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Maturation stage ameloblasts (M-ABs) are responsible for terminal enamel

mineralization in teeth and undergo characteristic cyclic changes in both

morphology and function between ruffle-ended ameloblasts (RA) and

smooth-ended ameloblasts (SA). Energy metabolism has recently emerged

as a potential regulator of cell differentiation and fate decisions; however, its

implication in M-ABs remains unclear. To elucidate the relationship between

M-ABs and energy metabolism, we examined the expression pattern of energy

metabolic enzymes in M-ABs of mouse incisors. Further, using the HAT7 cell

line with M-AB characteristics, we designed experiments to induce an energy

metabolic shift by changes in oxygen concentration. We revealed that RA

preferentially utilizes oxidative phosphorylation, whereas SA depends on

glycolysis-dominant energy metabolism in mouse incisors. In HAT7 cells,

hypoxia induced an energy metabolic shift toward a more glycolytic-

dominant state, and the energy metabolic shift reduced alkaline phosphatase

(ALP) activity and calcium transport and deposition with a change in calcium-

related gene expression, implying a phenotype shift from RA to SA. Taken

together, these results indicate that the energy metabolic state is an important

determinant of the RA/SA phenotype in M-ABs. This study sheds light on the

biological significance of energy metabolism in governing M-ABs, providing a

novel molecular basis for understanding enamel mineralization and elucidating

the pathogenesis of enamel hypomineralization.
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Introduction

Enamel is the most highly mineralized tissue in the vertebrate

body and is composed of substituted hydroxyapatite, primarily

calcium and inorganic phosphate. Ameloblasts, which are

responsible for enamel formation, are oral epithelial cells of

ectodermal origin. The proliferating inner enamel epithelium

(IEEs) differentiates into secretory stage ameloblasts (S-AMs),

and they differentiate into maturation stage ameloblasts (M-ABs)

through transition stage ameloblasts (T-ABs) (Figures 1A–E).

S-AMs secrete enamel matrix proteins, which form the base of

enamel and contribute to the initial calcification, while M-ABs

modulate enamel mineralization by transporting minerals,

controlling pH, and modulating protein degradation and

absorption (Nanci, 2008; Bartlett, 2013).

During the maturation stage, ameloblasts change their

morphology in a unique series of modulations (cyclical

changes) between a ruffle-ended (RA) appearance and a

smooth-ended (SA) appearance in coordinated groups,

appearing as bands of similar morphology (Warshawsky and

Smith, 1974; Reith and Boyde, 1981). RA cells are characterized

by distinct distal striated or ruffled borders (Reith and Boyde,

1979). In contrast, SA cells exhibit a complete absence of the

distal ruffled border (Sasaki et al., 1987). RA has a greater

capacity to transport ions into and away from the enamel

matrix and to absorb the enamel matrix protein debris. SA

with incomplete junctional complexes may engage in the

paracellular movement of fluids and ions, which may

contribute to the neutralization of pH in the enamel matrix

(Lacruz, 2017). SA appear at ~8.5 h intervals in rat incisors, and

FIGURE 1
Differential expression of Zo-1 and ALP during amelogenesis in the maxillary incisor. (A) Low magnification image of H&E-stained sections of
mouse maxillary incisors. The boxed areas in (A) are magnified in (B–E). (B) Inner enamel epithelium cells. (C) Secretory stage ameloblasts. (D)
Transition stage ameloblasts (E)Maturation stage ameloblasts. (F–I) Zo-1 immunostaining ofmousemaxillary incisor ameloblasts. (J–M) ALP staining
of mouse maxillary incisor ameloblasts. The nucleus is stained with DAPI (blue). S-ABs, secretory stage ameloblasts; T-ABs, transition stage
ameloblasts; M-ABs, maturation stage ameloblasts; RA, ruffle-ended ameloblasts; SA, smooth-ended ameloblasts; P, proximal; D, distal. Scale bars:
500 μm (A); 20 μm (B–M).
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these ameloblasts change into RA cells after 2 h, reforming their

characteristic features at the distal border (Smith et al., 1987).

Thus, cyclic RA-SA modulation is crucial for normal enamel

mineralization. However, the regulatory mechanisms and

determinants that distinguish RA from SA are not yet

understood.

A close relationship between energy metabolism, cellular

differentiation, and fate decisions has emerged in recent years.

Early embryos are dependent on oxidative phosphorylation

(OXPHOS). As developmental stages progress, they utilize the

glycolytic system to synthesize ATP, which peaks after

implantation and slowly declines as oxidative metabolism is

reinitiated by vascularization (Folmes et al., 2012). Human ES

and iPS cells differ in their energy metabolism state between the

naïve type, which is close to the internal cell mass before

implantation, and the primed type, which resembles

pluripotency in the epiblast after implantation (Tsogtbaatar

et al., 2020). Recently, we reported that, in ameloblasts, slowly

dividing dental epithelial stem cells are glycolytic-dominated,

while rapidly dividing transient amplifying (TA) cells are

OXPHOS-dominated in their energy metabolism (Otsu et al.,

2021), indicating the implication of energy metabolism in the cell

fate decision of ameloblasts. Based on this, we hypothesized that

energy metabolism is involved in RA-SA modulation in M-ABs.

In this study, we explored the change of energy metabolic

characteristics in M-ABs immunohistochemically. To elucidate

the effect of an energy metabolic shift on M-ABs, we utilized the

change of oxygen concentration. We found that RA and SA have

distinct characteristics of energy metabolism and that metabolic

shift is a potential regulator of RA-SAmodulation of M-ABs. Our

study proposes a novel perspective on enamel research and

attempts to elucidate the pathogenesis of enamel

hypomineralization.

