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Bone mineral density (BMD) is a key feature in diagnosing bone diseases. Although
computational tomography (CT) is a common imaging modality, it seldom provides
bone mineral density information in a clinic owing to technical difficulties. Thus, a
dual-energy X-ray absorptiometry (DXA) is required tomeasure bonemineral density
at the expense of additional radiation exposure. In this study, a deep learning
framework was developed to estimate the bone mineral density from an axial cut
of the L1 bone on computational tomography. As a result, the correlation coefficient
between bone mineral density estimates and dual-energy X-ray absorptiometry
bone mineral density was .90. When the samples were categorized into abnormal
and normal groups using a standard (T-score � −1.0), the maximum F1 score in the
diagnostic test was .875. In addition, it was identified using explainable artificial
intelligence techniques that the network intensively sees a local area spanning
tissues around the vertebral foramen. This method is well suited as an auxiliary
tool in clinical practice and as an automatic screener for identifying latent patients in
computational tomography databases.
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1 Introduction

Osteoporosis, which is characterized by reduced bone mineral density (BMD), is one of the
primary causes of fractures (NIH Consensus Development Panel on Osteoporosis Prevention,
Diagnosis, and Therapy, 2001). Some studies have reported that more than 200 million people
currently suffer from osteoporosis worldwide (Cooper, 1999). Because the average life
expectancy has grown in recent years and its prevalence is more common in older people,
the total proportion will consistently increase (Cooper et al., 1992). Because osteoporosis
reduces quality of life and fractures can result in mortality (Cooper et al., 1993), early diagnosis
is crucial for preventing the epidemic. To make the best diagnostic or surgical decisions,
physicians must have access to quantitative BMD as well as to anatomical bone images.

Computational tomography (CT) is the main tool used to study bone, however it is seldom
used for functional imaging or quantitative measurements. Dual-energy X-ray absorptiometry
(DXA) has been widely used by clinicians owing to its non-invasiveness and cost efficiency. The
World Health Organization (WHO) still encourages DXA for diagnosing osteoporosis by
measuring BMD at the femoral neck and lumbar vertebrae, as well as interpreting individual
values with settled statistics, such as T-score (World Health Organization, 1994). Recently,
dual-energy CT has been used to extend dimensional information and access local changes in
BMD, however it is not yet widespread; it often requires a calibration phantom for every
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examination, and the radiation exposure is relatively high (van
Hamersvelt et al., 2017; Mussmann et al., 2018). One concept was
to assess BMD using only CT images without DXA. If realized, it will
have a clinical impact because 1) anatomical view and quantitative
information can be provided at once, 2) people who underwent CT
examination even for routine check-up can be automatically screened,
3) a large CT database can be used to screen latent patients, and 4)
additional cost and radiation can be reduced.

Many groups have developed methods to implement this
concept. Most studies have reported that diagnosis of
osteoporosis is possible with CT attenuation in Hounsfield units
(HU), despite a single energy band (Pickhardt et al., 2011; Schreiber
et al., 2011; Romme et al., 2012; Pickhardt et al., 2013; Hendrickson
et al., 2018). Specifically, they selected a region of bone interest,
computed mean HU values in the area for every sample, checked
the correlation between the HU values and reference DXA T-scores,
and determined HU thresholds corresponding to the T-score
border between the normal and abnormal values. Their methods
were simple to use, however they were limited to binary
classification and could not provide numerical BMD estimates to
practically support clinicians.

Currently, deep learning (DL) has been widely used to accomplish
complex medical imaging tasks because of its strong generation power
(Suzuki, 2017). Some groups applied supervised learning techniques to
BMD predictions with the guidance of DXA BMD as a label
(reference). Hsieh et al. (2021) developed DL models to detect
anatomical landmarks from plain radiographs, automatically select
regions of interest (ROI) using the landmarks, and predict BMD values
for the lumbar spine and hip. Sato et al. (2022) suggested a DL method
to predict BMD from larger views using chest X-rays acquired for
diverse medical purposes. The studies commonly demonstrated the
potential of the DL approaches, but they limited the use of DL in
X-rays less informative than CT. Yasaka et al. (2020) first applied a DL
model to CT and obtained high correlations between BMD estimates
and DXA references. However, the number of training/testing patient
samples was small, and the study had few interpretations with respect
to the DL results.

