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Purpose: The purpose of this paper is to develop amethod to automatic classify

capsule gastroscope image into three categories to prevent high-risk factors for

carcinogenesis, such as atrophic gastritis (AG). The purpose of this research

work is to develop a deep learning framework based on transfer learning to

classify capsule gastroscope image into three categories: normal gastroscopic

image, chronic erosive gastritis images, and ulcer gastric image.

Method: In this research work, we proposed deep learning framework based on

transfer learning to classify capsule gastroscope image into three categories:

normal gastroscopic image, chronic erosive gastritis images, and ulcer gastric

image. We used VGG- 16, ResNet-50, and Inception V3 pre-trained models,

fine-tuned them and adjust hyperparameters according to our classification

problem.

Results: A dataset containing 380 images was collected for each capsule

gastroscope image category, and divided into training set and test set in a

ratio of 70%, and 30% respectively, and then based on the dataset, three

methods, including as VGG- 16, ResNet-50, and Inception v3 are used. We

achieved highest accuracy of 94.80% by using VGG- 16 to diagnose and classify

capsule gastroscopic images into three categories: normal gastroscopic image,

chronic erosive gastritis images, and ulcer gastric image. Our proposed

approach classified capsule gastroscope image with respectable specificity

and accuracy.

Conclusion: The primary technique and industry standard for diagnosing and

treating numerous stomach problems is gastroscopy. Capsule gastroscope is a

new screening tool for gastric diseases. However, a number of elements,

including image quality of capsule endoscopy, the doctors’ experience and
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fatigue, limit its effectiveness. Early identification is necessary for high-risk

factors for carcinogenesis, such as atrophic gastritis (AG). Our suggested

framework will help prevent incorrect diagnoses brought on by low image

quality, individual experience, and inadequate gastroscopy inspection

coverage, among other factors. As a result, the suggested approach will

raise the standard of gastroscopy. Deep learning has great potential in

gastritis image classification for assisting with achieving accurate diagnoses

after endoscopic procedures.

KEYWORDS

capsule gastroscope, gastric diseases, diagnosis, deep learning, transfer learning

Introduction

Many different stomach disorders, frommild erosive gastritis

to advanced cancer, harm the health of a significant portion of

the global population. The presence of diffuse or map-like

redness in the stomach, together with or without atrophy and

mucosal layer erosion, are characteristics of gastritis (Zhang et al.,

2022). In Asia, particularly in China, Japan, and Korea, chronic

erosive gastritis is a reasonably frequent condition that

confounds medical professionals (Goh, 2011). Chronic erosive

gastritis, also known as atrophic gastritis, always manifests as a

variety of gastrointestinal symptoms and a histological alteration

in the stomach mucosa, which lowers the quality of life.

Numerous inflammatory lesions in the stomach’s mucous

membrane are a defining feature of chronic erosive

gastroenteritis. Chronic erosive gastroenteritis is an ulcer-like

stomach inflammation marked by many lesions in the mucous

lining (Palaniappan, 2013). Their symptoms may include

weakness, a loss of appetite, mild nausea, vomiting, and a

heavy, burning feeling in the pit of the stomach. Peptic ulcers

are produced by erosive gastritis, which can continue damaging

the nearing tissues while growing more significantly and broader

(White et al., 2022). If the proper diagnosis and treatment are not

performed, internal bleeding from severe ulcers may eventually

occur, which could cause anemia.

Moreover, an example of peptic ulcer disease is gastric ulcers,

which are open sores on the stomach’s lining. Along with the

stomach, the intestine can develop ulcers in a section of it. Gastric

ulcers may erode our stomach or small intestine’s blood vessel

wall. In addition to eating a hole through the lining and becoming

infected, ulcers can also grow due to inflammation or scarring,

which may prevent food from passing through the digestive tract.

