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Vascular smooth muscle contraction is intimately tied to membrane potential

and the rise in intracellular Ca2+ enabled by the opening of L-type Ca2+

channels. While voltage is often viewed as the single critical factor gating

these channels, research is starting to reveal a more intricate scenario

whereby their function is markedly tuned. This emerging concept will be the

focus of this three-part review, the first part articulating the mechanistic

foundation of contractile development in vascular smooth muscle. Part two

will extend this foundational knowledge, introducing readers to functional

coupling and how neighboring L-type Ca2+ channels work cooperatively

through signaling protein complexes, to facilitate their open probability. The

final aspect of this review will discuss the impact of L-type Ca2+ channel

trafficking, a process tied to cytoskeleton dynamics. Cumulatively, this brief

manuscript provides new insight into how voltage, along with channel

cooperativity and number, work in concert to tune Ca2+ responses and

smooth muscle contraction.
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Introduction

Background: Foundational basis of smooth muscle
contraction

Mechanical and chemical stimuli initiate vascular smooth muscle contraction

through transduction pathways that enhance myosin light chain phosphorylation

(Davis et al., 1999). This key biological event is set by the balance of two central

enzymes, those being myosin light chain kinase and myosin light chain phosphatase

(Takashima, 2009). Myosin light chain kinase is a serine/threonine-specific protein

kinase responsible for phosphorylating Ser19 on the N-terminus of the regulatory

light chain of the motor protein myosin-II (Figure 1). This enzyme’s activity is

intimately tied to intracellular Ca2+ ([Ca2+]i) and its binding to low-affinity sites of
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kinase-bound Calmodulin, a messenger protein that interferes

with the autoinhibitory domain (Herring et al., 2006; Schaub,

2007; Walsh, 2011). In contrast, myosin light chain

phosphatase is a holoenzyme composed of three subunits: a

38 kDa catalytic subunit of type 1 protein phosphatase (PP1c),

a 110–130 kDa regulatory subunit (MYPT1), and a small

20 kDa subunit of unknown function (Ding et al., 2006).

MYPT1 is a key regulator of activity as phosphorylation at

Thr853 or Thr696 inhibits PP1c, pushing the kinase-

phosphatase balance towards enhanced myosin light chain

phosphorylation and smooth muscle contraction. The control

of MYTP1 phosphorylation is, in turn, set by signal

transduction pathways tied to G-protein receptors, two of

note being Gq/11 and G12/13. The RhoA/Rho-kinase pathway is

particularly important, and when inhibited pharmacologically

(e.g., Y27632 or H1152), MYPT1 phosphorylation, myosin

light chain phosphatase activity and smooth muscle

contraction are diminished (Fu et al., 1998; Anneloes

Martinsen et al., 2012). Downstream signaling proteins

such as PKC also limit myosin light chain phosphatase

activity by phosphorylating CPI-17, a direct inhibitor of the

catalytic unit PP1c (Deng et al., 2002).

Ca2+ sensitization is a colloquial term used in vascular

biology to describe how force development can be tuned

relative to the rise in [Ca2+]i, the latter set by membrane

depolarization. While this term is traditionally tied to

phosphatase modulation, its mechanistic underpinnings

have expanded to regulatory processes linked to actin-

myosin interaction and the structures responsible for force

transmission. As to the former, consider proteins such as

Caldesmon, which, when bound to actin, stabilize it and

impairs myosin ATPase activity (Clark et al., 1986).

G-protein-linked signaling proteins like PKC diminish

Caldesmon’s inhibitory effects by loosening its physical

binding to the thin filaments (Clark et al., 1986). