to habituate to the exercise testing
procedures (see below) and thereby reduce potential learning effects
between the pretest and the posttest. Subjects were instructed to
refrain from any strenuous physical activity for at least 48 h prior
to each experimental session. On the evening before the pre- and
posttest, the subjects consumed a standardized light meal (~430 kcal,
61% carbohydrates, 11% fat, 28% protein) between 7 and 10 p.m.,
whereafter only water was allowed till the next morning. They arrived
fasted at the laboratory between 7 and 11 a.m. Upon arrival, after a
toilet visit, body weight was measured (Henk Maas, PUE C/31, Veen,
The Netherlands) and body composition was assessed by a whole-
body dual-energy X-ray absorptiometry (DXA) scan (Discovery W,
Hologic Inc, Bedford, MA). Subcutaneous fat mass was also assessed
via 12 skinfold measurements (biceps, triceps, subscapular, supra-iliac,
midaxillary, iliac-crest, abdomen, chin, anterior thigh, posterior thigh,

lateral calf and medial calf) using a Harpenden skinfold caliper (Baty
International Ltd, West Sussex, UK). Subsequently, a fasting blood
sample was taken from a cubital vein (Venoject, Tokyo, Japan) and
plasma or serum were separated by centrifugation and stored at -20°C
until analyzed. Subjects completed a number of questionnaires
addressing general mood status, perception of satiety, and gastro-
intestinal discomfort (see below). The subjects then received a
standardized light breakfast (~268 kcal, 54% carbohydrates, 5% fat,
41% protein). Ninety min after breakfast, the exercise testing was
started. Subjects first performed a series of 3 strength and power tests.
Handgrip strength was measured with the dominant hand using a
handgrip dynamometer (Jamar, J00105, Lafayette, United States). Due
to a hand injury, one subject in PROT was excluded from this analysis.
Explosive strength was evaluated by countermovement jumps (CMJ)
on a force platform (SMARTJUMP, Fusion sport, Nottingham, UK).
Maximal isometric force of the knee extensors was measured in the
dominant leg at a knee angle of 135° on an isokinetic dynamometer
(Hespel et al., 2001). For each test, five attempts were allowed with
1 min rest and the mean of the three best performances was used for
further analyses. Finally, a maximal incremental VO2max test on a
cycle ergometer was performed (Avantronic Cyclus II, Leipzig,
Germany). Initial workload was set at 50 W for 5 min and was
increased by another 20 W per min until volitional exhaustion.
Respiratory gas exchange was measured continuously (Cortex
MetaLyzer II, Leipzig, Germany) and the highest oxygen uptake
measured over a 30 s period was noted as the maximal oxygen
uptake rate (VO2max). Two minutes after exhaustion, a blood
sample (5–10 µL) was taken from an earlobe for lactate
determination (Lactate Pro2, Arkray, Japan). Because of technical
issues VO2max data from one subject in PLA is absent. Four weeks
later, the subjects returned to the laboratory for the posttest, which was
identical to the pretest. For each subject, the experimental diet and
supplementation was maintained till the day before the posttest, and
tests were done on the same day of the week and the same time of the
day as for the pretests.

