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The Calcium-Sensing Receptor (CaSR) is a member of the class C of G-proteins

coupled receptors (GPCRs), it plays a pivotal role in calcium homeostasis by

directly controlling calcium excretion in the kidneys and indirectly by regulating

parathyroid hormone (PTH) release from the parathyroid glands. The CaSR is

found to be ubiquitously expressed in the body, playing a plethora of additional

functions spanning from fluid secretion, insulin release, neuronal development,

vessel tone to cell proliferation and apoptosis, to name but a few. The present

review aims to elucidate and clarify the emerging regulatory effects that the

CaSR plays in inflammation in several tissues, where it mostly promotes pro-

inflammatory responses, with the exception of the large intestine, where

contradictory roles have been recently reported. The CaSR has been found

to be expressed even in immune cells, where it stimulates immune response

and chemokinesis. On the other hand, CaSR expression seems to be boosted

under inflammatory stimulus, in particular, by pro-inflammatory cytokines.

Because of this, the CaSR has been addressed as a key factor responsible for

hypocalcemia and low levels of PTH that are commonly found in critically ill

patients under sepsis or after burn injury. Moreover, the CaSR has been found to

be implicated in autoimmune-hypoparathyroidism, recently found also in

patients treated with immune-checkpoint inhibitors. Given the tight bound

between the CaSR, calcium and vitamin Dmetabolism, we also speculate about

their roles in the pathogenesis of severe acute respiratory syndrome

coronavirus-19 (SARS-COVID-19) infection and their impact on patients’

prognosis. We will further explore the therapeutic potential of

pharmacological targeting of the CaSR for the treatment and management

of aberrant inflammatory responses.
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Introduction

The calcium ion, Ca2+, is a ubiquitous molecule implicated in many physiological

processes that include neuronal transmission, muscle contraction, bone mineralization,

immune response, and hormone secretion, among others. At the cellular level, Ca2+

regulates cell-cell adhesion and, as an intracellular messenger, it controls gene

transcription, cell proliferation, and apoptosis (Berridge et al., 2003; Clapham, 2007;

Bagur and Hajnóczky, 2017). Due to its pleiotropic roles, calcium imbalance can lead to
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multiorgan disfunctions; therefore, the human body is equipped

with a sophisticated system that guarantees calcium homeostasis.

A key regulator for serum calcium balance is the CaSR, a

GPCR that directly controls calcium reabsorption in the kidneys

and regulates PTH release from the parathyroid glands. In turn,

PTH controls calcium resorption in the bones, calcium excretion

in the kidneys and, by promoting renal synthesis of the 1,25-

dihydroxyvitamin D3 (the active form of vitamin D), calcium

absorption in the intestine (Hofer and Brown, 2003; Hannan

et al., 2018).

The CaSR is a ubiquitously expressed receptor able to bind

not only Ca2+, but a plethora of other ligands, that confers

ligand-biased signaling (Conigrave and Ward, 2013).

Depending on the type of ligand and where the receptor is

expressed, the CaSR is able to exert multiple physiological

roles, such as neuronal development, vessel tone, insulin

secretion, bowel fluid absorption, and many others. At the

cellular level, the CaSR is able to regulate cell transcription,

proliferation, differentiation, and apoptosis. Given this

multifunctionality, the CaSR also seems to play an

important role in cancer development and inflammatory

response (Brennan et al., 2013; Tennakoon et al., 2016;

Hannan et al., 2018; Iamartino et al., 2018).

Depending on the tissue where the CaSR is expressed, the

CaSR can either promote cancer development, thus behaving as

an oncogene, such as in gastric, breast, prostate, and renal cancer,

or as a tumor suppressor, such as in colorectal, endometrial,

parathyroid cancer, and neuroblastoma (Tennakoon et al., 2016).

This yin-yang role in cancer is also observed in inflammation.

Multiple studies, especially in the last decade, have reported that

the CaSR seems to promote inflammation in several tissues,

while, mainly in the intestine, there are contradicting reports

(Iamartino et al., 2018; Elajnaf et al., 2019; Iamartino et al., 2020).

With the present review, we aim to give recent updates on the

impact of the CaSR in immune response and tissue

inflammation. Given the strong relationship between the

CaSR, vitamin D and calcium, and the impact of the latter in

viral infection and immune modulation, we will speculate about

the possible implication of the CaSR-vitamin D-calcium asset on

the pathophysiology of SARS-COVID-19 infections and on the

prognosis of infected patients.

General aspects of the calcium-
sensing receptor

Calcium-sensing receptor gene, protein
structure and signaling

The CaSR gene is located in the 3q13.3-21 of the human

genome (Janicic et al., 1995) and is composed of 8 exons; of those,

two alternative exons, 1A and 1B, are located within the 5′-
untranslated region (5′UTR) and are transcribed from two

distinct promoters. Both 1A and 1B splice to exons 2–7 that

translate the whole protein, which is comprised of 1,078 amino

acids (Garrett et al., 1995; Chikatsu et al., 2000; Hendy and

Canaff, 2016b).

Similar to the other receptors of the family C of GPCRs

(i.e., metabotropic glutamate receptors (mGluRs), γ-
aminobutyric acidB (GABAB) receptors, and some taste

receptors), the CaSR is comprised of a large extracellular

domain (ECD) with a bilobed structure, termed Venus Flytrap

domain (VFT), deputed to ligand binding. The CaSR anchors to

the plasma membrane with a 7 α-helices transmembrane domain

(7TM), which is connected to the ECD through a cysteine reach

domain. With its intracellular C-terminal domain, the CaSR is

able to interact with the heterotrimeric G proteins and with β-
arrestin, thereby activating diversified signaling cascades. By

binding αi/o, αq/11 and α12/13, the CaSR is able to inhibit

adenylate cyclase and cAMP synthesis, activate the MAPK

cascade through extracellular-signal regulated kinase (ERK)

phosphorylation, promote intracellular calcium release by

activating the phospholipase C (PLC)-inositol 1,4,5-

triphosphate (IP3) cascade, and induce membrane ruffling.

Furthermore, the CaSR, by binding β-arrestin, is able to

modulate its own endocytosis and ERK phosphorylation

(Hofer and Brown, 2001; Hofer and Brown, 2003; Brauner-

Osborne et al., 2006; Brennan et al., 2013; Conigrave and

Ward, 2013; Hannan et al., 2018).

The CaSR was first identified in the parathyroid glands as a

“calcium-sensing” receptor (Brown et al., 1993); however, later

studies reported it to be sensitive also to other ions, such as Mg2+

and Gd3+, and to a plethora of other molecules that stimulate its

activity, including aminoglycoside antibiotics (e.g., neomycin),

polypeptides (i.e., poly-l-arginine, poly-l-lysine and amyloid β
peptides), polyamines (i.e., spermine, spermidine and

putrescine), glutamyl dipeptides, and some amino acids, such

as phenylalanine and tryptophan (Hofer and Brown, 2003;

Tennakoon et al., 2016; Iamartino et al., 2018). The broad

diffusion and variety of these molecules allow systemic

activation of the CaSR in different tissues, conferring a

multiplicity of cellular responses.

