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The current narrative review has explored known associations between foot

shape, foot posture, and foot conditions during running. The artificial

intelligence was found to be a useful metric of foot posture but was less

useful in developing and obese individuals. Care should be takenwhen using the

foot posture index to associate pronation with injury risk, and the Achilles

tendon and longitudinal arch angles are required to elucidate the risk. The

statistical shapemodeling (SSM)may derive learnt information frompopulation-

based inference and fill in missing data from personalized information. Bone

shapes and tissue morphology have been associated with pathology, gender,

age, and height and may develop rapid population-specific foot classifiers.

Based on this review, future studies are suggested for 1) tracking the internal

multi-segmental foot motion andmapping the biplanar 2Dmotion to 3D shape

motion using the SSM; 2) implementing multivariate machine learning or

convolutional neural network to address nonlinear correlations in foot

mechanics with shape or posture; 3) standardizing wearable data for rapid

prediction of instant mechanics, load accumulation, injury risks and adaptation

in foot tissue and bones, and correlation with shapes; 4) analyzing dynamic

shape and posture via marker-less and real-time techniques under real-life

scenarios for precise evaluation of clinical foot conditions and performance-fit

footwear development.
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Highlights

• The artificial intelligence is a useful metric of foot posture,

which can be measured quickly and associated with motion

and joint pain in adults, but may be less useful in special

populations such as developing and obese individuals.

• The foot posture index that is used for classifying feet as

pronated, neutral, and supinated is a useful approach

under both static and dynamic conditions. However,

care must be taken to associate pronation with injury

risk, and factors of the Achilles tendon and longitudinal

arch angles may be required for elucidating the risks.

• Dynamic tracking of foot shape, posture, and internal

multi-segmental motion should consider current

fluoroscopy, machine learning, statistical shape

modeling, wearable, and marker-less techniques.

Introduction

Changes of shape and posture in the human foot have been

informed through the evolutionary process (Bennett et al., 2009;

Lieberman, 2012; Harcourt-Smith et al., 2015). Foot shape and

functions are closely related and especially adapted to bipedalism.

While examining the foot from a functional perspective, the

posterior calcaneus contributes to balance support and impact

absorption, the dome-like arch stiffens the foot during weight-

bearing and returns energy during push-off in gait, the

metatarsals expand the anterior pressure support, and the toes

(particularly the hallux) facilitate pushing-off at the end of stance

during locomotion (Morton, 1924; Hicks, 1953; Hicks, 1954; Ker

et al., 1987; Ward et al., 2011; Fernández et al., 2018; Venkadesan

et al., 2020).

While considering the measurement of foot functions, the

classification of the foot–ankle complex has been presented using

several popular metrics. A commonly employed model in clinics

was based on the “Rootian theory” (Root model), also known as

the “subtalar joint neutral theory” (Root et al., 1977). This model

uses static measurement of the subtalar joint neutral position to

predict dynamic functions and prescribe orthotics for treatment.

However, this model has been challenged recently for poor (low)

correlation with dynamic functions (Jarvis et al., 2017) and

concerns of reliability and validity (Harradine et al., 2018).

The technique of classifying foot posture types has been

reported using visual inspection, anthropometric

measurement, footprint analysis, and radiographic assessment

for rearfoot, midfoot, and forefoot (Razeghi and Batt, 2002).

These include measurement of the arch height, longitudinal arch

angle, navicular drop and drift, artificial intelligence and arch

angle, and radiographic evaluation of calcaneal inclination angle,

height–length ratio, calcaneal–first metatarsal angle, and

rearfoot–forefoot angle. The foot posture index (FPI) is

another popularly employed metric to define pronated,

neutral, or supinated feet via anatomical palpation and

structural observation (Redmond et al., 2006). In terms of

dynamic conditions, a recent minimal markerset model was

proposed for navicular position measurement and validated

for relating foot postures and functions with accurate intraday

reliability (Eichelberger et al., 2018).