Resting and physical activity-related energy
expenditure

REE and substrate oxidation were measured during the
registration period (baseline) and at the end of the caloric
restriction period (day 24 or 25, posttest). Subjects were instructed
to refrain from any intense physical exercise from 24 h prior to the
measurement. The evening before, they received a standardized light
meal (~430 kcal, 61% carbohydrates, 11% fat, 28% protein) before
8 p.m. whereafter they fasted till next morning, yet water was allowed
at libitum. Subjects were instructed not to perform any physical
activity on the morning of the REE registration. They arrived in
the laboratory between 7 and 9 a.m., with identical timing for the
pretest and the posttest. After a toilet visit, 24 h urine collection was
started. Subjects then rested on a bed in a dark and quiet room for 1 h.
Subsequently, REE and resting carbohydrate and lipid oxidation were
measured during two 20 min episodes with a 10 min break in between
using a calibrated gas analyzer with a canopy hood (Quark RMR
Cosmed, Rome, Italy). Following each 20 min measurement, a post-
calorimetric simulation test was performed to correct for potential
drifts that emerged in the measured VO2 and VCO2. The simulation
consisted of sending a well-defined gas flow (coming from the same
gas bottle as was used for the initial calibration with 16% O2 and 5%
CO2) via amass flowmeter to the gas analyzer. Three simulations were
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performed in order to obtain three levels of FeCO2 (.7; .85; 1). Each
simulation lasted 2 min, resulting in a total duration of 6 min for the
post-calorimetric test. During the simulation, the same ventilation was
used as that during the REE measurement. Finally, measured VO2 and
VCO2 values were corrected according to the regression line that was
established between the measured values and the theoretical values of
the simulation. Two subjects were excluded from these analyses
because they exhibited abnormally high REE values due to fever
(KE: n = 1; PROT: n = 1). Physical activity-related energy
expenditure (PAEE) was determined using an accelerometer
(Actigraph, wGT3X, Pensacola, United States) in conjunction with
a training diary. Each exercise training activity was registered in a
training diary including type of exercise performed, exercise duration,
and rate of perceived exertion (RPE) according to a 15-point Borg
scale (Borg, 1990). Furthermore, the subjects were equipped with the
accelerometer during the full registration week (pretest measurement)
and during week three of the caloric restriction period (posttest
measurement). The third week, instead of the fourth week of the
caloric restriction was chosen because of the exercise limitations
imposed in the direct approach of the posttest and REE
measurement in week 4. Subjects were instructed to wear the
accelerometer on the right hip during days and nights and
whenever it was removed, the reason and time window had to be
noted in the training diary. Only days including more than 10 h of
daytime registration were included in the analyses. PAEE was
estimated based on an activity-specific model coupled to an
automatic activity/posture recognition algorithm as previously
described (Bastian et al., 2015; Garnotel et al., 2018). When
subjects removed the accelerometer during training, PAEE was
calculated from the exercise duration, the MET-value of the sports
activity, and the RPE. The PAEE of non-registered sports activities was
added to the daily PAEE estimated by the accelerometer. Subjects who
were unable to perform their habitual training routine for >3 days due
to disease were excluded from this analysis (KE: n = 2; PROT: n = 1).
Total Energy Expenditure (TEE) was calculated as the sum of REE,
PAEE and 10% diet induced thermogenesis using the following
formula: TEE � (REE + PAEE)/0.9.

Questionnaires addressing satiety, well-being and
gastro-intestinal comfort

Perception of satiety was evaluated in the fasted state using a
0–10 Likert visual analogue scale (VAS) (Woods et al., 2018). Satiety
(maximal score 20) was scored as the sum of scores on the questions
‘how full do you feel’ and ‘how satisfied do you feel’. Gastro-intestinal
discomfort was evaluated in the fasted state using a 0–8 Likert scale
questionnaire addressing upper and lower abdominal problems, and
systemic problems (Pfeiffer et al., 2009). Total gastro-intestinal
discomfort (maximal score 96) was scored as the sum of scores on
the ‘upper abdominal problems’ (heartburn, bloating, nausea and
vomiting, maximal score of 32), ‘lower abdominal problems’
(intestinal cramps, abdominal pain, flatulence, diarrhea, maximal
score of 32) and ‘systemic problems’ (dizziness, headache, muscle
cramps, urge to urinate, maximal score of 32). General mood status
was assessed by the Recovery Stress Questionnaire for Athletes
(RESTQ-36) (Kallus and Kellmann, 2001). An ‘overall stress score’
(maximal score 54) was calculated as the sum of scores for ‘general
stress’, ‘social stress’ and ‘fatigue’ subscales. An ‘overall recovery’ score
(maximal score 54) was calculated as the sum of scores on the ‘social
recovery’, ‘general well-being’ and ‘sleep quality’ subscales.

Blood and urine analyses
Commercially available ELISA kits were used to determine total

ghrelin (EZGRT-89K, Merck, Darmstadt, Germany), leptin
(RD191001100, Biovendor, Brno, Czech Republic) and GDF15
(DGD150, R&D, Minneapolis, United States) in serum. Serum free
triiodothyronine (T3), free thyroxine (T4) and thyroid-stimulating
hormone (TSH) were measured via electrochemiluminescence using
cobas e 801 (Roche Diagnostics, Mannheim, Germany). Furthermore,
on days 1, 14 and 27 of the caloric restriction period, capillary blood
samples for βHB determination (GlucoMen Lx plus meter with Lx β-
ketone sensor strips, Menarini Diagnostics, Firenze, Italy) were taken
from an earlobe immediately before and 1 h after each supplement intake
before meals. From the 24 h urine samples collected in the context of the
REE determination, total volume was registered and aliquots were stored
at -20°C until analyzed. Total nitrogen concentration was assayed
according to the Dumas method using a continuous-flow elemental
analyzer isotope ratio mass spectrometer (ANCA-2020, Europa
Scientific, Crewe, UK) as previously described (De Preter et al., 2007).
Total urinary nitrogen output was used to determine 24 h protein
oxidation rate.