In this study, we focused on standard CT images and aimed to
predict BMD using our DL frameworks with explainability. Our main
contribution is to achieve state-of-the-art predictions in CT and
suggest new algorithms to interpret the numerical DL results.
Specifically, the study first considered the selection of a region of
interest (ROI) for building neural networks because DXA BMD as a
reference depends on not only the bone area but also the surrounding
tissues (Bolotin, 2004). We segmented the lumbar vertebra and rest of
the tissue using a DL technique and analyzed the performance when
our estimation network was fed either only the bone area or total area.
The network was based on a deep residual convolutional neural
network (CNN) (He et al., 2015) for visual tasks, and its capability
was evaluated by Pearson’s correlation coefficient between BMD
estimate and DXA reference.

In addition, we interpreted the DL results using explainable AI
(XAI) techniques. XAI is currently used in medical fields to clarify
DL features to assist clinicians in understanding and trusting
decisions (Amann et al., 2020; Singh et al., 2020). In particular, the
gradient-weighted class activation map (Grad-CAM) (Selvaraju
et al., 2017) is popular in medical imaging because of a heat map
highlighting important areas for decision making in an image.
However, the method is theoretically specialized in a binary or

multiclass classification task, where the map emphasizes areas for
a target class while dismissing them for others; thus, it is not
suitable for our estimation task. In this regard, we developed two
new attention maps called gradient-weighted regression
activation map (Grad-RAM) and Grad-RAM by pixel (Grad-
RAMP) by modifying the Grad-CAM concept to specifically
identify the local anatomical regions that have an impact on
BMD prediction in every CT image.

2 Materials and methods

Figure 1 shows this workflow. Every full-size CT slice image was
cropped to reduce the burden of the DL training. The DL network was
trained and tested using cropped or bone-segmented images for BMD
prediction. For the supervised learning scheme, DXA BMD values
were used as references. The process was repeated by replacing the
images with bone-segmented images, and the change in the test results
was analyzed. Here, the bone area of interest was extracted from every
cropped image using a DL network specialized in a segmentation task.
Using the T-score obtained from a BMD estimate, every test sample
was classified as either normal or abnormal. In addition, the local area
critical for BMD prediction in every image was monitored using XAI
techniques.

2.1 Data acquisition and equipment

From 6 March 2013, to 11 August 2020, the orthopedic team at
Busan Medical Center collected 981−CT volumes from 547 patients.
Some patients provided multiple volumes, per person on different
dates. This study was approved by the Institutional Review Board
(P01-202009-21-009) at Busan Medical Center. The requirement for
informed consent was waived considering the retrospective nature of
the study and the use of anonymized clinical data. The collected data
were under the condition that the date gap between CT and DXA scan
was less than 1 month and the protocol was either chest, abdominal, or
spine CTwith a complete L1 axial cut.We determined a reference axial
CT section that contained the maximum trabecular area of the
L1 vertebral body from each CT volume. Then, we created a
dataset in which every data sample consisted of the reference
image and the corresponding DXA BMD. In addition, we added
data samples to the dataset by selecting one or two of the nearest axial
images from the reference for simple augmentation. The total number
of samples were 2,696.

CT scanning procedures were performed on a Siemens
(SOMATOM 128, Definition AS+) scanner (Siemens Healthcare,
Forchheim, Germany) with a single-energy CT protocol, 120 kVp,
247 mA, dose modulation .6-mm collimation, effective pitch of .8, and
B60 (sharp) reconstruction kernel. The reconstructed slice thickness
for chest CT was set at 5.0 mm, 3.0 mm for lumbar spine CT, and
3.0 mm for abdomen and pelvis CT, with slice increments of 5.0 and
3.0 mm.

DXA measurements were performed during routine clinical
examination at Busan Medical Center using a standard DXA
device with a standard protocol (GE Lunar Prodigy, GE
Healthcare). Using vendor-specific software, DXA images were
automatically analyzed and reports were generated (Physicians
Report Writer DX, Hologic, Discovery Wi, United States).
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FIGURE 1
Workflow of this study. From the CT axial images, two image sets were generated. The first set included images cropped around lumbar vertebrae from
original images. The second set included images highlighting only the bone body using a segmentation technique. The neural network was trained and tested
using either image set for predicting BMDs. DXA BMDs were used as references for supervised learning. Bone diseases, such as osteoporosis and osteopenia,
were screened using a T-score converted from every BMD. In addition, the attention map was obtained using XAI techniques to examine the important
regions for the BMD prediction.