In the current literature, several excellent studies have

reviewed the relationship of foot shape, foot posture, and foot

biomechanical function. Shoe-wearing habits, pathology, or

external factors have also played contributing roles in foot

shape, posture, muscle and tendon morphology, and bone

alignment (Cavanagh et al., 1997; Johnson et al., 2015; Xiang

et al., 2018; Garofolini and Taylor, 2019). Specifically, a 10-week

transition into running with minimalist shoes found an increased

cross-sectional area of abductor hallucis by 10.6% (Johnson et al.,

2015). This has confirmed that tissue morphology is related with

shoe-wearing habits of minimalist shoes, motion control shoes,

and neutral shoes (Zhang X. et al., 2018). Decreased hallux

abductus angle (measured from X-ray images) and hallux

angle (measured with footprints) have been reported with

centrally shifted plantar pressure and reduced medial

metatarsals stress followed by a 12-week minimalist shoe

intervention for mild hallux valgus (Xiang et al., 2018; Xiang

et al., 2022b).

In particular, the foot type and foot disorders are strongly

associated with the foot arch difference, classified as pes cavus

(high arch), pes rectus (normal arch), and pes planus (flat arch)

(Hillstrom et al., 2013; Mootanah et al., 2013). Pes planus feet

have been associated with hammer toes and overlapping toes,

while pes rectus and pes cavus have not been associated with any

foot disorders (Hagedorn et al., 2013). Furthermore, decreased

thickness and area in the intrinsic muscles (such as abductor

hallucis, flexor hallucis brevis, and peroneus longus and brevis),

plantar fascia, and Achilles tendon, while increased thickness and

area in the extrinsic muscles (flexor digitorum and flexor hallucis

longus) have been found in pes planus, which may implicate the

compensatory adaptation for the altered foot structure (Angin

et al., 2014, Angin et al., 2018; Crofts et al., 2014; Murley et al.,

2014). However, these measurements or analyses were conducted

under static conditions.

During walking (dynamic conditions), cavus (high arch) feet

presented increased frontal and transverse motion in the

rearfoot, while planus (flat arch) feet showed a reduced

frontal range of motion in the midfoot (Buldt et al., 2015a).

The foot posture index (FPI) showed a stronger correlation with

intersegmental kinematics than did the other measurements of

the artificial intelligence, navicular height, and dorsal arch height

(Buldt et al., 2015b). Additionally, planus feet showed greater

activation of the tibialis anterior but less activation of peroneus

longus during the initial contact of stance and increased tibialis

posterior but decreased peroneus longus activities during

midstance and the push-off phase (Murley et al., 2009b). It

has been further reported that increased foot inversion and
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muscle activation were present in pronated feet with less evertor

activation (Murley et al., 2009a).

Alteration of shape or posture in the foot, functioning as the

primary interface with the external surroundings, may lead to the

realignment of the kinetic chain. Foot pronation often showed an

everted rearfoot and arch drop in the foot–ankle complex, further

inducing internally rotated tibia, proven with a continuous vector

coding analysis technique (Rodrigues et al., 2015), and mobile

patellar and anterior knee pain (Clifford et al., 2020; Yu et al.,

2021) in the knee complex. During the changes in the kinetic

chain, the pronated foot posture was further reported to be

associated with medial tibia stress injury (Neal et al., 2014),

increased subtalar motion, leg stiffness, tibial shock (Hollander

et al., 2019), and patellofemoral pain (Selfe et al., 2016) during

running. While the posture alteration is not strongly related to

lower back pain, apart from females in whom pronated foot

showed back pain (Menz et al., 2013). Pronated feet have been

strongly associated with hallux valgus and overlapping toes, while

supinated feet have shown less association (Hagedorn et al.,

2013).