Physiological roles of the calcium-sensing
receptor

The best described physiological role of the CaSR is its

capability to control serum calcium balance [please see the

following refs (Hofer and Brown, 2001; Brennan et al., 2013;

Hannan et al., 2018)]. The importance of the CaSR for calcium

homeostasis is the fact that CaSR mutations are associated with

inherited diseases characterized by calcium and PTH disbalance.

Hypercalcemic diseases can derive from loss-of-function CaSR

mutations, such as type 1 familial hypocalciuric hypercalcemia

(FHH1) and neonatal severe hyperparathyroidism (NSHPT)
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(Chattopadhyay and Brown, 2006; Hannan et al., 2012; Hannan

and Thakker, 2013; Hannan et al., 2016), while gain-of-function

CaSR mutations are associated with hypocalcemic disorders,

such as type 1 autosomal dominant hypocalcemia (ADH1)

and type 5 Bartter syndrome (Vargas-Poussou et al., 2002;

Chattopadhyay and Brown, 2006; Hannan and Thakker, 2013;

Hannan et al., 2016; Hannan et al., 2018).

The impairment of CaSR expression/functionality is the

main culprit of primary and secondary hyperparathyroidism.

The former is caused by the development of hyperplasia or

adenoma of generally one of the four parathyroid glands,

while the latter results as a complication of chronic kidney

disease (CKD), where hyperphosphatemia, caused by kidney

failure, induces the aberrant enlargement of the parathyroid

glands. In both conditions, the hyperplastic parathyroid

glands fail to regulate serum Ca2+ homeostasis, leading to the

increase of PTH secretion. While primary hyperparathyroidism

tends to be asymptomatic, the late-stages of secondary

hyperparathyroidism are characterized by concomitant

hyperphosphatemia and hypercalcemia that are associated to

life-threatening vascular calcifications (Fraser, 2009;

Cunningham et al., 2011; Naveh-Many and Volovelsky, 2020).

While primary hyperparathyroidism is mostly treated surgically,

secondary hyperparathyroidism can be treated

pharmacologically, in particular by stimulating the CaSR

either through the FDA-approved cinacalcet, a synthetic

positive allosteric CaSR modulator, or with the newly

clinically approved etelcalcetide, a recently developed synthetic

CaSR agonist (Nemeth et al., 2004; Fraser, 2009; Cunningham

et al., 2011; Hamano et al., 2017).

In addition to its “calcitropic” functions, the CaSR plays

other physiological roles in the body, comprehensively reviewed

by S. Brennan et al. and Hannan et al. (2018) (Brennan et al.,

2013). Moreover, the CaSR has been found to be a

multifunctional factor in cancer, as reviewed in detail by

Tennakoon et al. (2016).

Because calcium plays pivotal roles in inflammation, its

receptor, the CaSR, is an important mediator of the

inflammatory processes. Compelling evidence has

demonstrated that the CaSR mediates inflammation in various

tissues and immune cells (Figure 1), where it mediates their

activity and chemokinesis.

Cross-talk between the calcium-
sensing receptor and inflammation

Numerous studies have reported a correlation between PTH/

calcium perturbations and inflammation (Hendy and Canaff,

2016a). In rheumatoid arthritis, PTH secretion was found to be

impaired and its level inversely correlated with inflammation

(Ekenstam et al., 1990). Other clinical studies have reported that

hypocalcemia is frequently observed in critically ill patients and

in case of severe burn injury (Gary, 1992; Klein et al., 1997; Lind

et al., 2000; Steele et al., 2013). Even ill horses suffering from

enterocolitis manifest hypocalcemia (Toribio et al., 2001).

FIGURE 1
CaSR-induced inflammatory hallmarks (figure drawn with Biorender.com, accessed on 27 October 2022).

Frontiers in Physiology frontiersin.org03

Iamartino and Brandi 10.3389/fphys.2022.1059369

http://Biorender.com
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1059369


Cytokines are the principal mediators of inflammatory

signals and, upon immune reaction, their levels increase to

sustain a proper immune response. Evidence of the impact of

the cytokines on calcium metabolism came from in vitro

observations where IL-6 was found to suppress PTH secretion

in bovine parathyroid glands (Carlstedt et al., 1999) as well as IL-

1β, which was found to further upregulate CaSR mRNA in both

bovine (Nielsen et al., 1997) and equine parathyroid glands

(Toribio et al., 2003). The CaSR, therefore, has been

hypothesized to be responsible for the calcium/PTH

disbalance in inflammation. Several in vivo studies have

confirmed this assumption, reporting that pro-inflammatory

cytokines were able to up-regulate the CaSR. In sheep models

of burn injury, the high level of circulating pro-inflammatory

cytokines up-regulated CaSR expression in the parathyroid

glands (Murphey et al., 2000). Canaff et al. (2008) showed

that rats receiving intraperitoneal injection of IL-1β showed

an up-regulation of CaSR mRNA and protein in parathyroid

glands, thyroid, and kidneys, while serum calcium, PTH, and

1,25-dihydroxyvitamin D3 were reduced (Canaff and Hendy,

2005). The same effects were also observed after intraperitoneal

injection of IL-6 (Canaff et al., 2008). Because of its ability to

lower serum calcium content and inhibit parathyroid cell

proliferation (Miller et al., 2012; Brennan et al., 2013), it was

hypothesized that CaSR up-regulation could explain the

hypocalcemia and hypoparathyroidism found in patients with

severe burn injuries and the reduction of serum calcium content

in ill patients (Gary, 1992; Klein et al., 1997; Lind et al., 2000;

Steele et al., 2013).

The induction of CaSR expression from pro-inflammatory

cytokines (as depicted in Figure 2) is most likely due to specific

transcription regulatory elements located in the CaSR locus,

which are activated by pro-inflammatory stimuli. Canaff and

Hendy (2005) found that IL-1β induces CaSR transcription

through the NF-κB pathway that targets κB-specific
transcription response elements in both CaSR promoters.

Other pro-inflammatory cytokines are also able to promote

CaSR expression, such as TNF-α via NF-κB signaling (Fetahu

et al., 2014) and IL-6, by activating the JAC-STAT pathway that

targets the STAT1/3 and the Sp1/3 regulatory elements located in

FIGURE 2
CaSR-Inflammation signaling cross-talk (figure drawn with Biorender.com, accessed on 27 October 2022). CaSR stimulation via orthosteric
ligands, such as Ca2+, spermine, spermidine, putrescine, etc. and allosteric modulators, such as cinacalcet and NPS R-568, induces the activation of
the NLRP3 inflammasome and theNF-κB pathway that promote inflammatory stimuli by releasing pro-inflammatory cytokines. In turn, inflammatory
stimuli, i.e., IL-6, TNF-α and IL-1β, can induce CaSR expression and synthesis.
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the first and second promoters, respectively (Canaff et al., 2008).