Materials and methods

Animals and preparation of tissues

All animal experiments complied with the guidelines of the

Ministry of Education, Culture, Sports, Science and Technology,

the Ministry of Environment, and the Science Council of Japan,

and were carried out in accordance with the Act on Welfare and

Management of Animals. The experimental protocol was

approved by the Institutional Animal Care and Use

Committee (approval no. 01-007). For hematoxylin and eosin

(H&E) staining and immunostaining, ddY male mice (Japan

SLC) mouse jaws were fixed in 4% paraformaldehyde (PFA) and

decalcified using Osteosoft (#101728, Merck, Darmstadt,

Germany) and paraffin-embedded thin tissue sections

(thickness, 6-7 μm) were used. Kawamoto’s film method was

used to detect the activity of alkaline phosphatase (ALP) in

mouse incisors (Kawamoto, 2003). Briefly, the jaws were taken

from ddYmice, snap-frozen directly, soaked in hexane with dry

ice, and embedded in an embedding medium. The samples were

sectioned at 10 μm thickness using a cryostat. Sections were

moved to a container filled with the appropriate amount of 100%

ethanol, fixed with 4% paraformaldehyde (PFA) for 5 min, and

washed. The specimens were stained with the ImmPACT Vector

Red Alkaline Phosphatase Substrate kit (#SK-5105, Vector,

Burlingame, CA, United States) according to the

manufacturer’s protocol. For analysis of cytochrome oxidase

(CO) activity in ameloblasts using transmission electron

microscopy, the animals (30-day-old Wistar rats) were

anesthetized and perfused through the ascending aorta with

physiological saline, followed by 2.5% glutaraldehyde in 0.1 M

phosphate buffer (pH 7.4) at 4°C for 10 min. The removed

maxillae were immersed in the same fixative at 4°C for 2 h

before decalcification in 5% ethylenediaminetetraacetic acid

(EDTA) at 4°C for 3 weeks, then sagittally sectioned (90-μm

sections) using a vibratome (Brunswick, St. Louis, MO,

United States). At least three animals were studied for each

experiment.

Cell culture

The ameloblast cell line HAT7 was established from rat

incisors and cultured as previously described (Kawano et al.,

2002). The cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM/F12) (#11330-032; Life Technologies, Inc.,

Grand Island, NY, United States) supplemented with 10%

fetal bovine serum (#12483-020, Thermo Scientific, Waltham,

MA, United States) and 1% penicillin-streptomycin (#15140;

Thermo Fisher Scientific). To induce hypoxia, the cells were

cultured in hypoxic chambers (MCO-5M, PHCbi, Tokyo, Japan)

with 5% O2, 5% CO2, and 90% N2. Nitrogen gas was supplied to

the chambers to induce a controlled reduced percentage of

oxygen. For normoxia, the cells were cultured in incubators at

5% CO2 and 21% O2. Apoptotic cells were determined by

Annexin V staining (#A13199, Thermo Fisher Scientific)

according to the manufacturer’s instructions. As a positive

control of apoptosis induction, the cells were treated with

mitomycin C (#M4287, Sigma-Aldrich, St Louis, MO,

United States, 50 μM) for 6 h.

Alizarin red staining

For alizarin red staining for calcium deposition, HAT7 cells

were cultured in 24-well plastic plates coated with collagen type

I (#638-00781, Nitta Gelatin Co., Osaka, Japan) at confluence in

calcification induction medium; DMEM/F12 supplemented

with 10% FBS, dexamethasone (10 nM), CaCl2 (final

concentration 2.1 mM) for 7 days under normoxia (21% O2)

or hypoxia (5% O2), or for 5 days with UK-5099 (#S5317,
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Selleckchem, Randnor, PA, United States). The culture

supernatant in the wells was removed, and the cells were

washed with PBS, fixed with 4% PFA, and then washed three

times with distilled water. Next, a 1.0% Alizarin Red S (#A5533,

Sigma-Aldrich) stain was added, and the mixture was allowed

to stand at room temperature for 30 min. The cells were then

washed three times with PBS. The collagen gels with the cells

were placed on the prepared slide and then dried at 37°C for 1 h.

After drying, the gels were observed.

Alkaline phosphatase staining

HAT7 cells were cultured in 24-well plastic plates at

confluence and cultured under normoxia or hypoxia for 48 h,

or with UK-5099 for 48 h. The culture supernatant was removed,

and the cells were washed with PBS and then fixed in wells with

4% PFA for 10 min at room temperature (RT). Thereafter, the

fixative solution was removed, and the cells were washed three

times with PBS. Subsequently, the substrate (ImmPACT Vector

Red Alkaline Phosphatase Substrate) was added and reacted at

37°C for 30 min. Finally, after washing three times with PBS, the

staining was observed.