In terms of foot postures and shape in the foot segments,

particularly when analyzing the functions of the forefoot in vivo,

a longer first metatarsal size, rounder first metatarsal head, and

greater first metatarsophalangeal joint angle were associated with

hallux valgus deformity (Nix et al., 2012). Computational

modeling of the foot (Morales-Orcajo et al., 2016) revealed a

higher concentrated von Mises stress at the metatarsals and

higher contact pressure in the first metatarsophalangeal joint

(Zhang et al., 2018c). Furthermore, the diabetic foot presented

toe deformation with focalized pressure at the hallux (Lu et al.,

2015). Habitually, barefoot populations with increased hallux

spacing have been associated with active gripping function

(Lambrinudi, 1932; Wallden, 2016), which expands the

supporting area in the forefoot (Mei et al., 2015a; Mei et al.,

2015b; Shu et al., 2015; Wang et al., 2016) and higher medial

longitudinal arch in the barefoot children’s cohorts (Hollander

et al., 2017). A nontypical foot shape, such as the bound foot in

Chinese women, presents dislocated toes, extreme high arch,

limited ankle range of motion, and concentrated loading in the

heel (Gu et al., 2015; Zhang et al., 2018b).

Recently, there has been a focus on distance running

activities (which is in contrast to static measures or walking)

and population-based modeling using large data sets and

statistical shape methods (Fernandez et al., 2016; Fernandez

et al., 2019). In this study, we first aimed to review and

discuss the changes in foot morphology, shape, and posture

during dynamic activities, using running as an example.

Second, we examined the statistical shape modeling (SSM) of

the foot using population-based approaches and reviewed the

association between shape, posture, and biomechanics to

understand potential injury. Lastly, we summed up the

current advances and techniques in analyzing the foot shape,

posture, and biomechanical functions and provided several

perspective suggestions for consideration in the foot–ankle

health-related research.

Foot morphology, shape, and posture
in running activities

Evaluation of foot morphology, shape, and
posture

Changes in tissue morphology, bone shape, and posture of

the foot influence the biomechanics of the lower extremity. For

example, foot types (mainly, normal, planus, and cavus feet)

(Buldt et al., 2015a), foot posture (mainly, normal, pronated, and

supinated feet) (Hollander et al., 2019), toe morphology (Mei

et al., 2015a), hallux valgus (Hannah et al., 2016), and

manipulated forefoot shapes (abducted hallux versus adducted

hallux) (Mei et al., 2016; Xiang et al., 2020a; Xiang et al., 2020b)

have been previously reported in the literature. Pathological

conditions, such as diabetic-related foot deformities (Guiotto

et al., 2013; Lu et al., 2015) can also influence the biomechanics.

Figure 1 outlines the most common popular shape metrics

(Figure 1) and postures in the foot (Figure 1 and Figure 2)

with highlighted regions of variations in pronation (blue) and

supination (red) when compared to those of the neutral foot

posture. The highlights in pronated and supinated foot postures

are modes generated from the principal component analysis

(PCA) in the statistical shape modeling (SSM) using an open-

source Musculoskeletal Atlas Project (GIAS2 package) developed

at the Auckland Bioengineering Institute (Zhang et al., 2014).

The SSM typically refers to the techniques of describing the

characteristics of deformable objects with different shape

features, presenting mean shape (appearance) and key

variations in these object groups (Sarkalkan et al., 2014; Mei

et al., 2021a).

The current measurement of foot morphology, shape, and

posture using 2D footprints, anthropometric measurements,

anatomical palpation, 3D surface scanning, ultrasound

imaging, computed tomography (CT), or magnetic resonance

imaging (MRI) are mainly under static (non-weight or weight-

bearing) conditions (Razeghi and Batt, 2002; Redmond et al.,

2006; Crofts et al., 2014). However, the foot may present different

postures, shapes, and morphologies during dynamic activities

(short and long term). Prolonged repetitive impact on bones and

soft tissue can alter the shape, biomechanical response, and

adaptation (Garofolini and Taylor, 2019). In particular,

increased muscle volume and cross-sectional area of foot

muscles (abductor halluces, flexor digitorum brevis, and

abductor digiti minimi) and bone density (calcaneus) were

concluded in a recent review study (Garofolini and Taylor,

2019), which may rely on training volume and experience.