The reason CaSR expression is enhanced by pro-inflammatory

signals, thus leading to a reduction in serum calcium content,

remains elusive. Some authors have speculated that this effect

might counteract the increased bone resorption that is frequently

observed in ill patients, in particular in patients suffering from

rheumatoid arthritis and burn injury (Klein et al., 2016; Klein,

2018). In this context, pro-inflammatory cytokines have been

shown to promote osteoclastogenesis and bone resorption, which

lead to calcium release into the bloodstream (Walsh et al., 2005;

Amarasekara et al., 2015); in turn, the augmented calcium level

would eventually be rectified by the increased CaSR expression in

the calcitropic tissues (Hendy and Canaff, 2016a; Klein et al.,

2016).

A high level of extracellular calcium is commonly found at

sites of inflammation during infections (Kaslick et al., 1970; Lin

and Huang, 1991) and at sites of ischemic necrosis (Tzimas et al.,

2004; Korff et al., 2006). Therefore, the calcium ion may function

as a second messenger to promote inflammation by promoting

chemokine/cytokine secretion and, thus, immune cell

recruitment/activation. Indeed, Shi et al. (1996) found that

extracellular calcium exerts a strong chemoattractant effect on

macrophages, and Olszak et al. (2000) found that this

chemokinetic effect is CaSR dependent. This implies that the

CaSR is not only a responder of the inflammatory signal, but also

a player in immune recruitment. Increasing numbers of studies

have observed that the CaSR is expressed in immune cells where

it mediates their activity.

The calcium-sensing receptor in immune
cells

One of the first evidences of a calcium-sensing

mechanism inside immune cells that regulates their

activity and cytokine production came from a study by

Bornefalk et al. (1997), who found that extracellular

calcium promoted both in vitro and in vivo the release of

IL-6 from mononuclear blood cells. In the same year, the

CaSR was found to be expressed in the hematopoietic

precursor cells, in particular in mononuclear cells isolated

from whole human and mouse bone marrow tissues (House

et al., 1997). Afterwards, Yamaguchi et al. (1998)

demonstrated that CaSR was indeed expressed in human

peripheral blood monocytes. In monocytes, the CaSR was

found to be functional and modulable, being able to mediate

cell chemotaxis induced by extracellular calcium (Olszak

et al., 2000). Two independent studies found that calcium

was able to trigger IL-1β secretion from monocytes via the

activation of the NLRP3 inflammasome, and demonstrated

that this activation was dependent on CaSR expression and

activity (Lee et al., 2012; Rossol et al., 2012). Following

studies corroborated those findings, observing that the

CaSR is able to trigger a pro-inflammatory response by

activating the NLRP3 inflammasome in monocytes and

differentiated macrophages (Liu et al., 2015; Jäger et al.,

2020; Su et al., 2020) and to mediate constitutive

micropinocytosis, thus contributing to antigen engulfment

and subsequent antigen presentation (Canton et al., 2016).

Additionally, the CaSR was found to be expressed in other

immune cells. In peripheral blood polymorphonuclear

neutrophils, the CaSR regulates cell activation through the

NF-κB pathway (Zhai et al., 2017). In lymphocytes, the CaSR

has been seen to promote cytokine secretion through distinct

pathways, including MAPKs and NF-κB, and to induce T-cell

apoptosis by interacting with the transient receptor potential

canonical (TRPC) 3 and TRPC4 channels through the PLC-IP3
pathway (Li et al., 2013; Wu et al., 2015b; Wu et al., 2015a; Zeng

et al., 2016).

The CaSR is therefore a key player in immune cell activation

and, as such, it seems to contribute to the pathophysiology of

many inflammatory diseases, including myocardial infarction

(Liu et al., 2015; Zeng et al., 2018), sepsis (Wu et al., 2015b; Wu

et al., 2015a), rheumatoid arthritis (Jäger et al., 2020), and orchitis

(Su et al., 2020).

Autoimmunity and immune check-points
inhibition

In addition to its active role in regulating immune response,

the CaSR also seems to be an immune target in autoimmune

reactions. As for idiopathic hypoparathyroidism and acute

polyendocrine syndrome, CaSR-specific autoantibodies were

identified in patient serum, implying a putative involvement

of a CaSR-targeted autoimmunity in the etiology of those

particular disorders (Li et al., 1996; Mahtab et al., 2017; Kemp

et al., 2018). Mahtab et al. (2017) found specific CD8+ T cells able

to react with CaSR peptides in the serum of patients suffering

from idiopathic hypoparathyroidism, and Habibullah et al.

identified particular subsets of CaSR-autoantibodies, which

were able to target the CaSR and promote its activity, thereby

exacerbating parathyroid gland inactivity (Habibullah et al.,

2018).

Curiously, in several case studies of cancer patients receiving

treatments for immune check point inhibitors, a well-established

anticancer treatment that restores immune reactivity against

cancer cells, the patients manifested hypocalcemia and

hypoparathyroidism, which could be ascribed to the presence

of CaSR-specific autoantibodies found in the sera (Piranavan

et al., 2019; Trinh et al., 2019; Dadu et al., 2020; Lupi et al., 2020).

The reason of this endocrine sequalae after the treatments with

immune check-points inhibitors is still under investigation and

yet not understood, but merit appropriate investigation to

ameliorate long-term patients’ quality of life and guarantee

their survival.
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Calcium-sensing receptor-driven
tissue inflammation

Many studies agree on CaSRmodulation of the inflammatory

response by acting through the NLRP3 inflammasome and the

NF-κB pathway (Figure 2). By doing so the CaSR mediates not

only immune cells response, but also the inflammatory stimuli in

different tissues, as described below.