In vitro calcium transport assay

HAT7 cells were grown on permeable polyester Transwell

culture inserts with a 0.4-μm pore size (#353095 Corning Inc.,

Corning, NY, USA) at confluence. Themedium in both the upper

and lower chambers was then changed to an induction medium,

and the cells were cultured under normoxia or hypoxia. After

24 h, the medium in the lower chamber was replaced with Ca2+-

free DMEM (#21068028, Thermo Fisher Scientific, Waltham,

MA, United States), and the cells were continuously cultured. At

various time intervals (6, 12, 24, and 48 h after medium change),

50 μl aliquots of media from the lower chamber were collected

into 1.5 ml Eppendorf tubes. The amount of Ca2+ in the media

was evaluated with an AmpliteTM Fluorimetric Calcium

Quantitation Kit (#36360, AAT Bioquest, CA, United States)

by measuring the fluorescence intensity using a multi-mode

microplate reader (SpectraMax M2, Molecular Devices, CA,

United States) with excitation at 540 nm and emission at

590 nm, according to the manufacturer’s protocol. Increases in

the amount of Ca2+ transferred through the cell layer from the

upper chamber to the lower chamber indicate increased Ca2+

transport across the cells. After reaching confluence, the

HAT7 cells on Transwell filters were fixed in 4% PFA, and

the filters were removed from the plastic inserts and cut into

strips. Some strips were processed for paraffin cross-sections,

dewaxed, and stained with H&E. To obtain an en-face view, other

strips were transferred to 24-well plates, rinsed in PBS containing

Triton X-100 (0.01% v/v), immunoreacted with primary

antibodies, followed by incubation with secondary fluorescent

antibodies, and then observed.

ATP measurement in culture cells

HAT7 cells were cultured in 24-well plastic plates at

confluence and then maintained under normoxia or hypoxia

for 48 h. The cells were harvested using the extraction solution

provided in the Intracellular ATP assay kit (#IC2-100, Toyo Ink

Group, Tokyo, Japan). Luciferin substrate and luciferase enzyme

were added, and bioluminescence was assessed using a multi-

mode microplate reader according to the manufacturer’s

instructions. Cellular ATP levels were evaluated and expressed

as the ratio of hypoxic to normoxic conditions.

Staining of mitochondria with probes

HAT7 cells were cultured in 96-well plastic plates at

confluence and then maintained under normoxia or hypoxia

for 48 h. Mito Tracker Orange CMXRos (500 nM, #M7510,

Thermo Fisher Scientific) or JC-1 (2 μmol/l, #MT09, Dojindo,

Kumamoto, Japan) was added to the cells and incubated for

60 min at 37°C. The cells were washed 2 × with culture media,

and fluorescence images were obtained using a fluorescence

microscope (BX51, IX71, Olympus, Tokyo, Japan). JC-1

green/red fluorescence ratios were calculated and analyzed

statistically.

Lactate assay

HAT7 cells were cultured in 24-well plastic plates at

confluence and then maintained under normoxia or hypoxia

for 48 h. The supernatant was collected, and the released lactate

level in the medium was measured using a Lactate Assay Kit-

WST (#L256, Dojindo) following the manufacturer’s

instructions.

Immunohistochemistry and
immunofluorescence

Immunohistochemical (IHC) and immunofluorescent (IF)

staining were performed as previously described (Otsu et al.,

2011). After blocking, the samples were incubated with the

following antibodies (1:100): PDH (MA5-14805, Thermo

Fisher Scientific), Zo-1 (sc-33725, Santa Cruz, Dallas, TX,

USA) and LDH (ab52488, Abcam). DAPI (300 nM; D1306),

Hoechst 33,342 (#R37605), Alexa Fluor 488 (1:500), and Alexa

Fluor 546 (1:500) secondary antibodies were purchased from

Thermo Fisher Scientific. Images were obtained using a
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fluorescence microscope (BX51, IX71; Olympus) or laser-

scanning confocal microscope (C1si, Nikon). Image analyses

were performed using ImageJ or software provided by the

microscope. Fluorescence intensity was quantitated in at least

five randomly chosen fields of view using the same threshold.

Appropriate positive and negative controls were used for each

experiment.

RT-PCR

Total RNAwas extracted using the RNeasyMini Kit (#74104,

Qiagen, Hilden, Germany). Reverse transcription of total RNA

was performed using the PrimeScript RT reagent kit (#RR037A,

Takara Bio, Otsu, Japan). Quantitative analysis of gene

expression was performed by qRT-PCR using the TB Green

Fast qPCR Mix (#RR430A, Takara Bio, Otsu, Japan) and

oligonucleotide primers specific for the target sequences

(Table 1) on a Thermal Cycler Dice (Takara Bio, Otsu, Japan)

according to the manufacturer’s protocol. The specificity of the

PCR was confirmed by the appearance of a single band of PCR

product in 2% agarose gel stained with ethidium bromide. The

target gene expression levels were normalized to the

corresponding levels of GAPDH mRNA. Gene expression

levels were calculated relative to the values in control cultures

using the comparative Ct (2−ΔΔCT) method. The experiments were

performed in triplicates.

Transmission electron microscopy

Analysis of cytochrome oxidase activity in ameloblasts using

transmission electron microscopy has been described previously

(Ohshima et al., 1998). The sections (90-μm) were incubated for

the demonstration of CO activity according to Seligman et al.

(Seligman et al., 1968): preincubation in 0.1 M phosphate buffer

(pH 7.4) with 1 mg/ml catalase for 10 min at 37°C, and

incubation immediately in a medium consisting of 0.1 M

phosphate buffer (pH 7.4) containing 1 mg/ml 3,38-

diaminobenzidine (DAB) tetrahydrochloride, 0.1 mg/ml

catalase, 1 mg/ml cytochrome c (horse heart, type III, Sigma

Chemical Co., St Louis, MO), 85 mg/ml sucrose at 37°C for 1 h.

After washing in the cold phosphate buffer, the incubated

sections were post-fixed in 1% osmium tetroxide containing

1.5% potassium ferrocyanide for 1 h, and then dehydrated

through a graded series of ethanol, and embedded in Epon

812. Ultrathin sections (70 nm) were prepared using a

Reichert Ultracut-N ultramicrotome (Reichert-Nissei, Tokyo,

Japan) with a diamond knife. Samples were examined under a

Hitachi H-7000 transmission electron microscope (Hitachi Co.

