AUTHOR=Kang Jeong-Woon , Park Chunsu , Lee Dong-Eon , Yoo Jae-Heung , Kim MinWoo TITLE=Prediction of bone mineral density in CT using deep learning with explainability JOURNAL=Frontiers in Physiology VOLUME=13 YEAR=2023 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2022.1061911 DOI=10.3389/fphys.2022.1061911 ISSN=1664-042X ABSTRACT=

Bone mineral density (BMD) is a key feature in diagnosing bone diseases. Although computational tomography (CT) is a common imaging modality, it seldom provides bone mineral density information in a clinic owing to technical difficulties. Thus, a dual-energy X-ray absorptiometry (DXA) is required to measure bone mineral density at the expense of additional radiation exposure. In this study, a deep learning framework was developed to estimate the bone mineral density from an axial cut of the L1 bone on computational tomography. As a result, the correlation coefficient between bone mineral density estimates and dual-energy X-ray absorptiometry bone mineral density was .90. When the samples were categorized into abnormal and normal groups using a standard (T-score =1.0), the maximum F1 score in the diagnostic test was .875. In addition, it was identified using explainable artificial intelligence techniques that the network intensively sees a local area spanning tissues around the vertebral foramen. This method is well suited as an auxiliary tool in clinical practice and as an automatic screener for identifying latent patients in computational tomography databases.