In the brain

Alzheimer’s disease (AD) is a neuro-dysfunction with huge

social and economic impacts, especially in well-developed

countries with advanced healthcare systems, where the elderly

population is increasing. AD is the most recurrent form of

dementia in elderly, characterized by cognitive impairment,

caused by neurodegeneration and neuronal network loss

(2022 Alzheimer’s disease facts and figures, 2022). The

pathogenesis of AD is extremely complex and not yet

completely understood, but partially ascribed to chronic

neuroinflammation and the neurotoxic effects induced by the

gradual deposition of interneuron plaques, formed of insoluble

amyloid-β (Aβ) fibers, and by intraneuronal neurofibrillary

tangles of hyperphosphorylated Tau proteins (Kumar et al.,

2022). During the early phases of the disease, there is a

progressive accumulation of toxic insoluble Aβ fibers due to

the disruption of the metabolism of amyloid precursor protein

(APP), an important factor in neuronal development (Dal Prà

et al., 2019). In this context, the CaSR has been found to play a

key role in the pathogenesis of AD and in modulating neuronal

inflammation (Chiarini et al., 2016; Dal Prà et al., 2019). The first

hint of a possible CaSR involvement in the pathogenesis of AD

came from the discovery that soluble Aβ (sAβ) is able to bind the
CaSR and to behave as a CaSR agonist (Ye et al., 1997; Conley

et al., 2009; Dal Prà et al., 2014). Moreover, genetic CaSR

polymorphisms have been seen to strongly associate with AD

(Conley et al., 2009) and, in a particular animal model of AD,

namely the 3xTg, the CaSR was found to be aberrantly up-

regulated (Gardenal et al., 2017). sAβ-CaSR interaction seems to

promote a noxious signaling in neurons, which leads to neuronal

inflammation and death (Chiarini et al., 2016; Dal Prà et al.,

2019). Indeed, sAβ-CaSR binding has been observed to promote

the over-expression of new Aβ oligomers that progressively

accumulate in neurons, causing subsequent cytotoxic effects

that could be abolished through CaSR downregulation or with

the administration of CaSR inhibitors (Ye et al., 1997; Conley

et al., 2009; Armato et al., 2013; Bai et al., 2015; Chiarini et al.,

2017; Feng et al., 2020). Moreover, sAβ-CaSR interaction has

been shown to induce the synthesis of nitric oxide and vascular

endothelial growth factor (VEGF)-A that concurrently

participate in the AD pathogenesis (Dal Pra et al., 2005; Dal

Prà et al., 2014).

Recent studies have reported a direct contribution of the

CaSR in regulating the expression of pro-inflammatory cytokines

in neurons such as IL-6, intercellular adhesion molecule-1

(ICAM-1), Regulated upon Activation normal T cell

Expressed and presumably Secreted (RANTES) and monocyte

chemotactic protein (MCP)-2 (Chiarini et al., 2020a). The CaSR

was additionally found to mediate a pro-inflammatory stimulus

after tissue damage, as observed in a mouse model of brain

hemorrhage, where CaSR expression was up-regulated after

injury, and its stimulation with Gd3+ increased NLRP3 and

IL-1β expression (Wang et al., 2020).

Due to its direct involvement in neuroinflammation and AD

dysfunction, the CaSR has been thought to behave as a danger-

sensing/pattern recognition receptor in AD pathogenesis

(Chiarini et al., 2020b) and, thus, it is thought to be a

promising molecular target for AD treatment by using

existing calcilytics (Chiarini et al., 2016; Dal Prà et al., 2019;

Chiarini et al., 2020b).

In the lungs

Pharmacological inhibition of the CaSR has recently been

proposed as a new and effective therapeutic strategy for the

treatment of asthma, given the putative pro-inflammatory role

that the CaSR seems to play in the lungs (Yarova et al., 2015;

Corrigan, 2020; Yarova et al., 2021). The first hint of a possible

involvement of the CaSR in the pathophysiology of asthma came

from the observation that in inflamed lungs of asthmatics there is

an accumulation of known CaSR agonists, i.e., eosinophil

cationic protein, spermine, spermidine, and putrescine, that

seem to directly contribute to airway hyperresponsiveness

(AHR) and lung inflammation (Kurosawa et al., 1992; Coyle

et al., 1993; Gibson et al., 1998; Koller et al., 1999; Homma et al.,

2005; Pégorier et al., 2006; North et al., 2013). In 2010, Cortijo

et al. (2010) found that nickel ions were able to induce epithelial

contraction and the release of pro-inflammatory cytokines by

targeting and stimulating the CaSR, while CaSR inhibition

through calcilytics abolished those effects. Afterwards, the

proof of a direct involvement of the CaSR in the

pathophysiology of asthma came from a study by Yarova

et al. (2015), who observed that CaSR was over-expressed in

bronchial smooth muscle cells of asthmatics and that

pharmacological inhibition of the CaSR, by administering the

calcilytic NPS2143 through inhalation, could abrogate AHR and

lung inflammation. Later studies also confirmed the anti-

inflammatory effects of calcilytics, which were found to be

able to abolish the pro-inflammatory stimuli triggered by

cigarette smoke extracts (Lee et al., 2017b) and by bacterial

lipopolysaccharide (LPS) (Lee et al., 2017a). Recently, a panel

of calcilytics, previously developed for the treatment of

osteoporosis but found to be not clinically effective on bone

anabolism, were tested in asthma models and resulted to be
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effective in counteracting asthmatic symptoms (Yarova et al.,

2021). Thanks to their capacity to inhibit both AHR and lung

inflammation, and thanks to their route of administration

(i.e., inhalation, which can avoid systemic undesired effects),

calcilytics are thought to be promising new therapeutics for the

treatment of asthma, thus constituting a novel and effective

replacement for existing steroids (Corrigan, 2020).

In the cardiovascular system

The CaSR plays important roles in the physiology of the

cardiovascular system. It is expressed and functional in

cardiomyocytes, vascular smooth muscle cells (vSMCs), and

vascular endothelial cells, where it regulates heart contractility,

blood pressure, vessel tone (Wang et al., 2003; Schepelmann et al.,

2015; Horinouchi et al., 2020), and even systemic mineral

metabolism (Schepelmann et al., 2022). The CaSR is also

implicated in the pathophysiology of cardiovascular diseases,

such as myocardial infarction (MI), heart failure, hypertension,

atherosclerosis, vascular calcification, and ischemia/reperfusion

(I/R)-injury (Sundararaman and van der Vorst, 2021). Moreover,

a CaSR polymorphism, A986S, has been associated with coronary

artery diseases (März et al., 2007).

Cardiovascular morbidities are complex disfunctions, in

which inflammation plays a major role in development and

progression. Nonetheless, the CaSR seems to regulate the

inflammatory response at the site of the vascular and cardiac

lesions by directly acting both in tissue and in local immune cells.

In a rat model of hypertension, in particular in vSMCs, the CaSR

has been found to promote the release of pro-inflammatory

cytokines through the NLRP3 inflammasome (Zhang et al.,

2019). Leng et al. (2019) found that, in inflamed vascular

endothelial cells, the CaSR promotes the release of the pro-

inflammatory cytokines IL1-β and IL-18 through the

activation of the NLRP3 inflammasome and the NF-κB
pathway. In neonatal rat cardiomyocytes, pharmacological

CaSR stimulation was found to enhance the LPS-driven pro-

inflammatory stimulus, while CaSR inhibition attenuated the

inflammatory response (Wang et al., 2013). Zhang et al. (2020)

observed that, in a cardiac muscular cell line and in ventricular

cardiomyocytes, the CaSR modulated monocyte chemotactic

protein-1 (MCP-1)-driven apoptosis after I/R-injury.