Statistical analyses
Statistical analyses were performed using GraphPad Prism

version 8.0.0 for Windows (GraphPad Software, San Diego,
California United States). Differences between the
experimental groups at baseline were analyzed using a one way
repeated measures analysis of variance (ANOVA). Differences
between the experimental groups over time were analyzed using a
two way repeated measures ANOVA. In case of a significant
group × time interaction, Bonferroni post hoc tests were
performed to further specify the differences. Statistical
significance was set as p < .05. Reported p-values that refer to
observed main effects are specified as Ptime, Pgroup and Pinteraction,
other p-values refer to the post hoc analyses. All results are
expressed as mean ± SEM. Effect sizes were reported as eta
squared (η2). Sample size was determined based on earlier
studies investigating the effect of a high-protein hypocaloric
diet on muscle wasting (primary endpoint of this study) in
normal-weight subjects (Mettler et al., 2010; Pasiakos et al., 2013).

Results

Diurnal blood βHB levels (Figure 2)—Fasted blood βHB levels
were <.5 mM in each group. In PLA and PROT, diurnal βHB
concentrations did not significantly change compared with the
fasted levels before breakfast. However in KE, supplement intake
before meals increased blood βHB on average to ~2.5 mM (range:
1.8–3.8 mM) by 1 h after intake (p < .0001). βHB levels returned to
fasted baseline levels before the next supplement intake 4–6 h later. In
all groups, diurnal βHB levels were similar between day 1, 14 and 27 of
the supplementation period.

Body composition (Table 2)—For all body composition measurements,
pretest values were similar between the experimental groups. Compared
with the pretest, body weight declined after 4 weeks of caloric restriction in
all groups (Ptime<.0001). Body weight reductions were similar in PLA and
KE with an average loss of 3.8 kg (range: −6.0 to −2.5 kg) and 3.2 kg (range:
−4.6 to −.7 kg), respectively, while body weight reductions in PROT
(−2.4 kg, range: −3.1 to −1.3 kg) were smaller compared to PLA
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FIGURE 2
Diurnal blood β-hydroxybutyrate. Subjects were involved in a 4-week hypocaloric diet (30% energy restriction, .8–1.0 g protein · kg BW−1·day−1) and
received either placebo (PLA: n= 11), an increased amount of dietary protein (PROT: n = 10) or a ketone ester (KE: n= 11). Data are represented asmeans (white
bars: PLA; grey bars: PROT; black bars: KE) and individual values (circles: PLA; triangles: PROT; squares: KE). Supplements were ingested daily immediately
before breakfast (8 am), lunch (12 pm) and dinner (6 pm). βHB (mM) was measured immediately before and 1h after supplement intake on day 1, 14 and
27 during the supplementation period. Because diurnal βHB levels were similar between day 1, 14 and 27, only mean values of the 3 days are reported. In case
of significant interaction, post hoc differences are shown as $: significantly different from the corresponding value before breakfast (p < .05), #: significantly
different from PLA and PROT (p < .05).

TABLE 2 Effect of increased protein intake and exogenous ketosis on body composition during a hypocaloric diet. Data are mean ± SEM. Subjects were involved in a 4-
week hypocaloric diet (30% energy restriction, .8–1.0 g protein · kg BW−1·day−1) and received either placebo (PLA: n = 11), an increased amount of dietary protein
(PROT: n = 10) or a ketone ester (KE: n = 11). Body composition was measured using DXA before (pretest) and at the end (posttest) of the caloric restriction period.
Significant main effects are shown in bold. In case of significant interaction, post hoc differences are shown as $: significantly different from the corresponding value at
pretest (p < .05). Effect sizes are reported as eta squared (η2).

PLA PROT KE P (Group); η2 P (Time); η2 P (Group x Time); η2

Body weight (kg)

Pretest 58.7 ± 1.4 57.8 ± 1.5 58.4 ± 1.4 .990; .07 <.0001; .93 .0042; .31

Posttest 55.0 ± 1.3 $ 55.4 ± 1.5 $ 55.2 ± 1.3 $

Fat mass (kg)

Pretest 12.6 ± .6 12.4 ± .7 12.4 ± .7 .995; .01 <.00001; .94 .397; .06

Posttest 9.7 ± .6 9.8 ± .6 10.0 ± .6

Lean mass (kg)

Pretest 46.2 ± 1.4 45.4 ± 1.1 46.0 ± 1.2 .992; .05 .004; .25 .008; .28

Posttest 45.2 ± 1.2 $ 45.6 ± 1.1 45.2 ± 1.2 $

Bone mineral content (g)

Pretest 2,220 ± 83 2,232 ± 76 2,370 ± 97 .398; .88 <.0001; .50 .714; .02

Posttest 2,178 ± 74 2,187 ± 75 2,312 ± 85

Bone mineral density (g·cm−2)