Ltd., Tokyo, Japan) without staining.

Statistical analyses

All data are reported as the mean ± SD. Differences were

considered statistically significant if p < 0.05 by Student’s t-test. *

denotes p < 0.05.

TABLE 1 List of PCR primer used in this study.

mRNA Orientation Sequence (5’-> 39)

Gapdh Forward GGCACAGTCAAGGCTGAGAATG

Reverse ATGGTGGTGAAGACGCCAGTA

ZO-1 Forward CGGAAATGTGTAAATCACCTGGAA

Reverse CATGCGTCCTGAACACATCAAAC

Wdr72 Forward GAACTCGGCAAACTTCCAAGATACA

Reverse GGAGCACACCTTCGCTATCCA

Klk-4 Forward TTTTGCCAACGACCTCATGCTC

Reverse AACCAGAAACTAGGCAGGTATCCC

Stim1 Forward CTCCAGGGCTCCATTCAGACA

Reverse ACAGCTTTGGCATCTACTCATCCTC

Orai1 Forward TCAAAGCCTCCAGCCGAAC

Reverse GATGAGTAACCCTGGCGGGTAGT

Cnmm4 Forward AGATGGCGGCTTTCAACGA

Reverse GCATGCCGCACCTACAGAGA

Slc24a4 Forward TAGCTTGGCACATCCCATGAAC

Reverse TTGCCCAGAAAACAGGAGGAAC

Odam Forward CGATTGCTCCACTGCTTCCA

Reverse ACGCCAAGGTACCATCTCATCTTC

Cldn1 Forward AAGGCTTTCGGTTGTGAGTCAG

Reverse AGGCAGAAGGATGTTTGTGTGG

Cldn2 Forward ATTCGAGTCATCGCCCATCAG

Reverse CCAGGCAGAAGTTCACCAATCA

Cldn4 Forward ACGAGACCGTCAAGGCCAAG

Reverse GTCCAGGACACAGGCACCATAA

Cldn8 Forward TTATGCACACTGCTTCAATTGTTCC

Reverse GAAATCGCAGCTTAAACCAACAGTC

Cldn12 Forward ATGTGAGATGGCGCAGCAAG

Reverse ACAGGGCGTATGTACACGCAGA

Cldn19 Forward GGCAGGTGCAATGCAAACTCTA

Reverse CTGAGCACCATGGCCACAA

Glut1 Forward ATAGTCACAGCACGTCCATTC

Reverse TGTAGAACTCCTCAATTACCTTCTG

Hk2 Forward GAACAGCCTAGACCAGAGCATCC

Reverse ACGGCAACCACATCCAGGTC

PDK1 Forward TCAACTACATGTACTCAACTGCAC

Reverse ACTCCGTTGACAGAGCCTTAATA

PDK2 Forward CCATGAAGCAGTTTCTAGACTTCG

Reverse CAGACTCTGGACATACCAGCTC

PDK3 Forward TGTGAACAGTATTACCTGGTAGCTC

Reverse CTGTTGCTCTCATCGAGTTCTTG

LDHA Forward GTGCACTAAGCGGTCCCAAA

Reverse GCAAGCTCATCAGCCAAGTC
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Results

Identification of differential
developmental stage of ameloblasts

First, we investigated differences in the distribution of tight

junction proteins and ALP activity in each differentiation stage of

ameloblasts from S-ABs to early M-ABs in mouse incisors.

Immunofluorescence showed that a punctiform expression of

Zo-1 was observed at the distal end of S-ABs (Figure 1F,

arrowheads). The expression in T-ABs gradually became

stronger toward the incisal end (Figure 1G, arrowhead).

Distinct expression of Zo-1 was observed at both the distal

and proximal ends of the RA (Figure 1H, arrowheads) but

only at the proximal end of the SA (Figure 1I, arrowheads).

ALP staining revealed that S-ABs did not show any ALP activity,

whereas the strong activity was observed in the stratum

intermedium (Figure 1J arrowheads). The activity gradually

increased at the distal end of T-ABs (Figure 1K, arrowhead).

Strong ALP activity was observed at the distal end of the RA

(Figure 1L, arrowheads), but it was weak in the SA (Figure 1M).

Energy metabolic shift occurs during
ameloblasts differentiation in vivo

We further examined the difference in the energy metabolic

state between S-ABs and early M-ABs. The expression of

pyruvate dehydrogenase (PDH), which aerobically catalyzes

the conversion of pyruvate to acetyl-CoA for use in

mitochondrial metabolism (Harris et al., 2002), gradually

increased from S-ABs to RA, and a distinct expression was

FIGURE 2
Energy metabolic state during ameloblasts differentiation in vivo. Double immunostaining for Zo-1 and PDH (A) and LDH (B) in P10 mouse
maxillary incisors. Nuclei were stained with DAPI (blue). (C) Electronmicroscopic images of cytochrome oxidase (CO) activity in rat ruffle-ended (left)
and smooth-ended (right) ameloblasts. Arrowheads indicate CO-positive mitochondria. Scale bars:20 µm (A,B) and 5 µm (C).
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observed at the distal end of RA. In contrast, expression in SA

was weaker than that in RA (Figure 2A). The expression of LDH,

which catalyzes the conversion of pyruvate to lactate during

glycolysis (Doherty and Cleveland, 2013), was weak in S-ABs.

The expression of LDH in RA cells exhibited a punctate pattern

in the cytoplasm, whereas it became stronger throughout the

cytoplasm in SA cells (Figure 2B).