Additionally, nodular gastritis, metaplastic gastritis, and open-

type atrophic gastritis are linked to stomach cancer, whereas

erosive gastritis is associated with obesity and

hypoadiponectinemia (Pop et al., 2022). Therefore, during the

endoscopic examination, paying attention to the diagnostic signs

of gastritis is essential. If patients are examined and treated in the

early stage of gastric diseases, the 5-year survival rate can be as

high as 90%. However, the early gastric disease detection rate is

only about 10%. Without timely diagnosis and proper treatment,

long-term inflammation will aggravate the risk of harmful results

in a patient’s life (Abbasi-Kangevari et al., 2022). Gastroscopy is

the most effective technical tool for identifying and screening

numerous gastrointestinal diseases. Gastroscopy allows

endoscopists to see stomach lesions by inserting a thin,

flexible tube into the stomach. Pathological biopsies of

suspected lesions affect the state of the examined part and can

confirm a diagnosis. Examining stomach lesions is the preferred

method. However, due to exhaustion from lengthy workdays or

inexperience, endoscopists may make mistakes during

gastroscopy.

To improve gastroscopy diagnosis, numerous imaging

techniques have been developed, including 3D imaging, auto-

fluorescence imaging (AFI), magnifying endoscopy (ME), and

narrow-band imaging (NBI). There is a need for a computer-

aided autonomous framework to improve gastroscopy efficiency

and quality in daily clinical practice, becoming a “third eye” for

endoscopists. Deep learning technology has recently permeated

several areas of medical study and has taken center stage in

modern science and technology. Deep learning technology can

fully utilize vast amounts of data, automatically learn the features

in the data, accurately and rapidly support clinicians in diagnosis,

and increase medical efficiency. In the field of gastroscopic image

analysis, traditional machine learning and deep learning methods

have been widely used in disease classification (Lu et al., 2020)

and detection (Wong et al., 2012; Wong et al., 2020). Zhang et al.

(Zhang et al., 2021) collected gastric images of 308 patients and

used the DenseNet model to classify images into atrophic gastric

and non-atrophic gastric images. The accuracy of their model

combined with serological indicators is 99.25%, with a sensitivity

of 96.17%. Qiu et al. (Qiu et al., 2022) classified gastroscopic

images into five classes: advanced gastric cancer, early-stage

gastric cancer, precancerous lesions, and normal and benign

lesions using a convolutional neural network, and the overall

accuracy of recognition reached 94.1%. Park et al. (Park et al.,

2018) used the transfer learning technique to classify 787 gastric

endoscopy images into normal and abnormal classes. After

applying the transfer learning technique, the accuracy of the

three pre-trained models, including ResNet-50, Inception V3,
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and VGG- 16, is 98%, 97%, and 98%, respectively. Apart from

healthcare, machine learning (Tang et al., 2022) is also used in

various fields (Wahid et al., 2021) and also in various domains of

life (Zhao et al., 2022) (Ayoub et al., 2022). The authors’ proposed

system optimizes treatment and prevents severe kidney stone

illness, and they obtained 0.86 sensitivity using a 3D U-Net

model. A spherical multi-output Gaussian process may be

implemented to model and monitor the 3D surfaces of stones

(Hussain et al., 2022). By studying the literature, we observed that

the rapid creation of crucial tools for medical diagnostics is being

fueled by artificial intelligence (AI), which is quickly becoming a

crucial concept in medicine (Wong et al., 2020) (Wei et al., 2017).

Deep learning (DL) is now widely employed in medical imaging

(Wong et al., 2012) as a critical machine learning method in the

field of computer vision (Lu et al., 2020).