Long-distance running, or endurance running, is a key

evolutionary skill presented by bipeds in addition to walking
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(Bramble and Lieberman, 2004). Long-distance running has

gained global popularity with increased marathon

participation, particularly in amateurs. However, the

increased participation is associated with higher risks of

running-related injury (Hulme et al., 2017).

The arch (either high arch or flat foot) in the midfoot region

is commonly used to classify and categorize the foot posture in

foot biomechanics. Specifically, it has been quantified using the

2D footprint artificial intelligence (AI) and classified as high arch

(AI < 0.21), normal arch (0.21 < AI < 0.26), and low arch (AI >

FIGURE 1
An illustration of popular foot shapemetrics and foot postures with highlighted variation of pronation (red regions) and supination (blue regions)
from the posterior view.

FIGURE 2
An outline of workflow in the statistical shape modeling (SSM) of foot bones (left) and surface (right) shapes. Steps of segmentation (bone) or
surface scan (surface), mesh fitting, mesh alignment, and PCA.
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0.26) (Cavanagh and Rodgers, 1987). This metric has been used

during static and dynamic measurements (Scholz et al., 2017)

and is sensitive to forefoot and midfoot plantar pressures during

walking and running (Mei et al., 2020). The lower arch has been

associated with increased hallux and medial mid-foot pressures

and reduced medial forefoot pressures (Jonely et al., 2011).

Increased reported ankle and knee pain have also been

associated with lower foot arch (Riskowski et al., 2013),

whereas the high arch is primarily associated with ankle pain

only (Riskowski et al., 2013). Altered frontal and transverse

rearfoot motion and reduced midfoot motion during initial

contact are associated with high arch feet, while reduced

midfoot motion during pre-swing is associated with low arch

feet (Buldt et al., 2015a). While the foot arch is a useful measure

in adults, there is a caveat that it might be a less useful

measurement in developing and overweight individuals. For

example, the dynamic artificial intelligence was not associated

with any kinematics, kinetics, or spatiotemporal information in

children except for a greater external foot rotation associated

with a lower arch (Hollander et al., 2018b). The artificial

intelligence is also influenced by training levels and running

experience (Fascione et al., 2009) despite the biomechanical

evaluation being not reported. Overweight adults (with high

BMI) showed pronated and flatter feet with reduced ankle

inversion–eversion motion and higher plantar loading

underneath the foot (Butterworth et al., 2015), which led to

uncertainty of either the change of foot structure or increased

weight contributing to a greater plantar loading.

Relationship between morphology, shape,
and posture with running biomechanics

Running biomechanics influences the foot structure.

Following long-distance running, foot arch and dorsal

height reduce over a week and may take more than a week

to return to pre-run profiles and has been linked with

increased plantar loadings in the medial foot (metatarsals

and arch) (Fukano and Iso, 2016; Fukano et al., 2018; Mei

et al., 2018). These changes could affect the perceived comfort

of the running footwear and contribute to running-related

injuries (Cowley and Marsden, 2013; Hollander et al., 2018a).

Following a running-induced fatigue intervention, plantar

pressure has been reported to redistribute in the lateral

metatarsals of flat arch feet and the medial metatarsals of

high arch feet (Anbarian and Esmaeili, 2016). Following long-

distance running, a pronated foot posture, reduced arch

height, and increase in medial plantar pressure have been

reported (Nagel et al., 2008; Schlee et al., 2009; Cowley and

Marsden, 2013). The FPI (Redmond et al., 2006) following

long-distance running has been moderately correlated with

knee and ankle joint loads using the musculoskeletal model

(Mei et al., 2019). Furthermore, runners with asymptomatic

overpronated feet have larger abductor hallucis and flexor

digitorum brevis and longus but smaller abductor digiti

minimi, and peak eversion in the rearfoot and peak

supination in the forefoot (Zhang et al., 2017). While,

symptomatic overpronated runners have shown a smaller

cross-sectional area in the flexor digitorum longus and

abductor hallucis and thinner peroneus and abductor

hallucis than those asymptomatic pronated runners,

implying the training of intrinsic foot muscle for the

possible prevention of injuries (Zhang et al., 2019).