The well-developed mitochondrial apparatus has been

implicated as an important indicator of substantial energy-

generating potential, permitting, for example, active ion

transport function (Garant and Nalbandian, 1968; Hubbard,

2000). To compare the functional activity of mitochondria in

RA and SA in vivo, the activity of CO, a membrane-bound

mitochondrial enzyme involved in OXPHOS, was analyzed using

transmission electron microscopy (TEM). A large population of

mitochondria in the distal cytoplasm was positive for CO

(Figure 2C, arrowheads), whereas mitochondria in the distal

cytoplasm displayed diversity in the proportion of CO activity in

SA, suggesting that the activity of mitochondria in RA was higher

than that in SA. Together, these results indicate that during

differentiation, ameloblasts change their energy metabolic status

and suggest that RA preferentially utilizes OXPHOS in

mitochondria with high oxygen consumption, whereas SA

undergoes a metabolic switch toward glycolysis-dominant

energy metabolism.

Energy metabolic shift by oxygen in
HAT7 cells

To further elucidate the relationship between M-ABs and

energy metabolic states, we performed in vitro experiments using

the ameloblast cell line HAT7, which has been shown to possess

some of characteristics of M-ABs (Bori et al., 2016). First, we

validated the expression of the M-ABmarker in HAT7 cells. PCR

analysis revealed that HAT7 cells expressed Wdr72, Klk4, Stim1,

Orai1, Cnmm4, Slc24a4, and Zo-1 (Figure 3A). Furthermore,

HAT7 cells expressed PDH, and the expression pattern was

consistent with that of ALP activity (Figure 3B), consistent

with in vivo results (Figures 1L,M, 2A).

FIGURE 3
The expression of marker for maturation stage ameloblasts and energy metabolism in HAT7 cells. (A) The expression of maturation stage
ameloblasts marker in HAT7 cells, as determined by RT-PCR. (B) Double staining of PDH and ALP in HAT7 cells. The bottom left and bottom middle
images are the pseudo-color images of PDH and ALP, respectively. The nucleus is stained with DAPI (blue). Scale bars: 50 μm.
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Next, to analyze the effect of energy metabolic shift on

HAT7 cells, we designed experiments to induce an energy

metabolic shift by hypoxia. Immunofluorescence revealed that

hypoxic culture (5%O2 48 h) decreased PDH expression (Figures

4A,B) and increased LDH expression (Figures 4C,D) possibly

without induction of apoptosis (Supplementary Figure S1). qPCR

analysis also showed that hypoxia increased the gene expression

of glycolytic markers, such as Glut1, Hexokinase 2 (HK2), PDK1,

PDK2, PDK3, and LDHA (Figure 4E), and lactate production

(Figure 4F), and decreased intracellular ATP production

(Figure 4G). We further analyzed the effect of hypoxia on the

mitochondrial membrane potential and morphology. JC-1 dye

accumulates preferentially in polarized mitochondria, existing as

green fluorescent monomers at low membrane potentials and as

red fluorescent aggregates at high membrane potentials. Under

hypoxia, the red/green fluorescence ratio decreased (Figures

5A–C), indicating depolarization of the mitochondrial

membrane potential. Mitochondrial morphology was

evaluated using MitoTracker™ Orange CMTMRos. Under

normoxia, large mitochondria exhibited a spherical or oval

morphology (Figures 5D–F), whereas, under hypoxia,

mitochondria exhibited a tubular morphology (Figures 5G–I).

FIGURE 4
Environmental hypoxia induced energy metabolic shift to glycolysis in HAT7 cells. Immunostaining for PDH (A) and LDH (C) in HAT7 cells
cultured under normoxia (left) and hypoxia (right) for 48 h. Nuclei were stainedwith DAPI (blue). Quantification of PDH (B) and LDH (D) fluorescence;
n = 3 each. (E) Relative expression of the target genes in HAT7 cells under hypoxia for 48 h under normoxia; n = 3. (F) Lactate secretion into the
culture medium of HAT7 cells incubated for 48 h under normoxia or hypoxia; n = 3. (G) Intracellular ATP production in HAT7 cells incubated for
48 h under normoxia or hypoxia (n = 3). Data are presented as the mean ± SD. *p < 0.05 (unpaired two-tailed Student’s t-test).
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These results indicate that HAT7 cells undergo an energy

metabolic shift that is dependent on oxygen concentration,

accompanied by changes in mitochondrial function and

morphology.

Effect of energy metabolic shift on
maturation stage ameloblasts function

We examined the effect of the oxygen-mediated energy

metabolic shift on HAT7 cells. During enamel mineralization,

calcium is transported from the blood vessels in the papillary

layer to the enamel matrix across M-ABs. Therefore, we

developed an in vitro experimental model to analyze calcium

transport acrossM-ABs in HAT7 cells. The cells were cultured on

Transwell culture inserts, reached confluence, and then cultured

under normoxia or hypoxia for 24 h. Subsequently, the culture

medium in the lower chamber was replaced with Ca2+ free

medium. The amount of Ca2+in the medium of the lower

chamber under normoxia or hypoxia was measured using a

fluorescent Ca2+ probe at each time point (Figure 6A). HE

staining of the transverse section after reaching confluence

showed that the cells mostly formed a single or 2-cell layer

(Figure 6B). We confirmed that the cell layer significantly

hindered Ca2+ transfer from the upper chamber to the lower

chamber compared to the control Transwell surface covered with

FIGURE 5
The effect of environmental hypoxia onmitochondrial membrane potential and morphology in HAT7 cells. (A,B)HAT7 cells cultured in hypoxia
display a decrease in mitochondrial membrane potential is evident by the lack of red JC-1 aggregate (red) accumulation and higher staining for JC-1
green monomers. (C) Quantification of red/green JC-1 staining indicative of membrane potential. n = 3. MitoTracker Orange CMXRos staining of
HAT7 cells cultured in normoxia (D–F) and hypoxia (G–I) for 48 h. The boxed area in (E,H) are magnified in (F,J), respectively. The nucleus is
stained with DAPI (blue). Data are represented as their mean ± SD. *p < 0.05 (unpaired two-tailed Student’s t-test). Scale bars, 100 μm (A,B); 10 μm
(D,E,G,H); 2 μm (F–I).
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no cells under normoxia (Figure 6C). Furthermore, hypoxia

significantly reduced Ca2+ transport (Figure 6C).