Pretest 1.14 ± .02 1.16 ± .02 1.18 ± .03 .377; .77 <.0001; .42 .873; .01

Posttest 1.12 ± .02 1.14 ± .02 1.17 ± .02

Frontiers in Physiology frontiersin.org06

Hiroux et al. 10.3389/fphys.2022.1063956

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1063956


(Pinteraction<.005). Irrespective of the experimental condition, a large part of
this body weight decrement was due to a decrease in fat mass (on average:
−2.6 kg, range: −4.0 to −.9 kg, Ptime<.0001). The drop in fat mass also

translated into a ~16% smaller sum of skinfolds in all groups (on average:
pre: 141 ± 4mm, post: 119 ± 4mm, Ptime<.0001). The caloric restriction
period on average reduced leanmass by .9 ± .3 kg in PLA (p< .005) and .7 ±

FIGURE 3
Effect of increased protein intake and exogenous ketosis on resting energy expenditure during a hypocaloric diet. Subjects were involved in a 4-week
hypocaloric diet (30% energy restriction, .8–1.0 g protein · kg BW−1·day−1) and received either placebo (PLA: n = 11), an increased amount of dietary protein
(PROT: n= 9) or a ketone ester (KE: n= 10). Data are represented asmeans (white bars: PLA; grey bars: PROT; black bars: KE) and individual values (circles: PLA;
triangles: PROT; squares: KE). Absolute resting energy expenditure (A)wasmeasured by indirect calorimetry in the fasted state before (pretest) and at the
end (posttest) of the caloric restriction period. The hypocaloric diet reduced absolute REE in all groups, but to a lesser extend in KE. When REE values were
adjusted for lean mass (B), REE was only reduced in PLA and PROT, and was preserved in KE.

TABLE 3 Effect of increased protein intake and exogenous ketosis on physical activity-related energy expenditure, total energy expenditure and substrate oxidation at
rest during a hypocaloric diet. Data are mean ± SEM. Subjects were involved in a 4-week hypocaloric diet (30% energy restriction, .8–1.0 g protein · kg BW−1·day−1) and
received either placebo (PLA), an increased amount of dietary protein (PROT) or a ketone ester (KE). Physical activity-related energy expenditure (PAEE; PLA: n = 11;
PROT: n = 9; KE: n = 9) was measured during the registration period and during week three of the caloric restriction period. Total energy expenditure (TEE; PLA: n = 11;
PROT: n = 9; KE: n = 9) was calculated as the sum of REE, PAEE and 10% diet induced thermogenesis using the following formula: TEE=(REE + PAEE)/0.9. Substrate
oxidation (PLA: n = 11; PROT: n = 9; KE: n = 10) was measured by indirect calorimetry in the fasted state before (pretest) and at the end (posttest) of the 4-week caloric
restriction period. Significant main effects are shown in bold. In case of significant interaction, post hoc differences are shown as $: significantly different from the
corresponding value at pretest (p < .05), #: significantly different from PLA (p < .05), *: significantly different from KE (p < .05). Effect sizes are reported as eta
squared (η2).

PLA PROT KE P (Group);
η2

P (Time);
η2

P (Group x Time);
η2

PAEE (kcal·day−1)
Pretest 826 ± 45 792 ± 67 847 ± 64 .547; .14 .0006; .37 .601; .04

Posttest 677 ± 49 679 ± 32 769 ± 59

TEE (kcal·day−1)
Pretest 2,588 ± 45 2,537 ± 63 2,538 ± 114 .694; .09 <.0001; .70 .100; .16

Posttest 2,177 ± 57 2,178 ± 44 2,342 ± 115

Carbohydrate oxidation (mg·min−1)

Pretest 94 ± 8 80 ± 8 78 ± 6 .184; .14 .265; .05 .473; .05

Posttest 84 ± 7 62 ± 11 81 ± 13

Fat oxidation (mg·min−1)

Pretest 54 ± 4 57 ± 3 56 ± 5 .414; .12 .002; .30 .120; .15

Posttest 45 ± 2 41 ± 3 54 ± 5

Protein oxidation (mg·min−1)

Pretest 44 ± 3 47 ± 4 43 ± 3 <.0001; .69 .749; .00 <.0001; .59

Posttest 37 ± 2 67 ± 4 $,#,* 28 ± 3 $
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.2 kg in KE (p < .05), but not in PROT (+.3 ± .3 kg, Pinteraction<.01).
Compared with the pretest, bone mineral content and density declined by
~2% in all groups (Ptime<.0001).