Conversely, a recent study from Guha et al. (2020) reported

that, in inflamed aortic endothelial cells, CaSR stimulation by γ-
glutamyl-valine reduced the expression of the pro-inflammatory

cytokines IL-8, IL-6 and TNF-α. Nevertheless, most of the

published studies outline the pro-inflammatory role of the

CaSR in the cardiovascular system, as further evidenced by

the fact that the CaSR has also been shown to promote

cardiovascular lesions through the recruitment and activation

of the immune cells (Sundararaman and van der Vorst, 2021).

Liu et al. (2015) observed that the CaSR, expressed in the

macrophages, contributes to cardiac remodeling after MI via the

activation of the NLRP3 inflammasome. Still under MI insult, the

CaSR has been found to be up-regulated in peripheral and

infiltrating neutrophils, and its pharmacological stimulation

with calindol has been seen to promote neutrophil

NLRP3 inflammatory response, furthermore provoking

myocardial apoptosis and fibrosis (Ren et al., 2020). The CaSR

has been found tomediate, via the NF-κB pathway, T lymphocyte

activation and cytokine release in patients suffering from acute

MI (Zeng et al., 2016) and to exacerbate cardiomyocyte lesions

under myocardial ischemia and I/R-injury (Zeng et al., 2018).

In addition to its direct impact on the cardiovascular

physiology and inflammation, the CaSR can putatively cause

cardiovascular diseases by interfering with the metabolism of the

adipose tissue and promoting adipose inflammation, which are

typical hallmarks of obesity, a known risk factor for the

development of cardiovascular diseases.

In the adipose tissue

Among the many physiological roles that the CaSR plays, this

receptor can also control lipid metabolism and adipogenesis

(Bravo-Sagua et al., 2016; Mattar et al., 2020). In 2005,

Cifuentes et al. (2005) found, for the first time, the CaSR to

be expressed in adipose tissue. Afterwards, the CaSR was

reported to regulate adipocyte differentiation and adipogenesis

by promoting the expression of adipocyte regulatory

transcription factors (He et al., 2012; Villarroel et al., 2013), to

regulate preadipocyte proliferation through ERK1/2 activation

(Rocha et al., 2015), and to inhibit lipolysis (Cifuentes and Rojas,

2008) by decreasing cAMP levels and inhibiting protein kinase A

(PKA) activity (He et al., 2011). However, the CaSR has been

shown to promote adipose inflammation, thereby altering lipid

metabolism and possibly contributing to obesity (Villarroel et al.,

2014; Bravo-Sagua et al., 2016). Adipose CaSR expression seems

to be upregulated under obese-associated inflammatory stimuli

(Cifuentes et al., 2010) and, on the other hand, pharmacological

CaSR stimulation has been seen to promote the expression of the

pro-inflammatory cytokines IL1-β, IL-6, TNF-α and the

chemokine CCL2, through the NF-κB pathway (Cifuentes

et al., 2012; Rocha et al., 2015) and the NLRP3 inflammasome

(D’Espessailles et al., 2018).

Autophagy has also been shown to contribute to adipocyte

dysfunction in obesity, and the CaSR seems to regulate this

process by promoting the formation of the autophagosome

(Mattar et al., 2018). The expression of the CaSR and

autophagy markers were found to correlate with the

percentage of body fat, thus implying a tight bond between

the CaSR and autophagy in the pathophysiology of obesity

(Mattar et al., 2020).
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Obesity is also characterized by the infiltration of immune

cells within the adipose tissue, which further contributes to

adipose inflammation and lipid dysfunction, where the CaSR

seems to be a key player in these processes. In THP-1

macrophages, CaSR stimulation with cinacalcet has been seen

to activate the NLRP3 inflammasome and induce the expression

of TNF-α and IL-1β in co-cultured preadipocytes (D’Espessailles

et al., 2020). Moreover, a recent study from Thrum et al. showed

that CaSR stimulation with increasing concentrations of

extracellular Ca2+ promoted IL-1β expression, in particular in

macrophages and adipocytes derived from obese patients, which

were more sensitive to CaSR-induced pro-inflammatory stimulus

compared to macrophages and adipocytes derived from healthy

donors (Thrum et al., 2022).

Despite the numerous studies that attest a pro-inflammatory

role, other recent reports have published contradicting results.

Xing et al. observed that stimulating the CaSR with γ-glutamyl-

valine abolished the TNF-α-induced pro-inflammatory stimulus

in adipocytes (Xing et al., 2019); while Sundararaman et al. did

not find any CaSR-dependent effects on visceral adipose

inflammation in mice with adipose-specific CaSR knock-out

(Sundararaman et al., 2021). In light of these contradictory

findings, more studies are needed to clarify whether the CaSR

induces inflammation in the adipose tissue and whether it does so

by acting directly in the adipocytes or only by promoting

immune cell infiltration and activity.

In the digestive system

The CaSR seems to contribute to the inflammatory response

in the upper digestive tract. In the epithelium of the esophagus,

the CaSR seems to mediate a pro-inflammatory response through

the activation of the NLRP3 inflammasome. This assertion is

based on a recent observation, using in vitro and in vivomodels of

reflux esophagitis, where Tojapride, a natural formulation from

Chinese traditional medicine, was seen to alleviate the

inflammatory stimuli by interfering with the CaSR-NLRP3

signaling cascade (Yin et al., 2020). A very recent publication

observed a pro-inflammatory role of the CaSR even in dental

pulp cells, where it was found to mediate the expression of the

pro-inflammatory markers IL-1β, IL-6, TNF-α and COX2-

derived PGE2 under LPS challenge (An et al., 2022).

The CaSR is multifunctional in the intestine, where it

mediates fluid absorption, gut motility, and the secretion of

digestive hormones and electrolytes (Geibel et al., 2006; Wang

et al., 2011; Tang et al., 2018). According to previous literature,

the CaSR seems to exert a protective function against intestinal

inflammation, which was extensively illustrated in a recent

review from Iamartino et al. (2018). At the time, the authors

reasoned that the CaSR, by acting as a nutraceutical sensor and,

thus, by sensing byproducts of digestion, could link the beneficial

effects of a healthy diet rich in calcium with intestinal health.

Moreover, they speculated about how the CaSR could be a

possible drug target using existing calcimimetics for the

treatment of intestinal disorders, such as colorectal cancer and

inflammatory bowel diseases (IBDs) (Iamartino et al., 2018).