FIGURE 2
Schematic of U-Net structure. ResNet-101v2 was used as the backbone network. The number on the left of every box represents the size of image or
feature map. The number above the box denotes the number of feature maps (channels). A dropout was applied before every convolutional block for
generalization. Arrows represent the operators. The meanings of the abbreviations are as follows: Conv, convolutional layer; RB, residual block; Leaky, leaky
ReLU (α = .1); BN, batch normalization; MP, max-pooling layer; s, strides, and c, channel of convolutional layer.
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2.2 L1 segmentation

Segmentation of either L1 entire vertebrae or vertebral body was
performed using DL techniques. U-Net has been widely used in the
field of semantic segmentation because of its effective feature
extraction on multiple scales (Ronneberger et al., 2015; Alom et al.,
2018; Diakogiannis et al., 2020). We adopted residual U-Net using
ResNet-101v2 (He et al., 2015) as a backbone network, as shown in
Figure 2, because ResNet-based models have been reported to enhance
generalization in various tasks (Zhang et al., 2020). The network
consisted of a residual block for encoding and multiple convolution
blocks for decoding. Every convolution block was activated by a leaky
rectified linear unit (leaky ReLU, α = .1) (Maas et al., 2013) function.
The network included down and upsampling operators for
multidimensional attention. The output layer was activated using a
sigmoid function to determine whether every pixel corresponds to the
target. After we randomly selected 204−CT images from the training
samples and labeled them to create L1 binary mask images, we trained
the network using the CT and mask images. During training, the
number of epochs was 500, batch size was eight, and optimizer was
Adam. The loss function f loss was a dice coefficient (Dice, 1945) loss
expressed as f loss � −(2 × |P ∩ G|)/(|P| + |G|) where P and G denote
the sets of positives (pixels) of prediction and ground truth,
respectively, and | · | denotes the cardinality. The final trainable
parameter values were selected when they resulted in the lowest
loss. Owing to the U-Net model, we could automatically segment
the total L1 bone or L1 vertebral body from the other CT images, as
shown in Figures 6–8.

2.3 BMD prediction

A residual CNN model was developed for BMD predictions, as
shown in Figure 3. The DL network consists of 22 convolutional layers
and two fully connected layers. The interim 20 convolutional layers
were placed in 10 residual blocks. The sizes of the feature maps
gradually decreased in the feedforward direction by convolution with a
stride of two. After every convolution layer, batch normalization was
applied to stabilize learning. The activation function for each layer was
a rectified linear unit (ReLU) (Nair and Hinton, 2010) function. Only
the output layer was activated using a linear function. In the dataset,
2,239−CT images (454 patients) were used to train the network, and
457−CT images (93 patients) were used for the final test. The patients
used for training were independent of those used for the test. Patient
characteristics for training and test are summarized in Table 1. For
robust training, traditional augmentation techniques were conducted
by rotating images within 5°, shifting them within 10%, and
horizontally flipping them. The experimental model was trained
using either cropped CT images (Case 1), entire-vertebrae-masked
images (Case 2) or vertebral-body-masked images (Case 3). The model
was trained by minimizing the errors between the predicted values and
DXA BMD (reference) values. Figure 4 shows a histogram of the
reference BMD, where the bin size is .1. Because the distribution was
not even, we used weighted Huber loss (Mangasarian and Musicant,
2000; Huber, 2011) (δ � 0.1) as the error metric. Let the histogram
(frequency number) be z(ky) where ky denotes the bin index for the
BMD y. We fitted the histogram curve to a simple quadratic curve,
inverted and normalized the curve, and applied it to the error metric as
follows:

e � 0.5 × w × ŷi − yi( )2, if ŷi − yi

∣∣∣∣ ∣∣∣∣≤ δ

δ × w × ŷi − yi

∣∣∣∣ ∣∣∣∣ − 0.5 × δ( ), otherwise

⎧⎨⎩ , w � f
1

z kyi( )⎛⎝ ⎞⎠
(1)

where w denotes the weight; ŷi and yi denote the predicted and
reference values for i th sample, respectively; and f denotes the
normalization function with a minimum weight of 1.0. For
updating, the epoch number, batch size, and optimizer were set
as 150, 15, and Adam, respectively. During learning, 20% of the
samples were randomly selected as a validation data set and the
remaining samples were used as a training data set. This was
repeated 10 times as cross-validation. During the tests,
10 consequently trained models independently predicted the
BMD values for every test sample, and their average was used
for the final BMD prediction as an ensemble technique. Pearson
correlation coefficient and MAPE were computed to quantitatively
measure the similarity between the predicted and reference BMDs
using test samples.