Associations between foot pronation and
injury mechanisms

Foot types (mainly, normal, planus, and cavus feet) and

postures (mainly, normal, pronated, and supinated feet) have

been reported to be associated with running-related injuries

(Pérez-Morcillo et al., 2019), particularly the tibia stress under

extreme foot types (Barnes et al., 2008), medial tibia stress, and

patellofemoral pain with foot pronation (Lun et al., 2004; Neal

et al., 2014; Selfe et al., 2016). The hip joint loading was found to

be increased, whereas only a moderate correlation with foot

pronation and ankle and knee loadings was reported (Mei et al.,

2019).

This subsection is focused on foot pronation and potential

contribution to running-related injuries, taking distance running

as a typical example. Overpronated feet have been implicated in

developing overuse injuries, despite there being no scientific

evidence that overpronated feet are associated with the

diagnosis of injuries or diseases. This misconception exists

possibly because altered foot postures have often been

observed in people who have musculoskeletal injuries,

dysfunctions of the lower limb, and lower back pain (Levinger

et al., 2010; McWilliams et al., 2010; Sharma et al., 2010; Menz

et al., 2013; Arnold et al., 2019).

Pronation/supination are important biomechanical

functions in gait, and a certain extent of natural pronation/

supinations is required as a shock absorber during the early

stance phase and as a rigid lever to push forward during the

terminal stance phase (Hetsroni et al., 2008). During repetitive

movements such as long-distance running, however, the high

volume of impact forces during the early stance phase may lead to

overpronation (Mei et al., 2019) by flattening the foot with arch

collapses and transferring the foot eversion into the internal

rotation of the tibia. There has been a belief that this

overpronation possibly leads to overuse injuries by disrupting

the coupling mechanism of the lower limb alignment as the gait

may be compromised and adding the additional strain of the

foot/ankle complex (Subotnick, 1985). Pronation is also a passive

force that occurs within the initial heel strike during walking and

running. That is, there would be less muscular control when the

foot is overpronated, resulting in a lack of normal distribution of
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excessive force and instability of the foot/ankle (Subotnick, 1985).

This patho-mechanical alteration of foot posture, therefore, has

been proposed to cause foot diseases such as plantar fasciitis

(Golightly et al., 2014), osteoarthritis (Reilly et al., 2009; Lithgow

et al., 2020), metatarsalgia (Eustace et al., 1993), and stress

fractures of the lower limb (Lysholm and Wiklander, 1987).

Overpronated feet, specifically at the subtalar joint, have been

proposed to develop deterioration of the lower limb joint by

disrupting normal alignment with external rotation of the tibia

and calcaneal inversion which are not in the normal direction

(Tiberio, 1987; Hintermann and Nigg, 1998). A previous study

also showed that people with medial compartment knee

osteoarthritis revealed a more pronated foot than healthy controls,

possibly due in part to genu varum malalignment of the knee, which

causes compensatory overpronation of the pronated foot (Levinger

et al., 2010). Pronation with adduction of the talus with calcaneus

eversion results in a greater compressive force in the medial midfoot,

and this idea has been supported by several studies, reporting that

people who have been diagnosed with midfoot osteoarthritis have a

more pronated foot posture (Menz et al., 2010; Arnold et al., 2019;

Arnold et al., 2021; Lithgow et al., 2020). Older adults, who were

diagnosed with radiographic osteoarthritis of the talonavicular joint

and navicular–first cuneiform joint, presented flatter feet with greater

loading of the midfoot during walking (Menz et al., 2010). This

mechanism has also been supported by a cadaver study, reporting a

greater compression force at the dorsal talonavicular joint simulating

a flattening foot (Kitaoka et al., 1996).