These authors based their hypotheses on previous reports that

observed anti-inflammatory effects of the CaSR both in vivo and

in vitro. Cheng et al. reported that intestine-specific CaSR KO

mice were more susceptible to dextran sulphate sodium (DSS)-

induced colitis. In this study, the animals lacking intestinal CaSR

presented a higher recruitment of immune cells in the bowel,

higher expression of pro-inflammatory cytokines, an altered

composition of intestinal microbiome, a reduced expression of

tight junction markers, e.g., claudin 2, and, thus, a compromised

epithelial integrity (Cheng et al., 2014). These findings were

corroborated by subsequent studies where CaSR stimulation

with either poly-L-lysine, glutamyl dipeptides, or l-amino

acids reduced inflammation in vitro, i.e., in TNF-α challenged

colorectal cancer cell lines Caco2 and HT29, and in vivo both in

DSS-induced colitis mouse models (Mine and Zhang, 2015a;

Mine and Zhang, 2015b; Zhang et al., 2015) and in LPS-

challenged piglets (Liu et al., 2018). Recent studies further

observed an anti-inflammatory effect of the CaSR, showing

how CaSR stimulation with either tryptophan or spermine can

enhance intestinal barrier integrity and the expression of tight

junction markers, while also attenuating the pro-inflammatory

stimuli driven by TNF-α, enterotoxigenic E. Coli, or LPS in

porcine intestinal epithelial cells (Liu et al., 2021a; Liu et al.,

2021b; Gao et al., 2021). Moreover, tryptophan-driven CaSR

stimulation was seen to increase the production of endogenous

defensins, hence improving host immune defense (Gao et al.,

2021).

Nevertheless, new studies reported conflicting data regarding

the effects of the CaSR in bowel inflammation, outlining a pro-

inflammatory impact. In the attempt to assess the therapeutic

applicability of the calcimimetics for the treatment of IBDs,

Elajnaf et al. administered by gavage either two positive

allosteric CaSR modulators, cinacalcet and a newly synthetized

not absorbable calcimimetic, GSK3004744 (Sparks et al., 2017),

or calcilytic NPS2143, to DSS-treated mice, which were used as a

preclinical model of colitis. These authors found that

pharmacological stimulation of the CaSR with cinacalcet

increased the serum levels of TNF-α, IL-6, and IL-1α,
implying a systemic effect of cinacalcet in enhancing

inflammation, while the effects of GSK3004744, which acted

locally and exclusively within the mucosa, were negligible.

Surprisingly, the administration of NPS2143 reduced distress

scores and immune cell infiltration in the mucosa. The authors

reasoned that those effects were most likely systemic, acting on

circulating immune cells, since the gut-restricted

GSK3004744 did not significantly influence the inflammatory

parameters (Elajnaf et al., 2019). In a subsequent study from

Iamartino et al. (2020), it was observed a direct pro-inflammatory

effect of the CaSR in intestinal epithelial cells. Using two
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colorectal cancer cell lines over-expressing the CaSR fused to the

green fluorescent protein (GFP), HT29CaSR-GFP and Caco2CaSR-GFP

cells, and comparing them with their corresponding negative

controls (HT29GFP and Caco2GFP), they observed that only those

expressing the CaSR and treated with the positive allosteric CaSR

modulator, NPS R-568, had an increased expression of pro-

inflammatory markers IL-8, IL-23α, IL-1α, CSF1, CCL20, COX2,
and PDL1, and increased secretion of IL-8 (Iamartino et al.,

2020). These findings were further confirmed by a recent study

from the same research group, where they compared the CaSR-

specific R-enantiomers with the CaSR-unspecific S-enantiomers

derived from the allosteric CaSR modulators NPS R-568 and

NPS2143. According to the authors this was done in order to

exclude possible off-target effects that the allosteric CaSR

modulators (the R-enantiomers) may have exerted on

inflammatory markers in a CaSR-independent manner,

possibly acting on other GPCRs or calcium channels. It was

observed that only R-enantiomers were able to modulate

intracellular calcium mobilization and IL-8 secretion, thus

demonstrating a CaSR-dependence of the pro-inflammatory

effects induced by the calcimimetic NPS R-568 (Schepelmann

et al., 2021).

One of the possible explanations for the discrepancy of the

published results could be the type of molecules used to stimulate

the CaSR and the cell models employed. Despite targeting the

CaSR with less-specific nutraceutical molecules, such as

polyamines, dipeptides and amino acids, Elajnaf et al. (2019)

were the first to test highly CaSR-specific synthetic compounds in

animal models of colitis. Moreover, Iamartino et al. (2020) and

Schepelmann et al. (2021) used colorectal cancer cell lines over-

expressing the CaSR compared to not transduced cells (Mine and

Zhang, 2015a; Mine and Zhang, 2015b; Zhang et al., 2015; Liu

et al., 2018), where, in particular in the Caco2 andHT29 cell lines,

the endogenous CaSR expression is reduced or even

undetectable.

Therefore, due to the conflicting data, the role of the CaSR in

intestinal inflammation is still unresolved and thus needs further

clarification. This is important because intestinal CaSR may be

linked to the gastrointestinal side effects observed in patients

under prolonged treatment with cinacalcet or etelcalcetide, the

newly FDA-approved calcimimetic. Pharmacovigilance studies

have reported that cinacalcet and etelcalcetide are not well-

tolerated after prolonged periods of administration, since

patients manifest distress and discomfort, suffering from

nausea, vomiting and gastrointestinal bleeding (Block et al.,

2017; AMGEN Sensipar, 2022). Whether these effects are

connected to a possible pro-inflammatory role of the CaSR in

the intestine is still under debate and necessitates clarification, in

particular in light of the possible detrimental effects that a

calcimimetic-based therapy could exert in patients suffering

from colitis. Moreover, clarifying whether pharmacological

CaSR inhibition has beneficial effects against intestinal

inflammation will open the way to new therapeutic

approaches based on the use of calcilytics for the treatment

of IBDs.

In the kidneys

It is well known that the CaSR regulates mineral balance in

the kidneys, but it also seems to be involved in the

pathophysiology of several renal defects.

These include I/R renal injury (Weekers et al., 2015), further

exacerbated by diabetic comorbidity, where the CaSR seems to

enhance oxidative stress and boost the inflammatory response

(Hu et al., 2018).

Tubular interstitial defects, where the CaSR, expressed in the

inner medullary collecting duct cells, seems to induce tubular

interstitial fibrosis by promoting collagen expression under the

pro-inflammatory stimulus driven by IL1-β (Wu et al., 2019).

In the medullary thick ascending limb, the CaSR seems able

to mediate sodium excretion by promoting COX-2 expression

and prostaglandin production, in particular PGE2, and it does so

by inducing the expression of TNF-α, linking in this way a pro-

inflammatory stimulus to natriuresis (Wang et al., 2001; Wang

et al., 2002; Ferreri et al., 2012).

The CaSR has been hypothesized to provoke glomerular

damage by coupling with the TRPC6 and boosting

intracellular calcium influx, which has been ascribed as one of

the principal culprits in the pathophysiology of membranous

nephropathy (Huang et al., 2021) and in acute kidney injuries

that frequently occur in septic patients (Yadav et al., 2021).

However, as the authors suggested, direct evidences on these

regards are missing and, thus, further studies are needed to clarify

the possible implication of the CaSR in glomerular defects under

inflammatory stimuli.