2.4 Disease classification

To diagnose the presence of bone diseases, we converted each
BMD estimate into a T-score value: T-score = (BMD − μref)/σref
(Frost et al., 2000) where the mean μref and standard deviation
σref of the population were .9747 and .1185, respectively. If the
T-score was less than −1.0, we judged that the image sample was
abnormal (osteoporosis or osteopenia); otherwise, the sample was
normal. After classifying all samples, we obtained diagnostic
results, such as accuracy, precision, specificity, sensitivity, and
F1 score.

2.5 XAI analysis—Grad-RAM

Grad-CAM (Selvaraju et al., 2017) is a well-known XAI technique
used to investigate the attention of a DL network toward an image. We
modified Grad-CAM for this study because it is specialized in a
classifier, whereas our network is an estimator (regressor). The
localization map was obtained as follows:

LGrad−RAM i, j( ) � ∑
k

αkAk i, j( )
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣, αk � 1
Z

∑
i

∑
j

zy

zAk i, j( ) (2)

where k denotes the channel index of the convolutional layer, Ak(i, j)
denotes the k th feature map, αk denotes the k th weight, andZ denotes
the number of pixels in the feature map. Similar to Grad-CAM, the
weight was obtained by averaging the gradients of the estimate y with
respect to the feature map Ak(i, j) of the last convolution layer. Then,
the localizationmap was obtained using the absolute value of the linear
combination of the feature maps with the weights. The method
converted the ReLU operator in Grad-CAM to an absolute
operator because it considered the features that have a significant
impact on the estimate, regardless of the direction (sign) of the
gradient. This method was named as “Grad-RAM” in this study.
We obtained ten localization maps from ten predictive models for
every sample and averaged them to obtain one final heat map. The
map was superimposed onto the original CT image to visualize local
attention.
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2.6 XAI analysis—Grad-RAMP

We developed an additional technique named as “Grad-RAMP” by
modifying the Grad-RAM. As shown in Eq. 3, Grad-RAM assigns one
weight to all the pixels of every feature map during the linear combination.
To enhance the localization of the gradient with respect to every pixel (i, j),
we multiplied each gradient with the corresponding pixel as follows:

LGrad−RAMP i, j( ) � ∑
k

gk ⊙ Ak i, j( )
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣, gk � zy

zAk i, j( ) (3)

where ⊙ denotes the Hadamard product operator. In addition, we
obtained ten heat maps using this technique for every sample,
averaged them, and superimposed a final map onto the
corresponding CT image.

FIGURE 3
Schematic of the residual CNN structure. Inputs are either cropped images or bone-segmented images, and outputs are BMD estimates. When the
residual block reduces the size of the feature map, the self-replicating stream has down-sampling using the 1 × 1 convolution with a stride of two. The
meanings of the abbreviations are as follows: Conv, convolutional layer; BN, batch normalization; s, strides; c, channel of convolutional layer, and u, number of
units.

TABLE 1 Patient characteristics of training and test dataset. Each row means number of male/female patients, mean age and standard deviation, mean time interval
between CT and DXA scans and standard deviation, respectively.

Training dataset Test dataset

Men/women (n) 215/239 51/42

Mean age (years) 53.0 ± 10.4 52.1 ± 11.1

Mean time interval between the CT and DXA scan (days) .5 ± 3.0 .5 ± 3.1

FIGURE 4
(A)Histogramof BMD. The left and right vertical axes denote the numbers (frequencies) of training samples and test samples, respectively. The horizontal
axis denotes BMD and the bin width is .1. The number above every bar represents the percentage ratio. (B) Weight w used for the loss function in Eq. 1. The
weight curve over BMD is associated with the inverse of the curve fitting to the distribution of training samples in the histogram.
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3 Results

3.1 BMD prediction

Three cases were tested. Case 1 used datasets including
cropped images. Case 2 and Case 3 used datasets including
images segmented for overall L1 vertebra areas and only
L1 vertebral bodies, respectively (Figure 1). For each case, the
DL network for the estimation task used 2,239 training samples

and 457 test samples. Figure 5 shows the BMD estimates over the
references, using scatter plots. In every plot, the yellow dotted line
indicates an ideal reference line and green line indicates a fitted
line by the scatterers in a least-squares sense. The estimation was
almost unbiased in the entire BMD range because the fitted line
was very close to the ideal line for all cases. In addition, learning
avoided overfitting problems because both the training and test
results looked similar. Table 2 lists the quantitative results of the
test samples. The correlation coefficients between the estimates