Pre-trained deep learning models learned on massive

datasets have demonstrated their superiority to conventional

approaches as the processing capacity of modern hardware

continues to grow. Therefore, from a deep learning

perspective, transfer learning can be used to solve the image

categorization problem. The study found that the transfer

learning technique is used to achieve several cutting-edge

achievements in image classification (Simonyan and

Zisserman, 2014). We utilized the benefits of pre-trained deep

learning models to enhance the diagnosis of capsule gastroscopy

images. Our deep learning framework for classifying capsule

gastroscopy images into three categories—standard gastroscopic

image, chronic erosive gastritis image, and gastric ulcer

image—was proposed in this study and is based on transfer

learning. We used pre-trained models included VGG- 16,

ResNet- 50, and Inception V3 and adjusted their hyper

parameters to fit our classification task.

Materials and Methods

To improve capsule gastroscopy image classification, there is

a need for a computer-aided autonomous framework to classify

capsule gastroscope images into three categories automatically.

Deep learning technology has recently permeated several areas of

medical study and has taken center stage in modern science and

technology (Litjens et al., 2017). Deep learning technology can

fully utilize vast amounts of data, automatically learn the features

in the data, accurately and rapidly support clinicians in diagnosis,

and increase medical efficiency (Ngiam and Khor, 2019). In this

research, we proposed a deep learning framework based on

transfer learning to classify capsule gastroscopic images into

three categories: normal gastroscopic images, chronic erosive

gastritis images, and gastric ulcer images. We used VGG- 16,

ResNet-50, and Inception V3 pre-trained models, fine-tuned

them, and adjusted hyper parameters according to our

classification problem by using transfer learning. The

proposed framework to address the mentioned research gap is

shown in Figure 1. All experiments in this paper are conducted

on Intel(R) Celeron(R) CPU N3150 @ 1.60 GHz. The operating

system is Windows 64-bit, Python 3.6.6, TensorFlow deep

Learning framework 1.8.0, and CUDA 10.1.

Dataset statistics

In this study, we gathered 211 patients’ capsule gastroscopic

imaging data from Shenzhen University General Hospital,

Shenzhen University, China. For each category of capsule

gastroscopic images, a total of 1140 lesion samples were

randomly selected from 380 different image regions to

maintain the balance of disease samples. Then, using a

random selection approach, we divide the data in the ratio of

70% and 30% in each type of disease is split into a training set and

a test set. Finally, there were 228 test set images and 912 images

from the training set. The sample dataset is shown in Figure 2.

Moreover, we also described the statistics of our dataset in

table form as shown in Table 1.

Feature extraction

When extracting features, we begin with a pre-trained model

and only modify the weights of the last layer, from which we

generate predictions. Because we alter the output layer and use

the pre-trained CNN as a fixed feature extractor, it is known as

feature extraction (Hinterstoisser et al., 2018). Convolution

neural networks learn the edge features of the input image

and some or all objects—high-level semantic

features—successively as the number of convolution steps

increases. The convolution layer and full connection layer in

the convolution neural network can be utilized to extract the deep

features of the image; however, the convolution layer has a multi-

dimension, making it challenging to calculate the subsequent

dimensionality reduction. However, with a straightforward

calculation, the entire connection layer can be viewed as a

one-dimensional vector. To represent the deep features of the

image, a full connection layer is added before the output layer of

the backbone network.

VGG-16

The Visual Geometry Group (VGG) at the University of

Oxford developed and trained the convolution neural network

model called as VGG- 16 neural network (Guan et al., 2019).

The number 16 in VGG- 16 indicates that there are 16 weighted

layers. This network has 138 million parameters, which is quite

a lot. We used Keras (Poojary and Pai, 2019) to fine-tune the

VGG- 16 pre-trained model. We fine-tuned this model

according to our dataset to classify capsule gastroscopic
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images into three categories: normal gastroscopic images,

chronic erosive gastritis images, and gastric ulcer images. We

reproduced the entire architecture of the VGG- 16 model,

excluding the output layer, to produce a new Sequential

model. We prevent the output layer from being trained or

altered when we feed it our dataset by freezing the weights and

other trainable parameters in each layer. Furthermore, we

included our new output layer in accordance with our

dataset to categorize capsule gastroscopic images into three

groups. The complete model architecture and hyper parameter

details are shown in Table 2 and Figure 3.