Energy expenditure (Figure 3; Table 3)—In the pretest, REE on
average was ~1,500 kcal·day−1 and was similar between the
experimental conditions. The hypocaloric diet reduced REE in all
groups (Ptime<.0001). Declines in REE were similar in PLA and PROT
with an average of -221 ± 23 kcal and -200 ± 39 kcal, respectively,
while reductions in KE were smaller with an average of -85 ± 22 kcal;
Pinteraction<.005). When absolute REE values were adjusted for lean
mass, REE was only reduced in PLA and PROT (p < .001), but was
preserved in KE (Pinteraction<.005). Absolute PAEE was on average
822 ± 32 kcal·day−1 in the pretest and declined to 706 ± 31 kcal·day−1 at
the end of the caloric restriction period (Ptime<.001), but was not
different between the groups at any time. Consequently, also absolute
TEE declined at the end of the caloric restriction period from 2,556 ±
43 to 2,229 ± 45 kcal·day−1 (Ptime<.0001), without differences between
groups at any time. PAEE and TEE values adjusted for lean mass also
showed a similar reduction over time in all groups (data not shown).
Fasting carbohydrate oxidation rates were not affected by the caloric
restriction period, whereas fasting lipid oxidation rates decreased on
average by ~16% compared with the pretest (Ptime<.005) in all groups.
Protein oxidation rates were similar between the groups in the pretest
and markedly increased during the caloric restriction period in PROT
(~41%, p < .001), whereas it decreased in KE (~34%, p < .005) and did
not significantly change in PLA (Pinteraction<.0001).

Exercise performance (Table 4)—VO2max in the pretest was 2.73 ±
.13, 2.48 ± .07 and 2.68 ± .07 L·min−1 in PLA, PROT and KE,
respectively (p > .05). The hypocaloric diet similarly decreased
absolute VO2max by ~4–9% in each group (Ptime<.0001). However,
because body weight declined during caloric restriction, VO2max

relative to body weight did not significantly change. Time to
exhaustion in the VO2max test decreased by 2.5 ± .7% from the
pretest to the posttest in PLA (p < .05), but was unaffected in KE and
PROT (Pinteraction<.05). Peak heart rate dropped by ~5–7 bpm (p <
.001) in PLA and PROT, but not in KE (Pinteraction<.0001). Peak blood
lactate levels on average were also slightly lower in the posttest than in
the pretest in all groups (Ptime<.05). In the pretest, handgrip strength
was 34 ± 1 kg (range: 24–47 kg, n = 31), countermovement jump
height was 26 ± 1 cm (range: 15–39 cm, n = 32), and maximal
isometric knee extension torque was 162 ± 5 Nm (range:
99–212 Nm, n = 32). Values were unchanged following the caloric
restriction period and were similar between groups at any time (see
Supplementary Table S1).

Hormonal parameters (Table 5)—Irrespective of the experimental
condition, serum leptin and free T3 decreased during the caloric
restriction period (Ptime<.01), whereas TSH, serum ghrelin,
GDF15 and free T4 remained stable throughout the study period
in all treatment groups.

Questionnaires addressing satiety, stress and recovery status, and
gastro-intestinal comfort–The hypocaloric diet increased the scoring of
‘overall stress’ in PLA and PROT (on average: pre: 9.9 ± .7, post: 15.5 ±
1.2, p < .05), but not in KE (pre: 10.9 ± 1.4, post: 11.6 ± 2.2,
Pinteraction<.05). Scoring of injury was unaffected by the hypocaloric
diet in PLA and KE (on average: pre: 5.0 ± 10.5, post: 5.8 ± .5), but
increased in PROT (pre: 4.6 ± .5, post: 8.1 ± 1.0, p < .01,
Pinteraction<.05). The hypocaloric diet decreased perception of
‘overall recovery’ (on average: pre: 38.4 ± 1.2, post: 32.8 ± 1.6,
Ptime<.005) and ‘being in shape’ (on average: pre: 13.0 ± .4, post:
10.2 ± .6, Ptime<.0001) similarly in all groups. Subjective feelings of
‘satiety’ showed a significant time effect (Ptime<.05) with a tendency for
a time × group interaction (Pinteraction = .097), where exogenous ketosis

TABLE 4 Effect of increased protein intake and exogenous ketosis on performance in the VO2max test during a hypocaloric diet. Data are mean ± SEM. Subjects were
involved in a 4-week hypocaloric diet (30% energy restriction, .8–1.0 g protein · kg BW−1 · day−1) combined with placebo (PLA: n = 11), an increased amount of dietary
protein (PROT: n = 10) or a ketone ester (KE: n = 11). An incremental VO2max test was performed before (pretest) and at the end (posttest) of the caloric restriction
period. Significant main effects are shown in bold. In case of significant interaction, post hoc differences are shown as $: significantly different from the corresponding
value at pretest (p < .05), *: significantly different from KE (p < .05). Effect sizes are reported as eta squared (η2).