FIGURE 5
Scatter plots displaying BMDestimates over references. (A,C,E) show the training results, and (B,D,F) show the test results. (A,B) showCase 1 results, (C,D)
showCase 2 results, and (E,F) showCase 3 results. In every plot, the green line is the line of the best fit for samples. The yellow dotted diagonal line denotes the
ideal reference line for checking the skewness of the fitted line. The dotted horizontal and vertical line denotes the decision boundary for classifying bone
diseases. The boundary value corresponds to .856 g/cm2 as a BMD and −1.0 as a T-score.
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and references for Case 1, Case 2, and Case 3 were .905, .878, and
.853, respectively. The mean absolute percentage error (MAPE)
for Case 1, Case 2, and Case 3 were 5.66, 6.81, and 6.90,
respectively.

3.2 Bone disease classification

According to WHO standards, over 50-year-old men or
postmenopausal women are diagnosed with osteopenia and
osteoporosis if the BMD T-scores are less than −1.0 and −2.5,
respectively (World Health Organization, 1994). It is considered as
normal if the T-score is greater than −1.0. We converted the
predicted and reference BMDs into T-scores and classified them
using a T-score threshold of −1.0. This matches with approximately
.856 as BMD, expressed by the vertical or horizontal dotted line in
Figure 5. We then measured the accuracy, precision, specificity,
sensitivity, and F1 score for each case. Table 2 lists the results. In all
cases, the F1 score was greater than .8. In particular, Case 1 and
Case 2 reached a F1 score of approximately .87. The table shows
that overall, Case 1 and Case 2 were slightly better than Case 3.
Some sample images in Case 1 are shown in Supplementary Figure
S1 along with the prediction results.

3.3 XAI analysis

We conducted visual explainable methods using Grad-RAM and
Grad-RAMP. The purpose of this study was to investigate the local
region in which our DL model critically estimated BMD. A standard
technique, Grad-CAM, was not appropriate for this task, as shown in
Figure 6 and Supplementary Figures S2, S3; thus, we devised new
maps. Figures 7, 8 show the heat maps superimposed on the cropped
image or bone-segmented images using Grad-RAM and Grad-RAMP,
respectively. Four samples were randomly selected and vertically
aligned over the T-score. In Case 1 and Case 2, the attention areas
of the Grad-RAM were broadly located near the lumbar vertebra.
Overall, the area focused on the foramen vertebra, spinosus process,
and near tissues. Meanwhile, Grad-RAMP provided highlighted
regions closer to the vertebral body and more centered at the
vertebral foramen. In Case 3, the areas of Grad-RAM leaned
toward one side of the vertebral body, whereas those of Grad-
RAMP occupied the center of the body.

4 Discussion

This study investigated DL methods for predicting BMD using
standard CT slice images. We generated three datasets and fed either
set to the DL network during training, where the first set included CT
images cropped around the L1 vertebra (Case 1), and second and third
sets included their bone-segmented images (Case 2: total L1 bone,
Case 3: only vertebral body). To guarantee robustness, we used large
patient and image samples, and short scan intervals between CT and
DXA. In either case, the trained network resulted in high diagnostic
performance in the test with independent patient samples. As shown
in Table 2, the correlation coefficient between the predicted and
ground-truth values was greater than .85, and the mean absolute
error was less than 7% in either case. In addition, the F1 score was
greater than .82 in the disease classification task.

Overall, Case 1 and Case 2 outperformed Case 3, as shown in
Table 2. This indicates that not only the vertebral body, but also other
bone areas such as transverse process, spinous process and lamina
contributed to BMD estimation. We noted that the reference for
supervised learning was not real bone density at a narrow region, but
measures obtained from DXA, whose scan spans large axial plans.
Thus, it appears that our neural network extracted certain features
from the rest areas as well as the bone body to access the reference in
Case 1 and Case 2. A study showed that DXA BMD values depended
on even the fat layer surrounding the bone (Colt et al., 2010). However,
it appears that the soft tissue rarely affected the estimation in our
experiments since Case 1 provided no noticeable prediction scores as
compared with Case 2.