However, while numerous studies have observed pronation/

supination of the foot in people who have lower limb diseases, there

is no scientific evidence supporting the causal relationship between

the alteration of foot posture and diagnosis of injuries or diseases. A

recent study on knee osteoarthritis with foot posture also put

forward the question of foot postural changes leading to injuries

or injuries resulting in posture changes (Al-Bayati et al., 2018). A

comprehensive cohort study of running-related injuries in a large

population of 1,680 runners reported that there was no significant

association between anthropometric outcomes (e.g., high/low arch

and rearfoot valgus) and risk factors of running-related injuries

(Water et al., 1960). Similarly, a 1-year epidemiological prospective

cohort study of 927 novice runners reported that foot pronation is

not associated with an increased risk of running-related injuries

(Nielsen et al., 2014). A systematic review study revealed a small

effect between foot pronation and the risk of medial tibial stress

syndrome, suggesting that foot pronation may not be directly

associated with the foot injury (Neal et al., 2014). Furthermore, a

more recent radiologic study reported that significant ankle

kinematic changes associated with supination of the foot were

not related to the diagnosis of diseases (Kim et al., 2019a; Kim

et al., 2021). This study interestingly observed that novice runners,

who did not show ankle kinematic changes after mid-distance

barefoot running, revealed early indications of cartilage

degeneration or deteriorating effects by increasing the

T2 relaxation time in MRI-derived T2 maps. However, runners

who showed a supinated foot type after mid-distance running did

not change their T2 value on MRI. This study, therefore, suggests

that supinated feet or significant ankle kinematic changes are less

likely to develop foot/ankle injuries.

The idea of our understanding of the association between

pronation/supination and running-related injuries is still not clear

and no consensus has been reached on the foot posture with injuries

(Nigg et al., 2019). Thus, to draw a conclusive result, we may require

additional information such as the integrated longitudinal arch angle

and Achilles tendon angle proposed for the determination of foot

postures and biomechanics during walking and running (Limeres

et al., 2019; Behling and Nigg, 2020). Due to multifactorial

parameters being included for analysis, multivariate statistical

models, such as principal component analysis (Limeres et al.,

2019; Behling and Nigg, 2020), partial least square regression

(Mei et al., 2020), and other nonlinear statistical models, are

recommended to investigate the potential correlation.

Numerous foot imaging modalities have been adopted to

capture the foot posture via shape which include the 3D plantar

surface (Kimura et al., 2008; Thabet et al., 2014), dorsal surface

(Blenkinsopp et al., 2012), and whole foot (Boppana and

Anderson, 2019). Techniques of tracking in vivo foot motion

have been previously developed and validated using makers in a

biplane fluoroscopy system (Iaquinto et al., 2014), and midfoot

postures have been analyzed to evaluate the longitudinal arch

angle under conditions of barefoot (~127.5°), footwear (~130°),

and orthoses (~131°) (Mannen et al., 2018). However, challenges

of multiaxial motion in the ankle complexity of tibiotalar and

subtalar joints were found (Canton et al., 2020). The

development of in vivo bone shapes in the foot has laid the

foundation of classifying foot types from 3D perspectives

(Ledoux et al., 2006). Recent attempts have been made to

associate static foot bone images from 3D CT with 2D

biplanar video-radiography images in vivo (Maharaj et al.,

2020) and the development of the multi-segmental foot

musculoskeletal model (Malaquias et al., 2017; Maharaj et al.,

2021), but the cost of obtaining subject-specific bone geometry

makes this method less translatable for practical use. Population-

based modeling using ‘big data’ may provide an alternative for

rapidly creating foot geometries from limited data [such as the

popularly employed statistical shape modeling of functional foot

bones (Grant et al., 2020)] and establishing relationships between

form and function at the population level.

Population-based modeling of
shapes

Statistical shape modeling with principal
component analysis

Statistical shape modeling (SSM) is a reduction technique

that can be used to identify independent (orthogonal)
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geometrical features of a set of similar shapes and rank them

(Cootes et al., 1995). The principal component analysis (PCA) is

the most popular method to reduce dimensionality and

computes the mean shape and orthogonal shape variations

(modes) (King and Eckersley, 2019). This technique has been

used widely in the biomechanics and anatomy space (Ambellan

et al., 2019; Audenaert et al., 2019; Fernandez et al., 2019; Vallabh

et al., 2019; Wang and Fernandez, 2020; Yeung et al., 2020).