We performed a qPCR assay to determine the effect of the

oxygen-mediated energy metabolic shift on gene expression

related to transcellular and paracellular Ca2+ transport.

Hypoxia significantly decreased the expression of mRNA

related to transcellular Ca2+ transport, such as Wdr72, Stim1,

and Orai1, and increased Slc24a4 (Figure 6D). Claudin (Cldn)

determines the barrier function of tight junctions and creates

paracellular pores (channels) for Ca2+ between neighboring cells

(Günzel and Yu, 2013). In HAT7 cells, hypoxia increased the

mRNA expression of Cldn2 and Cldn19, but not that of Cldn1, 4,

8, 12, or Zo-1 (Figure 6E).

Finally, we examined the effects of energy metabolic shifts on

ALP activity and Ca2+ deposition. ALP staining revealed that ALP

activity was reduced by hypoxia (Figures 7A,B). Alizarin red

staining also showed that hypoxia inhibited Ca2+ deposition

(Figures 7C,D and Supplementary Figure S2A). Furthermore,

UK-5099, an inhibitor of the mitochondrial pyruvate transporter

(MPT) that induces energy metabolic shift from OXPHOS to

glycolysis (Zhong et al., 2015), significantly decreased ALP

activity and PDH expression (Figures 8A–C) possibly without

induction of apoptosis (Figure 8D). UK-5099 also inhibited Ca2+

deposition (Figures 8E,F and Supplementary Figure S2B).

Discussion

In this study, we have shown that, in vivo, RA cells are in an

OXPHOS-dominant energy metabolic state, whereas SA cells are

FIGURE 6
The effect of oxygen-mediated energy metabolic shift on Ca2+ transport of HAT7 cells. (A) The experimental procedure for in vitro calcium
transport assay. For more detailed information, see the materials and methods section. (B) HE staining of HAT7 cells cultured on Transwell filter in
cross-section. (C)Changes over time in the amount of calcium in the lower chamber. Calciumwas transferred from the upper chamber to the lower
chamber through HAT7 cells cultured in normoxia or hypoxia. n = 3. (D,E) Relative expression of target genes in HAT7 cells under hypoxia for
48 h to normoxia; n = 3. Data are represented as their mean ± SD. *p < 0.05 (unpaired two-tailed Student’s t-test). Scale bars, 100 μm (B).
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in a glycolysis-dominant energy metabolic state. In vitro

experiment revealed that an energy metabolic shift from

OXPHOS to glycolysis decreased the mineralization function

by suppressing ALP activity and Ca2+ transport, implying the

induction of phenotypic changes from RA to SA. Together, we

have identified differences in the energy metabolic properties of

RA and SA in M-ABs and highlighted the importance of the

energy metabolic state for M-AB regulation (Figure 9).

A metabolic switch is activated during
ameloblast differentiation

We identified the differentiation stages of ameloblasts based

on the expression of Zo-1 (Inai et al., 2008) and ALP (Okumura

et al., 2010) and examined the expression of metabolic markers in

each cell. From S-ABs to RA, the expression of OXPHOSmarkers

increased, whereas that of glycolytic markers decreased. In

contrast, from RA to SA in early M-ABs, OXPHOS markers

and mitochondrial activity decreased, and glycolytic markers

increased. This indicated that a gradual metabolic shift to an

OXPHOS-dominant energy metabolism state occurs from S-ABs

to RA, and conversely, a shift to a glycolysis-dominant energy

metabolism state occurs from RA to SA. In line with this,

previous studies have shown that in the transition stage, the

expression of many genes involved in ion transport, proteolysis,

and pH homeostasis, which required sufficient ATP production,

was upregulated (Hu et al., 2012; Lacruz et al., 2012; Wang et al.,

2014; Yin et al., 2014). Ultrastructural and cytochemical studies

have suggested that in comparison with RA, SA is metabolically

inactive and renews exhausted cytoplasmic organelles (Takano

and Ozawa, 1980). We also showed that sodium-dependent

active glucose transporter 2 (SGLT2), which is expressed in

highly metabolically active cells, is expressed in RA but not in

SA (Ida-Yonemochi et al., 2020). These results strongly indicated

that ameloblasts could shift their metabolic state to meet the cell

energy demand for their respective cellular functions, allowing us

to identify the differentiation stage of ameloblasts in terms of

energy metabolic status.