ResNet-50

ResNet-50 is a convolutional neural network with 50 layers

(Hussain et al., 2021). A pre-trained version of the network that

has been trained on more than a million photos is present in the

ImageNet database (Deng et al., 2009). ResNet-50 is a 50-layer

residual network in which we endeavor to learn residuals rather

than features. In order to solve the problem of the vanishing/

exploding gradient, this architecture introduced the concept

called Residual network. In this network, we use a technique

called skip connections. The skip connection connects

FIGURE 1
Proposed framework to classify capsule gastroscope images.

FIGURE 2
Sample Dataset. (A) Representing the normal gastroscopy images, while (B,C) representing the images of chronic erosive and gastric ulcer
images respectively.
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activations of a layer to further layers by skipping some layers in

between. The residual blocks create an identity mapping to

activations earlier in the network to thwart the performance

degradation problem associated with deep neural architectures.

Another sort of convolutional neural network that it needs input

an images size of 224 by 224 and 3 RGB in the ResNet-50. The

complete model architecture and hyper parameter details are

shown in Table 3.

Inception V3

Convolutional neural networkmodel Inception-v3 (Wang et al.,

2019a) has 48 layers and is also a pre-trained model. A subset of the

more than a million images in the ImageNet database was used to

train this network. The Google Inception CNNmodel (Bhatia et al.,

2019), which was initially created for the ImageNet Recognition

Challenge, is now in its third iteration. Using Inception V3, we were

able to reduce the output layer’s dimensions to one, flatten it, and

add a sigmoid layer for classification along with a fully connected

layer with 1024 hidden units, Relu activation function, and a

dropout rate of 0.4. To avoid over-fitting. This method of data

augmentation (Shorten and Khoshgoftaar, 2019) operates entirely

within memory. The complete model architecture and hyper

parameter details are shown in Table 4.

FIGURE 3
Accuracy and Loss graph using the VGG- 16. (A) Representing the training and validation accuracy while (B) representing the training and
validation loss of VGG- 16 model according to our dataset.

TABLE 1 Statistics of our dataset in each category.

Type of capsule
gastroscopy images

No. of images No.
of lesion samples

Normal Gastroscopy Images 380 1140

Chronic Erosive Gastritis Images 380 1140

Gastric Ulcer Images 380 1140

TABLE 2Hyper Parameters details used in VGG-16model according to
our dataset.

Layer (type) Output shape Param

Vgg1(Functional) (None, 7, 7, 512) 14714688

flatten_ 1 (Flatten) (None, 25088) 0

dense_5 (Dense) (None, 1024) 25691136

dense_6 (Dense) (None, 512) 524800

dense_7 (Dense) (None, 256) 131328

dropout_ 1 (Dropout) (None, 256) 0

dense_8 (Dense) (None, 128) 32896

dense_9 (Dense) (None, 3) 516

TABLE 3 Hyper Parameters details used in ResNet-50 model
according to our dataset.

Layer (type) Output shape Param

conv2d (Conv2D) (None, 26, 26, 28) 784

max_pooling2d (None, 13, 13, 28) 0

conv2d_ 1 (Conv2D) (None, 11, 11, 64) 16192

max_pooling2d_ 1 (None, 5, 5, 64) 0

conv2d_2 (Conv2D) (None, 3, 3, 64) 36928

flatten (Flatten) (None, 576) 0

dense (Dense) (None, 640) 369280

dropout (Dropout) (None, 640) 0

dense_ 1 (Dense) (None, 264) 169224

dense_2 (Dense) (None, 64) 16960

dense_3 (Dense) (None, 3) 260
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One of the best techniques for reducing over fitting is

to increase the size of the training dataset (Thanapol et al.,

2020). The training images were automatically resized using an

augmented image dataset. Our pre-trained deep learning model

avoid over-fitting by using dropout layer which is another

regularization technique that prevents neural networks from

over fitting (Srivastava et al., 2014). Regularization methods like

L1 and L2 reduce over fitting bymodifying the cost function but on

the contrary, the Dropout technique modifies the network itself to

prevent the network from over fitting. With the help of data

augmentation a lot of similar images can be generated. This helps

in increasing the dataset size and thus reduce over fitting. The

reason is that, as we add more data, the model is unable to over fit

all the samples, and is forced to generalize.