PLA PROT KE P (Group);
η2

P (Time);
η2

P (Group x Time);
η2

VO2max (l·min−1)

Pretest 2.73 ± .13 2.48 ± .07 2.68 ± .07 .181; .51 <.0001; .46 .153; .13

Posttest 2.47 ± .10 2.35 ± .08 2.57 ± .07

VO2max (ml·min−1·kg−1)

Pretest 46.0 ± 1.8 43.2 ± 1.5 46.0 ± 1.4 .271; .07 .144; .47 .404; .06

Posttest 44.3 ± 1.6 42.1 ± 1.6 46.2 ± 1.7

Time to exhaustion (min)

Pretest 14.3 ± .3 13.3 ± .3 14.2 ± .4 .080; .80 .449; .02 .020; .24

Posttest 13.9 ± .3 $ 13.3 ± .3 14.3 ± .3

Maximal heart rate (bpm)

Pretest 188 ± 3 186 ± 3 188 ± 2 .107; .67 <.0001; .44 <.0001; .48

Posttest 182 ± 2 $,p 179 ± 2 $,p 190 ± 2

Lactate after 2 min (mmolˑl−1)

Pretest 5.6 ± .5 6.7 ± .8 6.7 ± .7 .178; .44 .013; .20 .397; .06

Posttest 4.7 ± .4 5.6 ± .7 6.5 ± .6
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increased subjective feelings of satiety (p < .05) during the hypocaloric
diet. Although not significant, the same trend was observed for PROT
but not for PLA. Systemic and lower gastro-intestinal discomfort was
almost absent in the pretest (on average: 1.9 ± .5 and 1.8 ± .7,
respectively) and did not change during the caloric restriction
period in all groups. However, upper gastro-intestinal discomfort
slightly increased from the pretest to the posttest in PROT (pre:
.2 ± .1, post: 2.0 ± .8, p < .05), but not in PLA and KE (on average: pre:
.9 ± .4, post: .5 ± .3, Pinteraction<.05).

Discussion

Low body weight is an important determinant of success in
many sports. However, sustained hypocaloric diets generally
induce undesired losses in lean mass. As such, effective dietary
strategies that preserve muscle mass and athletic performance are
essential. Therefore, the current study aimed to investigate the
effect of high protein intake as well as to evaluate the effectiveness
of exogenous ketosis to preserve muscle mass during caloric
restriction in female recreational athletes. Young lean females
were enrolled in a fully-controlled weight loss program either
combined with an increased intake of dietary protein, ketone
ester supplementation or placebo.

Results of the current study indicate that increased protein intake
fully inhibited muscle wasting in lean females during a period of

caloric restriction, as was previously shown in males (Mettler et al.,
2010; Pasiakos et al., 2013). Increased protein intake also preserved
exercise capacity as time to exhaustion during an incremental
VO2max test remained unchanged following the caloric
restriction period. On the other hand, increased protein intake
was unable to prevent a decrease in REE and PAEE and did not
affect appetite or stress regulation. Although exogenous ketosis did
not inhibit muscle wasting, it preserved exercise capacity as
effectively as increased protein intake. Ketone ester
supplementation also preserved a drop in REE and in overall
stress parameters, but did not affect appetite regulation.

Body composition

Because current recommendations with regard to weight loss in
the context of athletic performance are largely based on studies in
young fit males, we conducted the current intervention study in
young lean females. Although we did not directly compare the effects
of caloric restriction between males and females, we performed a
study with a protocol which was very similar to an earlier study in
young males (Mettler et al., 2010). Overall, body composition
changes produced by the hypocaloric diet - in combination with
increased protein intake or not - were equivalent to the findings
reported by Mettler et al. (Mettler et al., 2010) and others (Pasiakos
et al., 2013). This corroborates earlier findings showing that muscle

TABLE 5 Effect of increased protein intake and exogenous ketosis on hormonal parameters during a hypocaloric diet. Data are mean ± SEM. Subjects were involved in a
4-week hypocaloric diet (30% energy restriction, .8–1.0 g protein · kg BW−1·day−1) and received either placebo (PLA: n = 11), an increased amount of dietary protein
(PROT: n = 9) or a ketone ester (KE: n = 11). Hormonal parameters were measured before (pretest) and at the end (posttest) of the caloric restriction period. Significant
main effects are shown in bold and effect sizes are reported as eta squared (η2).

PLA PROT KE P (Group);
η2

P (Time);
η2

P (Group x Time);
η2

Leptin (ng·ml−1)

Pretest 4.1 ± .8 4.4 ± .8 3.2 ± .6 .417; .18 <.0001; .62 .386; .06

Posttest 1.4 ± .2 2.2 ± .6 1.5 ± .4

Ghrelin (pg·ml−1)

Pretest 686 ± 88 783 ± 113 854 ± 89 .878; .02 .140; .07 .577; .04

Posttest 676 ± 123 642 ± 135 645 ± 152

GDF15 (pg·ml−1)