We obtained .90 as the maximum correlation coefficient (MCC)
between estimates and references in Case 1 using 93 patients as test
samples. It outperformed the previous study (Yasaka et al., 2020)
achieving .85 as the MCC from 45 patients. Also, it was comparable
with the state-of-the-art results in X-rays (Hsieh et al., 2021). The
MCC numbers were .92 and .90 when the targets were hip and spine,
respectively. We presume that mapping CT to DXA BMD is more
challenging because an axial CT image is more estranged than an
X-ray from DXA based on a coronal projection view. We expect that if
the DL framework were designed to be fed by more than one CT slice
(3D volume image) as an input, it would provide a better metric score.

During the network training, we applied a variable weight to the
cost (loss) function, as shown in Eq. 1. Weight was inversely
proportional to the frequency of the samples at the BMD. Thus,
the network mitigated the sample imbalance problem by providing a

TABLE 2 Estimation test results and diagnostic scores for Case 1, Case 2, and Case 3. The estimation performance metric includes correlation coefficients and mean
absolute percentage error (MAPE). The diagnostic performance metric includes accuracy, precision, specificity, sensitivity, and F1 score. Here, TP and FN denote true
positive and false negative, respectively, where positive and negative denote abnormal and normal, respectively. All indicators are rounded to the third decimal place.

Case1 Case 2 Case 3

Correlation coefficient .905 (p < .001) .878 (p < .001) .853 (p < .001)

MAPE (%) 5.66 6.81 6.90

Accuracy .862 (394/457) .864 (395/457) .825 (377/457)

Precision [TP/(TP + FP)] .842 (208/247) .822 (217/264) .833 (190/228)

Specificity [TN/(FP + TN)] .827 (186/225) .791 (178/225) .831 (187/225)

Sensitivity [TP/(TP + FN)] .897 (208/232) .935 (217/232) .819 (190/232)

F1 score [(2 × precision × sensitivity)/(precision + sensitivity)] .868 .875 .826
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more even error over the BMD, as shown in Supplementary Figure S4.
To categorize the samples into disease or normal groups, we
used −1.0 T-score and .856 BMD threshold for the binary
diagnostic tests. They targeted osteopenia, a benign stage of
osteoporosis. By adjusting the weight, the sensitivity can be
increased at the expense of specificity, and vice versa. If a T-score
less than −2.5 is considered as osteoporosis, our test set contained
49 osteoporosis samples. Because every image sample was predicted as
a disease (estimate < −1.0), the sensitivity for the severe state was 1.
This is the strength of the network designed as a BMD estimator
(regressor) compared with a network that is directly classified.

The network for BMD estimation was based on the structure of
residual CNN. The total number of trainable parameters were

1,614,273. When we trained the network using 2,239 samples, it
took approximately 7.58 s per epoch. For the tests, we stored the
model when the loss of validation data was the lowest during training.
During the tests, the average computation time for predicting a BMD
from one sample was approximately .006 s (2.58 s/457 samples). We
used Python for the implementation and NVIDIA 2080Ti to run them
on a computer.

In addition to the comparative analysis between different
datasets, we used XAI techniques to investigate the local areas
attended by the neural network to estimate the BMD. Currently, the
requirement for XAI has steadily increased to support the reliability
and transparency of DL models. Although many techniques for
classification tasks have been studied and applied (Böhle et al.,

FIGURE 6
Visual XAI results (4 test samples) using Grad-CAM. The results of every sample are represented by every row. Every row, (A) represents the cropped CT
image. A T-score value is placed at the top of every image. (B–D) display the heatmap superimposed on the cropped image or bone-segmented image. (B–D)
show Grad-RAMP results in Case 1, Case 2 and Case 3, respectively. “BMD” and “Pred” placed at the top of every image denote the reference and predicted
values, respectively.
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2019; Panwar et al., 2020; Mondal et al., 2022), those for estimation
(regression) tasks have seldom been proposed. Therefore, we
developed Grad-RAM and Grad-RAMP by modifying Grad-
CAM. In classification tasks, a network mainly uses either
sigmoid or softmax as the output unit to output the probability
(positive value). Thus, a feature map involving high positive
gradients of a target class tends to increase the probability of the
class. Grad-CAM has a ReLU function at the end of the process.
Unlike Grad-CAM, Grad-RAM even uses negative gradients by
replacing ReLU with an absolute function, as shown in Eq. 2. In the
estimation tasks, a feature map involving high gradients, regardless
of their signs, is likely to affect the prediction of a continuous
output number.