Finally, the CaSR has also been associated to

nephrocalcinosis and nephrolithiasis, common inflammatory

renal defects, which are also recurrent morbidities in ADH

patients and are strongly associated with hypercalciuria

(Roszko et al., 2022). Moreover, single nucleotides CaSR

polymorphisms have been associated to calcium

nephrolithiasis, in particular the rs6776158 (A > G)

polymorphism, resident on CaSR first promoter, which is

associated with decreased transcriptional activity (Vezzoli

et al., 2013; Vezzoli et al., 2019). However, the underlying

molecular mechanisms that link CaSR genetic variability to

kidney stones are still uncovered.

In other tissues

Because hypercalcemia is a well-known risk factor for

pancreatitis (Felderbauer et al., 2007), and given the tight

bond between the CaSR and serum calcium homeostasis, it

was speculated that CaSR mutations or SNPs could be linked
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to pancreas inflammation. However, there are conflicting results

regarding this topic and thus the question is still under debate

(Felderbauer et al., 2007; Murugaian et al., 2008; Stepanchick

et al., 2010; Xiao et al., 2017; Ewers et al., 2021).

In the bones, the CaSR is known to promote osteogenesis and

mineralization (Dvorak-Ewell et al., 2011; Chang et al., 2013), but

it has also been seen to promote aberrant new bone formation in

ankylosing spondylitis (AS), a chronic inflammation of the axial

skeleton. The CaSR was found to be aberrantly up-regulated in

osteoblasts derived from patients suffering from AS. Moreover,

in several animal models of AS, CaSR inhibition attenuated AS

symptoms (Li et al., 2020). Despite the pivotal calcitropic role of

the bone tissue, where the CaSR is markedly expressed, reports

addressing a direct function of the CaSR in bone inflammation

are still missing.

Interestingly, metastatic breast cancer cells seem to exploit

CaSR capability to drive cytokine secretion, in order to promote

their chemotaxis and angiogenesis, as observed in the highly

invasive MDA-MB-231 breast cancer cell line stimulated with

CaSR allosteric modulator NPS-R568 (Hernández-Bedolla et al.,

2015; Hernández-Bedolla et al., 2016). Furthermore, in MDA-

MB-231 and in the MCF-7 breast cancer cell lines, CaSR

stimulation was found to enhance the expression of Rab27B, a

Rab GTPase that is involved in endosomal trafficking (Zhen and

Stenmark, 2015), promoting in this way the secretion of pro-

inflammatory cytokines and chemokines such as IL-6, IL-1β, IL-
8, IP-10 and RANTES (Zavala-Barrera et al., 2021).

Ca2+-vitamin D-calcium-sensing
receptor asset in viral infection and
COVID-19 pathology

Ca2+ is involved in all steps of the viral life-cycle, including

virion fusion into the host cell, viral protein synthesis, viral

maturation and release. Viruses, including coronaviruses and

the SARS-CoV family, alter calcium concentrations within cells,

promoting calcium influx into the cytoplasm (Zhou et al., 2009;

Millet and Whittaker, 2018). Viral envelope protein E is up-

regulated during infection and functions as a calcium channel

that induces calcium influx inside the cell, which in turn

facilitates viral-host interaction and fusion. Moreover, the rise

of intracellular calcium causes the activation of the

NLRP3 inflammasome and its down-stream pro-inflammatory

signaling, leading to systemic comorbidities (Nieto-Torres et al.,

2014; Nieto-Torres et al., 2015). Therefore, calcium channel

blockers have been tested and found to be effective against

viral infections, as seen for influenza A virus, Japanese

encephalitis virus, hemorrhagic fever arenavirus and

ebolavirus (Berlansky et al., 2022). Nonetheless, SARS-CoV-2,

which is responsible of the current COVID-19 pandemic, alters

calcium homeostasis to favor its virulence by boosting

intracellular calcium influx. Therefore, calcium channel

blockers are under investigation as therapeutics against this

novel world-wide diffused infection (Alsagaff et al., 2021;

Berlansky et al., 2022).

Whether correlated or not to the viral need of calcium ions

for the infective processes, many epidemiological studies have

reported a high incidence of hypocalcemia in COVID-19

patients, especially in those hospitalized (with an incidence

of up to 80%) and admitted to intensive care units.

Importantly, a low calcium level appears to be an

unfavorable prognosis marker, as observed in patients with

lower serum calcium who manifest more severe symptoms

and are more likely to be in need of intensive care treatment,

compared to those with mild or normal calcemia (Cappellini

et al., 2020; Zhou et al., 2020; Alemzadeh et al., 2021; di Filippo

et al., 2021; Torres et al., 2021).

Correlated to calcium homeostasis, COVID-19 patients also

manifest an alteration of vitamin D and phosphate metabolism,

thus implying a systemic derangement of minerals homeostasis.

Hypovitaminosis D has frequently been diagnosed in COVID-19

patients (Bennouar et al., 2021; Elham et al., 2021), and its low

level has been associated with poor prognosis, most likely due to

the loss of the immune regulatory role played by its active

metabolite, 1,25-dihydroxyvitamin D3 (Bassatne et al., 2021;

Lisco et al., 2021).

An epidemiological study conducted by Yang et al. observed

that hypophosphatemia was also frequent in COVID-19 patients

and its low level was seen to correlate with the severity of the

infection (Yang et al., 2021).

Numerous studies have reported the occurrence of multiple

endocrine sequalae post SARS-CoV-2 infection, affecting gonads,

bones, hypothalamus, pituitary, thyroid, and adrenal glands

(Lisco et al., 2021). Therefore, it is plausible to include

parathyroid defects among the endocrine complications in

COVID-19 infection, which would explain, at least in part,

the inappropriately low levels of calcium, vitamin D, and

phosphate found in infected patients (Lisco et al., 2021). A

first hint about this perspective comes from a recent cross-

sectional study, where PTH levels were found to be low in

roughly 40% of COVID-19 patients with hypocalcemia, hence

implying a defect in parathyroid functionality (Hashemipour

et al., 2022).

PTH decrease and the decline in serum calcium are

frequently found in critically ill patients and, as

aforementioned, the CaSR is putatively addressed as possibly

responsible for these defects. Because viral infection induces

inflammatory stimuli, as for the activation of the

NLPR3 inflammasome, the pro-inflammatory cytokines could

possibly up-regulate parathyroid CaSR expression, as seen for the

NLRP3-associated IL1-β cytokine. Based on this assumption,

viral-induced CaSR over-expression would render parathyroid

glands hypofunctional, causing PTH impairment and

hypocalcemia; nevertheless, studies on this regard are still

missing.
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Another piece of evidence that supports a putative

involvement of the CaSR in the infective SARS-CoV-

2 processes is the fact that CaSR activation augments

intracellular calcium levels by inducing the release of calcium

from the endoplasmic reticulum and promoting calcium influx

from the extracellular environment through the activation of the

store operated calcium channels and the transient receptor

potential (TRP) channels (Xie et al., 2017; Hannan et al.,

2018; Onopiuk et al., 2020). Therefore, CaSR capability to

increase intracellular calcium could support viral infective

mechanisms, although direct evidences are missing and merit

investigation.