Environmental oxygen induces energy
metabolic shifts

To analyze the effect of energy metabolic shift on HAT7 cells,

we performed experiments to induce an energy metabolic shift by

hypoxia. For most cell types, hypoxia has been found to decrease

the levels of respiratory enzymes and oxygen consumption rate

FIGURE 7
The effect of oxygen-mediated energy metabolic shift on mineralization. (A) ALP staining of HAT7 cells cultured in normoxia (left) and hypoxia
(right) for 48 h. (B)Quantification of ALP fluorescence; n = 3. (C) Alizarin red staining of HAT7 cells cultured in normoxia (left) and hypoxia (right) for
7 days. (D) Image analysis of the mineral coverage (Alizarin red positive) in the culture dish; n = 3. Data are represented as their mean ± SD. *p < 0.05
(unpaired two-tailed Student’s t-test). Scale bars, 50 μm (A); 500 μm (C).
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but increase the production of glycolytic enzymes and lactate,

which eventually forces the cells to rely on glycolysis (Kierans

and Taylor, 2021). Indeed, in HAT7 cells, hypoxia increases

lactate production and the expression of Glut1 (Ebert et al., 1995;

Ida-Yonemochi et al., 2020), HK2 (Iyer et al., 1998), PDH (Golias

et al., 2016), PDK1-3 (Kim et al., 2006; Lu et al., 2008; Takubo

et al., 2013), and LDHA (Yang et al., 2014). Hypoxia alters

mitochondrial morphology and function (Galloway et al., 2012).

Under hypoxia, the activity of the mitochondrial electron

transport chain decreases, and energy needs to shift from

OXPHOX to glycolysis (Ježek et al., 2010). We demonstrated

that in HAT7 cells, hypoxia changed mitochondrial morphology

and reduced ATP production and JC-1 red/green ratio,

indicating mitochondrial depolarization and loss-of-function.

These results indicated that hypoxia induced an energy

metabolic shift in HAT7 cells from OXPHOS-dominant to a

more glycolysis-dominant state, implying a phenotypic change

from RA to SA.

Energy metabolic shift affects M-ABs
mineralization function

M-ABs are responsible for enamel mineralization through an

increase in calcium influx across the ameloblast layer into the

enamel matrix. Here, we have shown that an energy metabolic

shift alters the enamel mineralization function of M-ABs. We

developed a novel in vitro experimental model and demonstrated

FIGURE 8
The effect of UK-5099 on mineralization. (A) Double staining of ALP and PDH in HAT7 cells treated with DMSO (upper: control) and 10 μMUK-
5099 (lower) for 48 h. The nucleus is stained with DAPI (blue). Quantification of ALP (B) and PDH (C) fluorescence; n = 3 each. (D) Annexin V staining
of HAT7 cells culturedwith DMSO (upper: control) and 10 μMUK-5099 (lower) for 48 h. The nucleus is stainedwith Hoechst 33,342 (blue). (E) Alizarin
red staining of HAT7 cells cultured with DMSO (left: control) and 10 μM UK-5099 (right) for 5 days. (F) Image analysis of the mineral coverage
(Alizarin red positive) in the culture dish; n = 3. Data are represented as their mean ± SD. *p < 0.05 (unpaired two-tailed Student’s t-test). Scale bars,
50 μm (A,D); 500 μm (E).
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that hypoxia-induced energy metabolic shift to a glycolysis-

dominant state reduced Ca2+ transport across M-ABs, Ca2+

deposition and ALP activity. Further, we demonstrated that

UK-5099, that induces energy metabolic shift from OXPHOS

to glycolysis, inhibited Ca2+ deposition and ALP activity. These

findings indicate the critical involvement of energy metabolism

in enamel mineralization. Consistent with our findings, Kim et al.

demonstrated that hypoxia inhibited normal enamel

mineralization in a tooth germ transplantation model (Kim

et al., 2021).

Involvement of energy metabolic shift in
trans- and intracellular Ca2+ transport in
M-ABs

Recent reports suggest that Ca2+ transport follows a proximal

to distal route across the ameloblast cell layer to form mature

enamel crystals. The principal mode of Ca2+ transport appears to

be the transcellular route (Paine et al., 2008; Lacruz et al., 2013),

while the contribution of the paracellular passage of Ca2+ during

the RA to SA cycles has been indicated (Smith, 1979; Nanci,

2008). In the present study, we showed that oxygen-mediated

energy metabolic shifts affected the expression of genes involved

in both trans- and paracellular Ca2+ transport. We showed that

hypoxia decreased the expression of Orai1 and Stim1. When

Stim1 senses a decrease in Ca2+ in the endoplasmic reticulum, it

forms clusters in the proximal region of the ER and plasma

membrane and activates Orai1, which triggers store-operated

Ca2+ entry (SOCE) (Prakriya and Lewis, 2015). In M-ABs, SOCE

via the Orai1-Stim1 complex has been suggested to be the main

calcium influx pathway (Nurbaeva et al., 2017), and patients with

loss-of-function or null mutations in the STIM1 and

ORAI1 genes present with a hypocalcified form of

amelogenesis imperfecta (Mccarl et al., 2009; Picard et al.,

2009; Fuchs et al., 2012). Thus, an energy metabolic shift may

have a significant effect on transcellular calcium transport via the

Orai1-Stim1 complex in M-ABs. In addition, Orai1 and

Stim1 were reported to be predominantly expressed in RA

compared to SA (Nurbaeva et al., 2015; Nurbaeva et al.,

2017), indicating that Ca2+ uptake may predominantly occur

in RA, which requires more oxygen for energy production than

SA. Therefore, hypoxia may have a greater effect on RA function

than on SA.

Furthermore, hypoxia reduced WDR72 expression.

Mutation of the WDR72 gene results in hypomaturation

defects of the enamel, which are thought to be caused by the

abnormal removal of enamel matrix proteins and subsequent

enamel mineralization (Katsura et al., 2014; Wang et al., 2015).

Mutations in WDR72 have also been shown to decrease the

number and size of blood vessels in the capillary layer and alter

the subcellular localization of SLC24a4 (sodium/potassium/

calcium exchanger 4; NCKX4), which is critical for

transcellular Ca2+ transport in M-ABs (Wang et al., 2015).