Pretest 378 ± 43 428 ± 74 548 ± 54 .043; .26 .940; .00 .864; .01

Posttest 402 ± 35 422 ± 86 520 ± 31

Free T3 (pmol·l−1)
Pretest 4.4 ± .2 4.5 ± .2 4.7 ± .2 .134; .31 .002; .28 .246; .09

Posttest 3.6 ± .3 4.0 ± .4 4.5 ± .3

Free T4 (pmol·l−1)
Pretest 14.4 ± .5 14.7 ± .5 15.8 ± .7 .040; .33 .653; .01 .527; .04

Posttest 13.6 ± .7 14.9 ± .9 15.9 ± .4

TSH (mU·l−1)
Pretest 2.6 ± .3 2.4 ± .3 2.8 ± .3 .893; .06 .078; .10 .857; .01

Posttest 2.9 ± .6 2.8 ± .5 3.0 ± .3
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protein turnover, in the basal state as well as in response to protein feeding,
is similar between young females and males (Fujita et al., 2007; Smith et al.,
2009). However, in the context of elite sports, especially in sports where
aesthetics and the degree of leanness are important determinants of
performance, females often enroll in even more extreme weight loss
regimens than males, causing potential hormonal dysregulations that
might result in bone demineralization (Joy et al., 2014). In the current
study, the 4-week caloric restriction period on average reduced bone
mineral content and density by ~2%, which is in line with earlier
reports (Soltani et al., 2016). It has been proposed that an increased rate
of protein intake may help to preserve bone mass during caloric restriction
(Tang et al., 2014;Wright et al., 2019), though this was not confirmed in the
current study. Interestingly, our research group previously reported that
consistent ketone ester supplementation during a period of endurance
training overload slightly increased bone mineral content in young male
volunteers (Poffé et al., 2019). However, the increase in bone mineral
content was accompanied by an increased caloric intake in the KE group,
resulting in a caloric balance compared to a caloric deficit in the control
group. As such, the beneficial effect of exogenous ketosis on bone
metabolism might have been driven by changes in caloric intake.
Indeed, in the current study where all groups were subjected to a 30%
caloric deficit, exogenous ketosis could not counter a drop in bone mineral
content. These observations underpin the link between energy balance and
bone metabolism which was previously reported by others (Confavreux
et al., 2009; Lombardi et al., 2012; DeLoughery and Dow, 2020).

Energy expenditure

REE typically declines during a period of caloric restriction, due to a
drop in body weight. Such a drop may eventually impair additional body
weight loss or impedemaintenance of low bodyweight (Pasman et al., 1999;
Rochon et al., 2011; Varkevisser et al., 2019). Since REE is highly impacted
by lean bodymass (Ravussin et al., 1986) it is often suggested that preserving
lean body mass during caloric restriction is a successful strategy to
counteract the drop in REE. However, several studies that combined
caloric restriction with resistance training to preserve lean body mass
still reported declines in REE (Schwartz and Doucet, 2010; Hunter et al.,
2015; Stratton et al., 2020). Accordingly, increased daily protein intake in the
conditions of the current study was unable to inhibit the decline in REE
despite preservingmuscle mass. As such, factors other than lean bodymass
may determine REE during caloric restriction (Schwartz andDoucet, 2010).
This is supported by the finding in the present study that exogenous ketosis,
which did not prevent muscle wasting, was able to preserve REE. That
exogenous ketosis might affect REE has been proposed in a previous study
from our lab in which participants supplemented with ketones during an
overtraining period maintained an energetic balance as opposed to an
energetic deficiency in the placebo groupwithout differences in bodyweight
between the groups (Poffé et al., 2019). Here it was speculated that a
decrease in REE in the control group explained the absence of a drop in
body weight.

Exercise performance

The 4-week caloric restriction period impaired performance during
an incremental VO2max test. Time to exhaustion was reduced which was
associated with lower peak heart rates and blood lactate. Nonetheless, the
reduction in time to exhaustion was blunted in PROT, likely due to the

preservation of muscle mass. Surprisingly, also in KE time to exhaustion
was unaffected by the caloric restriction period. The preserved exercise
capacity induced by exogenous ketosis is in line with a previous study
from our lab where chronic ketone supplementation during a 3-week
overload training protocol improved exercise tolerance during the last
training week (Poffé et al., 2019). It should be noted that in this study
exogenous ketosis also increased voluntary energy intake, predominantly
from carbohydrates, questioning its potential direct effect on exercise
tolerance. In contrast, in the current study, participants were restricted to a
prescribed diet omitting any variation in spontaneous eating behavior or
voluntary energy intake. As such, the effects in the current study are
attributed to a direct effect of ketone ester supplementation. Importantly,
participants performed the VO2max tests in the absence of ketosis, which
excludes potential acute effects of ketones on exercise performance.
Nevertheless, chronic ketone ester supplementation might have
induced adaptations in muscle tissue such as increased angiogenesis
(Weis et al., 2022) and thereby improved time to exhaustion
compared to PLA. Unfortunately, this hypothesis goes beyond the
scope of the current study and future studies are required to clarify
the mechanism(s) behind the improved exercise capacity induced by
ketones.