Applications include clinical medical image analysis (Heimann

and Meinzer, 2009) and surgery and design of orthopedic

implants (Sarkalkan et al., 2014).

To introduce one of the SSM technique, we took

musculoskeletal modeling software GIAS2 (Zhang et al., 2014)

(https://pypi.org/project/gias2/) being developed at the Auckland

Bioengineering Institute as an example. Figure 2 demonstrates

the workflow in the SSM of the foot surface shape (right side) and

bone shape (left side) being employed from our research group.

The steps include shape mesh segmentation (bone shape) or

surface scan (surface shape), mesh fitting and alignment, and the

principal component analysis (PCA) to compute the mean shape

and key modes of variation.

Population-based approaches for understanding the foot

have been reported in osteoarthritis populations (Trivedi

et al., 2010), for the footwear type and foot discomfort in

females (Dufour et al., 2009), flat arch with ankle pain and

high arch with knee pain (Riskowski et al., 2013), and hallux

valgus with foot pain (Dufour et al., 2014). Recent advances in

foot imaging technology have enabled easy access and increased

availability of 3D foot scanning systems (Telfer and Woodburn,

2010), providing increased foot morphology data for the study of

shape variations, especially in populations of different ethnicities

(Mei et al., 2021b; Mei et al., 2021a). A recent study highlighted

published 1.2 million foot shape data on the features of

populations from North America, Europe, and Asia and

reported the distribution of geometrical metrics (such as

length, width, and height) between males and females (Jurca

et al., 2019). Apart from the measurements from 3D scanning

technologies, the PCA on the 3D shape is one common and

useful approach to extract meaningful information from these

data (Mei et al., 2021a).

The SSM of the calcaneus and talus bones in the rearfoot

revealed a smaller size in females but less asymmetry in both

genders (Audenaert et al., 2019), specifically in the length and

height of calcaneus and talus articular surface (Tümer et al.,

2019a). In contrast to the normal foot, the calcaneus shape

presents decreased height and increased length in high arch

feet and increased posterior mass in the talus of flat arch feet

(Moore et al., 2019). A statistical shape model of the foot surface

reported variations in arch height, ball (metatarsophalangeal

joint) width, toe distance, hallux orientation (valgus–varus),

and toe length (Stanković et al., 2018). A higher BMI has

been related to greater ankle width, Achilles tendon size, and

width. Age was associated with heel width, Achilles tendon size,

and hallux orientation. Gender was linked to ankle width,

Achilles tendon size, and heel width. Classifying problematic

feet using surface morphology has been reported which included

hallux valgus, pes planus, and pes cavus profiles (Stanković et al.,

2020).

A flat talar contact surface has been associated with chronic

ankle instability (Tümer et al., 2019b). This flat talar surface may

be associated with adaptation to constraining footwear on the

basis of comparisons with the talus shape from archaeological

records (Sorrentino et al., 2020). High arch feet have a more

posteriorly positioned navicular tuberosity than normal arch feet

(Moore et al., 2019). In the forefoot, metatarsal shapes are

associated with foot types (high arch, normal, and flat arch)

and bones vary in size (Telfer et al., 2017). Specifically, the flat

arch foot has a reduced cross-sectional metatarsal area, and the

first and fourth metatarsal sizes are linked to gender, with females

presenting smaller sizes. Furthermore, the first metatarsal could

be accurately reconstructed from sparse landmarks based on the

SSM (Grant et al., 2020), which has the potential for rapid

development of the musculoskeletal foot models (Grant et al.,

2020).