Interestingly, our data showed that hypoxia increased

SLC24a4 mRNA expression. We speculated that this may

have occurred to compensate for the mislocalization of

Slc24a4 caused by the decrease in WDR72.

Paracellular access of ions and small molecules to form

enamel depends on the composition of TJs, including members

of the zonula occludens, occludin, and claudin families

(Denker and Sabath, 2011). A combination of different

claudins either allows intercellular passage of ions or is

tightly closed and restricts passage (Günzel and Yu, 2013).

We demonstrated that hypoxia decreased Ca2+ transport

across HAT7 cells with an increase in CLND2 and

19 mRNA expression. This result suggests that CLDN2 and

19 may contribute to inhibit paracellular Ca2+ transport in

M-ABs. CLDN2 has been identified as a cation pore-forming

protein (Günzel and Yu, 2013). In the renal proximal tubule,

TJs containing CLDN 2 have been shown to be leaky and have

low transepithelial resistance (Denker and Sabath, 2011).

Recently, a missense mutation in Cldn2 associated with

obstructive azoospermia in a four-generation spanning

family has been identified (Seker et al., 2019). Cldn2 KO

mice have also shown higher urinary fractional excretion of

Ca2+ in renal proximal tubules (Muto et al., 2010). However,

the function of CLDN2 in the ameloblasts remains unclear.

Cldn19 has been shown to be located in tight junctions of

ameloblasts in mice and rats, where it plays a role in regulating

extracellular pH, which is critical for the processing and

secretion of extracellular matrix proteins (Bardet et al.,

FIGURE 9
Model for the implication of energy metabolism in RA-SA
modulation. RA cells are in an OXPHOS-dominant energy
metabolic state, whereas SA cells are in a glycolysis-dominant
energy metabolic state. An energy metabolic shift from
OXPHOS to glycolysis decreases the mineralization function of
M-ABs, implying a phenotypic change from RA to SA.
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2017; Yamaguti et al., 2017). Mutations in CLDN19 are

associated with amelogenesis imperfecta, a genetic disorder

characterized by tooth enamel defects (Bardet et al., 2017;

Yamaguti et al., 2017). These reports indicate that

CLDN19 plays a critical role in amelogenesis. However, the

detailed involvement of paracellular Ca2+ transport in M-ABs

is unknown. Thus, further investigation of the role of each

CLDN isoform in paracellular Ca2+ transport in M-ABs is

required.

Although we used HAT7 cells to clarify the implication of

an energy metabolic shift in M-ABs, we must note the

limitation of the model. HAT7 cells are established from rat

ameloblasts and express M-ABs markers, but alone cannot be a

sufficient model for M-ABs. Besides Ca2+ transport and

mineralization, additional mechanisms have to be identified,

such as morphological change and protein degradation and

absorption, as well as their coordinating mechanism. Thus,

more complex cell culture models and analysis methods need to

be developed in the future for better modeling of M-ABs. In

addition, the oxygen concentration of M-ABs in vivo is different

from in vitro conditions. Therefore, direct measurements of

oxygen concentration in vivo and animal experiments under

hypoxic conditions will help to identify the correlation between

oxygen concentration and energy metabolism in M-ABs, and

elucidate the regulatory mechanisms underlying RA-SA

modulation.

Contribution and importance of this
research in clinical dental medicine

In this study, we uncovered the energy metabolic

characteristics of ameloblasts and demonstrated the

involvement of energy metabolic shifts in the phenotype

modulation of M-ABs. This discovery not only has a

significant impact on our understanding of the regulatory

mechanism underlying normal amelogenesis but also raises

the possibility that failure of this mechanism can cause

enamel malformation in human patients. To date, a variety of

causal genes for inherited enamel malformations have been

identified. These genes are involved in diverse functions, such

as the secretion of enamel matrix proteins and their proteolytic

processing enzymes, vesicle transport, pH sensing, calcium

homeostasis, and cell adhesion (Smith et al., 2017). However,

the involvement of energy metabolism in enamel malformation

has not been demonstrated. Intriguingly, it was recently

suggested that more common enamel defects, such as molar

incisor hypomineralization (MIH), defined as a qualitative,

demarcated, enamel defect of hypomineralization affecting at

least one first permanent molar, while permanent incisors are

often affected (Weerheijm et al., 2001), were caused by perinatal

hypoxia (Garot et al., 2022). Therefore, further studies to clarify

whether the abnormality of energy metabolic regulation causes

enamel defects by interacting with intracellular signal networks

and environmental factors in humans will aid in the development

of novel treatment and prevention strategies for enamel

malformations.
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SUPPLEMENTARY FIGURE S1

Annexin V staining of HAT7 cells cultured in hypoxia. (A) Double staining
of Hoechst 33342 (left) and Annexin V (middle) in HAT7 cells cultured on
plastic plates under normoxia (upper: control) and hypoxia (lower) for
48 h. (B) Double staining of Hoechst 33342 (left) and Annexin V (middle)
in HAT7 cells treated with 50 μMmitomycin C for 6 h. Scale bars, 50 μm.

SUPPLEMENTARY FIGURE S2

DAPI staining of HAT7 cells cultured on plastic plates coated with
collagen type I for alizarin red staining. (A) DAPI staining of HAT7 cells
cultured under normoxia (left) and hypoxia (right) for 7 days. (B) DAPI
staining of HAT7 cells cultured with DMSO (left: control) and UK-5099
(right) for 5 days. Scale bars, 200 μm.
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