Satiety, stress and recovery status and gastro-
intestinal comfort

Long-term success in weight management largely depends on
psychological factors, such as the perception of hunger and satiety
(Hansen et al., 2019). Therefore, we looked at the effect of protein and
ketone ester intake on appetite hormone regulation and perception for a
given degree of caloric restriction. The prevailing opinion that high-rate
protein intake increases satiety to a greater extent than carbohydrate and
fat consumption (Paddon-Jones et al., 2008), was not confirmed by our
findings as PROT had no impact on satiety hormones or perceived
appetite. The effects of ketone ingestion on appetite and satiety are not
fully elucidated yet. Previous studies show that acute ketone intake may
suppress hunger and desire to eat (Stubbs et al., 2018; Poffé et al., 2020;
2021; Poffe et al., 2021) via various mechanisms, including central actions
in the brain (Laeger et al., 2012), reductions in circulating ghrelin (Stubbs
et al., 2018; Poffé et al., 2020) and GDF15 (Poffe et al., 2021) levels and
ketoacidosis (Poffé et al., 2021). In contrast, we previously demonstrated
that post-exercise ketone ester administration during short-term
endurance training overload not only impacted appetite hormone
regulation, but also altered spontaneous eating behavior by stimulating
voluntary energy intake (Poffé et al., 2019). However, the results of the
present study show that exogenous ketosis altered neither circulating
ghrelin, leptin or GDF15 levels, nor affected satiety perception. The
current study design obviously excludes changes in voluntary eating
behavior as well as any acute effect of exogenous ketosis on perceived
appetite and appetite hormones since blood samples and questionnaires
were taken early morning in the fasted state, 8–10 h after the last ketone
ester dose, i.e. at equally low circulating ketone levels (<.5 mM) in all
groups.

Besides perception of hunger and satiety, psychological factors
such as overall well-being and stress play a crucial role in weight
loss maintenance. In fact it was shown that comfort eating, induced
by negative emotions and stress, is a common cause for weight regain,
especially in females (Zellner et al., 2006; Sainsbury et al., 2019). Whereas
overall stress increased during the caloric restriction period in PLA and
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PROT, it remained stable in KE. Our group previously showed that
exogenous ketosis was able to counteract the sympathetic overdrive
induced by an intense training period by inhibiting the increase in
catecholamine excretion (Poffé et al., 2019). These findings suggest a
mechanism viawhich ketone ingestionmay have reduced overall stress in
the current study, thereby proposing a potential role for exogenous ketosis
to facilitate low body weight maintenance.

Limitations and future directions

The subjects who enrolled in the current studywere young lean females
who participated in daily physical activity and training. Their body fat
percentage was low, i.e. ~21.4%, but still significantly higher than in most
elite female athletes (≤15%). It is well-known that further energy restriction
in very lean females submitted to strenuous athletic training often results in
physiological dysregulations which are referred to as the ‘relative energy
deficiency in sport’ (RED-S) (Manore et al., 2007; Mountjoy et al., 2014).
Based on the current results, we cannot exclude that under such extreme
catabolic conditions (Manore et al., 2007; Loucks et al., 2011) exogenous
ketosis may have an impact on body composition.

Hydration status was not determined, which may be considered to
be a limitation of the current study, since DXA results are influenced
by total body water content. However, considering the high level of
control in this study (i.e. fully provided diet and strict control of
physical activity), it can be argued whether potential small differences
in water retention would be significant enough to influence the
interpretation of the DXA results.

The exercise tests included in the current protocol are based on well-
controlled laboratory settings. Therefore, generalization to functional
performance during specific sports, such as gymnastics, martial arts or
figure skating, remains presumptuous. Nevertheless, the finding that
increased protein intake effectively blunts muscle wasting during a
period of caloric restriction in young lean females adds valuable
insights to the field of female exercise physiology.

Conclusion

This is the first study to investigate the effect of increased protein
intake and exogenous ketosis on body composition, energy expenditure
and exercise capacity during a hypocaloric diet in young lean recreational
female athletes. Our observations demonstrate that also young lean
females benefit from increased protein intake to effectively prevent
muscle wasting and maintain exercise capacity during a period of
caloric restriction. Furthermore, ketone ester supplementation does not
affect body composition, but shows its potential in weightmanagement by
preserving a drop in exercise capacity and REE and by improving overall
stress parameters during a period of caloric restriction. These findings
warrant future studies to explore the effects of intermittent exogenous
ketosis in weight management in athletic populations.
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