Recent techniques to correlate shape with
function in the foot

One of the challenges with the SSM is creating a population

of topologically consistent geometries for the principal

component analysis. This problem has been addressed by

using the ‘free-form’ deformation technique (Fernandez et al.,

2004), where a generic geometry is morphed to different data

(‘host mesh’). This has been demonstrated for the diabetic foot

(Fernandez et al., 2012) and gout foot (Dalbeth et al., 2015) and,

recently, for investigating ankle pressure in barefoot runners

(Kim et al., 2019b). This technique has been used to check the

similarity of foot shapes (Mochimaru et al., 2000), which are

combined with plantar pressures for the application of footwear

design (Kim et al., 2007). Another consideration which should be

noted is that the prediction of four-dimensional (3D shapes

varying over time) foot shapes become plausible from

integrating multidisciplinary advanced statistics, artificial

intelligence (AI), depth camera, and object detection

techniques (Boppana and Anderson, 2019; Boppana and

Anderson, 2021). The development of this technology may

become a great improvement in shape changes in real time

and provide an option of considering footwear and orthotics

fit from a dynamic and functional perspective.

Recently, multivariate machine learning (partial least

squares) regression models were first developed to correlate

key shape metrics (artificial intelligence and hallux–toe

distance) with walking (R-square values of 0.763 and 0.788)

and running (R-square values of 0.786 and 0.789) plantar

pressures using habitually barefoot and shod populations (Mei
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et al., 2020), showing a prediction accuracy of around 80%.

Further sensitivity analysis reported that the forefoot shape

metric (hallux–toe distance) was associated with medial

forefoot pressures, especially during walking in habitually

barefoot populations. Also, the midfoot shape metric (artificial

intelligence) was associated with lateral forefoot pressures during

walking in both habitually barefoot and shod populations. An

improved predictive statistical model (support vector machine)

also showed an increased prediction accuracy on the basis of the

same data set (Xiang et al., 2022a). Rapid prediction of foot

function from easily measured foot shape metrics may become

the norm and extend into clinical diagnosis of foot pathologies

and customized footwear development.

Conclusion and future perspectives

This review has explored known associations between foot

shape, posture, and foot conditions. The foot artificial

intelligence was found to be a useful metric of foot posture,

which can be measured quickly and associated with motion and

joint pain in adults; however, it may be less useful in special

population groups, such as developing and obese individuals.

The foot posture index to classify feet as pronated, neutral, and

supinated is a useful approach under both static and dynamic

conditions, but care must be taken when using it to associate

pronation with injury risk. While recent studies have associated

foot posture with joint loading, more information, such as factors

of Achilles tendon angle and longitudinal arch angle, is needed to

elucidate risk from normal function. With increasing imaging

technology and database sharing, there is an opportunity to apply

statistical shape modeling methods to derive learnt information

from ‘big data’ and use this to make a population-based inference

and fill in missing data from personalized information. Foot bone

shapes and tissue morphology have been associated with

pathology, gender, age, and height and may help develop

rapid population-specific foot classifiers. A popular topic,

barefoot running, was investigated, and it was shown that the

forefoot toe shape influenced forefoot plantar pressure in

habitually barefoot runners only, while the arch shape

influenced plantar pressure in any population. This may play

a role in footwear design.

Based on findings from the current review and potential gaps

in the literature, future studies may consider the following topics

via 1) tracking the internal foot motion during dynamic activities

via biplanar fluoroscopy and multi-segmental models. With

reported increased measuring accuracy, mapping the biplanar

2D motion to 3D shape motion and statistical shape modeling in

vivo would assist the validation of finite element modeling and

reveal the tissue variation, ligament strain, and cartilage loadings;

2) implementing different multivariate (support-vector) machine

learning or convolutional neural network (CNN) algorithm to

address potential nonlinear correlation scenarios in foot

mechanics with shape or posture metrics; 3) standardizing

data sets with synchronized IMU data for rapid prediction of

instant mechanics, load accumulation, injury risks, and

adaptation in the tissues and bones of the foot and correlating

with foot shape; 4) analyzing the dynamic foot shape and posture

via marker-less depth camera and real-time processing

techniques under real-life scenarios for precise evaluation of

clinical foot conditions and performance-fit footwear

development.
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