Result and discussion

Gastroscopy is the primary technique and industry standard

for diagnosing and treating numerous stomach problems. The

TABLE 4 Hyper Parameters details used in Inception V3 model
according to our dataset.

Layer (type) Output shape Param

inception_v3 (Model) (None, 8, 8, 2048) 21802784

flatten_ 1 (Flatten) (None, 131072) 0

activation_95 (Activation) (None, 131072) 0

dropout_ 1 (Dropout) (None, 131072) 0

dense_ 1 (Dense) (None, 1024) 134218752

activation_96 (Activation) (None, 1024) 0

dropout_2 (Dropout) (None, 1024) 0

dense_2 (Dense) (None, 28) 28700

activation_97 (Activation) (None, 3) 0

FIGURE 5
Accuracy and Loss graph using the ResNet-50. (A) Representing the training and validation accuracy while (B) representing the training and
validation loss of ResNet-50 model according to our dataset.

FIGURE 4
Accuracy and Loss graph using the Inception V3. (A) Representing the training loss and training accuracy while (B) representing the validation
loss and validation accuracy of Inception V3 model according to our dataset.
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capsule gastroscope is a new screening tool for gastric diseases.

However, several elements, including the image quality of capsule

endoscopy, the doctor’s experience, and fatigue, limit its

effectiveness (Namikawa et al., 2020). Early identification is

necessary for high-risk factors for carcinogenesis, such as

atrophic gastritis (AG) (González and Agudo, 2012). In this

research work, to improve the gastroscopy diagnosis, we

proposed a deep learning framework based on transfer

learning to classify capsule gastroscope images into three

categories: normal gastroscopic images, chronic erosive

gastritis images, and gastric ulcer images. 211 patients’ capsule

gastroscopic imaging data were gathered from Shenzhen

University General Hospital, Shenzhen University, China For

each category of capsule gastroscopic images, 1140 lesion

samples were randomly selected from 380 distinct image

regions to maintain the balance of disease samples. Then,

using a random selection approach, we divide the data in the

ratio of 70% for training and 30% for the testing set. We used

VGG- 16, ResNet-50, and Inception V3 pre-trained models, fine-

tuned them, and adjusted hyper parameters according to our

classification problem.

Our trained VGG- 16 model achieved 94.81% accuracy,

Inception V3 achieved 92.53% accuracy, and Resnet-50

achieved 90.23% in classifying capsule gastroscopic images

into three categories. We assessed our model’s performance

using accuracy and loss graphs. Figures 4, 6A reported the

training and validation accuracy and (b) training and

validation loss using VGG- 16 and ResNet-50 models,

respectively, according to our dataset. Similarly, Figure 5

represents the training loss and training accuracy, and (b)

represents the validation loss and validation accuracy by using

the Inception V3 model in classifying capsule gastroscopic

images into three categories.

The most popular method for visualizing the representation

of experimentally gathered statistical data confusion matrices is

used to solve classification issues in machine learning and deep

learning (Wong et al., 2012). Figure 6 represents the performance

of three models by using the 3 × 3 confusion matrix. Here (a)

illustrates the performance of the VGG- 16 model for classifying

capsule gastroscopic images into three categories. Similarly, (b)

represents the performance of Inception V3 in terms of the

confusion matrix, and (c) illustrates the performance of the

ResNet-50 model for classifying capsule gastroscopic images

in three categories.