In addition to this modification, Grad-RAMP takes advantage of
gradient localization. The method does not globally weight the feature
map but locally (pixel-wise) weights it using gradients, as shown in Eq.
3. This is in agreement with the concept of the saliency map technique
(Simonyan et al., 2014), that a pixel with a higher gradient has a higher
impact on the final decision. As shown in Supplementary Figures S2,
S3, Grad-RAM and Grad-RAMP yielded more reasonable results than
Grad-CAM in a simple estimation task. The task goal was estimating
the average of pixel values in a rectangle around other disturbance
figures in each image sample. In most samples, our new methods
successfully highlighted the rectangle area in contrast to Grad-CAM.

As shown in Figures 7, 8, the attention areas obtained using both
techniques span the overall vertebra in the transverse plane. The hot

FIGURE 7
Visual XAI results (4 test samples) using Grad-RAM. The results of every sample are represented by every row. Every row, (A) represents the cropped CT
image. A T-score value is placed at the top of every image. (B–D) display the heatmap superimposed on the cropped image or bone-segmented image. (B–D)
show Grad-RAMP results in Case 1, Case 2 and Case 3, respectively. “BMD” and “Pred” placed at the top of every image denote the reference and predicted
values, respectively.
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regions seldomly learn toward the vertebral body in Case 1 and Case 2.
This agrees with the assumption in the comparative study that the
network also pays attention to other bone parts. One limitation is that
the resolution of the maps was not enough to identify that even
vertebral foramen contributed to predict BMD. It appears that Grad-
RAMP provided slightly more reasonable results than Grad-RAM in
the tests because the attention area was near the centers of the entire
vertebrae and vertebral body in Case I (or Case 2) and Case 3,
respectively.

Our ongoing research is to combine the Grad-RAMP with layer-
wise relevance propagation (LRP) (Montavon et al., 2017; Dobrescu
et al., 2019; Kohlbrenner et al., 2020) to enhance the map resolution.
LRP can provide contribution scores of each pixel for the regression

output by simply propagating the prediction backward through the
network layers. It is reported that LRP algorithms provided
inconsistent and noisy maps, but a more detailed explanation of
what pixels are relevant to the output. If they are complementary
and well-balanced, the new map can give a more distinct explanation
for the prediction.

The limitation of this study is that the data were collected from a
single medical institution. In our future study, we will collect more CT
images and corresponding DXA BMD values from several machines
and hospitals to reduce bias and increase robustness. An expectation
from a subsequent study is that BMD can be estimated from the bone
areas where DXA hardly scans. To cope with diverse bone shapes, we
plan to develop a DL technique based on a conditional generative

FIGURE 8
Visual XAI results (4 test samples) using Grad-RAMP. The results of every sample are represented by every row. Every row, (A) represents the cropped CT
image. A T-score value is placed at the top of every image. (B–D) display the heatmap superimposed on the cropped image or bone-segmented image. (B–D)
show Grad-RAMP results in Case 1, Case 2 and Case 3, respectively. “BMD” and “Pred” placed at the top of every image denote the reference and predicted
values, respectively.
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adversarial network (cGAN) (Isola et al., 2017) to create plausible bone
shapes with the condition of a labeled density. If available, the final
product will be a 3D map of BMD as dual-energy CT.

5 Conclusion

This study leveraged a DL architecture to provide accurate BMD
from standard CT. Using this DL model, CT taken for diverse medical
purposes can be used to screen latent patients at risk for osteoporosis
without additional costs and radiation exposures. We used DXA
BMDs as references for supervised learning because most medical
professionals are still accustomed to T-scores fromDXA for evaluating
osteoporosis or osteopenia. We found that narrowing ROI from a total
CT slide view to a bone body was inconducive for enhancing
performances because DXA depends on the projection of the total
area. Overall, our DL-based regressor using the large ROI can provide
BMD, that is highly correlated to the DXA BMD (maximum
correlation coefficient > .9). The proposed explainable method
supported that the regressor rather paid attention to the area near
the center of the entire vertebrae. We expect that the DL-based BMD
prediction from CT would be practical in actual clinical practice if it is
further proved by more CT samples from diverse medical institutions.
In addition, we intend to use the proposed explainable framework for
any estimation (regression) task in the medical field.
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