In addition, upon viral infection, the CaSR could also be

upregulated in immune cells and eventually may exacerbate the

inflammatory response in severely ill COVID-19 patients.

Nevertheless, these assumptions are mere speculations due to

the lack of CaSR-focused studies in SARS-CoV-2 infected

patients. To date, it is not possible to explain the etiology

behind hypocalcemia during COVID-19 infection, but

parathyroid defects that are yet uncovered are highly

TABLE 1 CaSR-driven pro-inflammatory signals in different tissues and cell types.

Effects Ligand Pathway Cell type/tissue References

Chemotaxis induction Ca2+, spermine, NPS R-467 n/a Monocytes Olszak et al. (2000)

IL-1β secretion/immune
activation

Ca2+, Gd3+, NPS R-568 NLRP3 inflammasome Monocytes/
macrophages

Lee et al. (2012), Rossol et al. (2012), Liu et al.
(2015), D’Espessailles et al. (2020), Jäger et al.
(2020), Thrum et al. (2022)

Constitutive micropinocytosis Ca2+ NLRP3 inflammasome Macrophages Canton et al. (2016)

IL-6 and myeloperoxidase
secretion/immune activation

Cinacalcet, Calindol vs. CaSR
inhibition with Calhex 231

NF-κB,
NRP3 inflammasome

Neutrophils Zhai et al. (2017), Ren et al. (2020)

Cytokines secretion Ca2+, Gd3+, NPS R-568 MAPKs and NF-κB Lymphocytes Li et al. (2013); Wu et al. (2015a), Zeng et al.
(2016)

Induction of AD culprits (i.e., Aβ
synthesis, nitric oxide and
VEGF-A)

sAβ, Ca2+ vs. CaSR inhibition
with calcilytics

cPLA2/PGE2 Neurons and cortical
astrocytes

Ye et al. (1997), Dal Pra et al. (2005), Armato
et al. (2013), Dal Prà et al. (2014), Bai et al.
(2015), Chiarini et al. (2017), Feng et al.
(2020)

Cytokines secretion sAβ, Gd3+ CaMKII/
NLRP3 inflammasome

Neurons Chiarini et al. (2020a), Wang et al. (2020)

Cytokines secretion/airway
hyperresponsiveness

Ca2+, nickel, polycations, MAPKs, Ca2+int
mobilization,

cAMP breakdown
Airway epithelial
cells/lungs

Cortijo et al. (2010), Yarova et al. (2015)

Inhibition of inflammation and
airway hyperresponsiveness

Calcilytics n/a Lungs Yarova et al. (2015), Lee et al. (2017a), Lee
et al. (2017b), Yarova et al. (2021)

Cytokines secretion Proof by CaSR inhibition with
calcilytics

NLRP3 inflammasome Vascular smooth
muscle cells

Zhang et al. (2019)

IL1-β and IL-18 secretion Proof by CaSR inhibition with
NPS2143

NLRP3 inflammasome and
NF-κB

Vascular endothelial
cells

Leng et al. (2019)

TNF-α and IL-6 secretion Gd3+ vs. CaSR inhibition with
NPS2390

n/a Cardiomyocytes Wang et al. (2013)

Cytokines secretion Cinacalcet, Gd3+, spermine NLRP3 inflammasome and
NF-κB

Adipocytes Cifuentes et al. (2012), Rocha et al. (2015),
D’Espessailles et al. (2018)

Bile acid-driven inflammation CaSR and NLRP3 interference
with Tojapride

NLRP3 inflammasome Esophagus Yin et al. (2020)

Cytokines expression NPS R-568 vs. CaSR inhibition
with Calhex 231

PI3K-AKT Dental pulp An et al. (2022)

Anti-inflammatory effects and
host immune defense

poly-L-lysine, glutamyl
dipeptides, l-amino acids,
tryptophan, spermine

n/a Colon and colorectal
cancer cell lines

Mine and Zhang (2015a), Mine and Zhang
(2015b), Zhang et al. (2015), Gao et al. (2021),
Liu et al. (2018), Liu et al. (2021a), Liu et al.
(2021b)

Cytokines secretion and colitis
exacerbation

Cinacalcet, NPS R-568 vs. CaSR
inhibition with NPS2143

n/a Colon and colorectal
cancer cell lines

Elajnaf et al. (2019), Iamartino et al. (2020)

Renal I/R injury NPS R-568 vs. CaSR inhibition
with NPS2143

n/a Kidneys Weekers et al. (2015), Hu et al. (2018)

Expression of collagen I and III
(tubulointerstitial fibrosis)

Proof by CaSR inhibition with
Calhex 231 and NPS2143

n/a Inner medullary
collecting duct cells

Wu et al. (2019)

Cytokines secretion NPS R-568 n/a Breast cancer cell
lines

Hernández-Bedolla et al. (2015),
Hernández-Bedolla et al. (2016),
Zavala-Barrera et al. (2021)
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expectable and a CaSR aberrant over-activity is plausible;

therefore, additional investigations into these questions are

needed.

Conclusion

The CaSR is a multifunctional ubiquitously expressed

receptor important for many physiological processes. This

functional variability is also reflected by the yin-yang role it

plays in the pathophysiology of many diseases, including cancer

and inflammation. Despite some exceptions, accumulating

studies are outlining how the CaSR induces pro-inflammatory

stimuli, as summarized in Table 1, and therefore it is an

important factor in the pathophysiology of many

inflammatory diseases. The CaSR can modulate the

inflammatory response either by acting directly within the

tissues or by modulating immune cell activation and motility.

For this reason, pharmacological CaSR inhibition with specific

calcilytics has gained interest in recent years as a possible

treatment and mitigation of aberrant inflammatory stimuli,

which are usually observed in diseases such as asthma,

Alzheimer’s disease, obesity, and inflammatory bowel diseases;

and, by extension, for the treatment and/or management of

sepsis, burn injuries and rheumatoid arthritis.

Because the CaSR is ubiquitously expressed, pharmacological

CaSR targeting exerts systemic and often unwanted effects, as for

example observed in patients treated with cinacalcet or

etelcalcetide, which manifest gastrointestinal distress.

Therefore, new routes of administration and new strategies for

tissue-specific delivery of CaSR-molecules are required to avoid

undesired and possible detrimental systemic effects.

Lastly, given the possible involvement of the CaSR in the

pathogenesis of COVID-19 infection, it is tempting to speculate

about a possible applicability of calcilytics as effective

therapeutics to counteract SARS-CoV-2 infection or, at least,

to mitigate hypocalcemia, reducing patients’ morbidities.

However, these assumptions need to be extensively

investigated in future studies.
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