Deep learning technology has recently permeated several

areas of medical study and has taken center stage in modern

science and technology. Deep learning technology can fully

utilize vast amounts of data, automatically learn the features in

the data, accurately and rapidly support clinicians in

diagnosis, and increase medical efficiency. We used three

pre-trained deep learning models to improve the

gastroscopy diagnosis, including VGG- 16, Inception V3,

and ResNet-50.

We fine-tuned these models according to our dataset to

classify capsule gastroscopic images into three categories:

normal gastroscopic images, chronic erosive gastritis images,

and gastric ulcer images. Our trained VGG- 16 model

achieved 94.81% accuracy, Inception V3 achieved 92.53%

accuracy, and Resnet-50 achieved 90.23% in classifying

capsule gastroscopic images into three categories.

Moreover, we also compared the performance of our

proposed approach with previously proposed studies as shown

in Table 5.

FIGURE 6
Confusion matrix representation of the performance of our models. (A) Representing the performance of VGG- 16, while (B) representing the
Inception V3 and (C) representing the ResNet-50 according to our dataset.

TABLE 5 Comparative accuracy of proposed approach with previously
proposed studies.

References study Approach Accuracy (%)

Pannu et al. (2020) Pre-trained Models 93

Wang et al. (2019b) HaNet 92

Wang et al. (2022) CNN 89

Our Proposed Approach Pre-trained Models 94.81
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Conclusion

Deep learning technology has recently permeated several

areas of medical study and has taken center stage in modern

science and technology. Deep learning technology can fully

utilize vast amounts of data, automatically learn the features

in the data, accurately and rapidly support clinicians in diagnosis,

and increase medical efficiency. Many different stomach

disorders, from mild erosive gastritis to advanced cancer, have

a negative impact on the health of a significant portion of the

global population. Gastroscopy is the most effective technical

tool for identifying and screening numerous gastrointestinal

diseases. However, due to exhaustion brought on by lengthy

workdays or inexperience, endoscopists may make mistakes

during gastroscopy. We applied three pre-trained deep

learning models, including VGG- 16, Inception V3, and

ResNet-50, to enhance the gastroscopy diagnosis. The data

was gathered from 211 patients at Shenzhen University

Hospital (Shenzhen University Clinical Medical Academy,

Shenzhen University, China). To preserve the balance of

disease samples, a total of 1140 lesion samples were randomly

chosen from 380 different image regions for each category of

capsule gastroscopic images. Our trained VGG- 16 model

achieved 94.81% accuracy, Inception V3 achieved 92.53%

accuracy, and Resnet-50 achieved 90.23% in classifying

capsule gastroscopic images into three categories: normal

gastroscopic image, chronic erosive gastritis images, and

gastric ulcer image. Our suggested framework will help

prevent incorrect diagnoses brought on by low image quality,

individual experience, and inadequate gastroscopy inspection

coverage, among other factors. As a result, the suggested

approach will raise the standard of gastroscopy. Investigation

of the gastrointestinal functions (Wong et al., 2017) can be

enhanced based on variable drug introduction and the

reaction may be further analyzed. Advanced bioinformatics

algorithms (Li et al., 2017a; Deb et al., 2018) may be utilized

to understand the effect of different biochemical environment on

gastrointestinal related diseases, which provides valuable

information to assist in healthcare (Li et al., 2017b) enhancement.

Limitation and future work

Due to challenges getting well-annotated data, there is

frequently a dearth of training picture collections required

for model reconstruction in real-world applications,

particularly in the medical industry. Transfer learning,

secondary training, fine-tuning, and comparison with the

outcomes of self-designed networks were therefore some of

the techniques most frequently applied in the works under

analysis. Therefore, even though the results of studies have the

potential for deep learning associated with different kinds of

gastric tissue images, additional studies may need to be carried

out clearly and transparently, with database accessibility and

reproducibility, in order to develop useful tools that aid health

professionals.
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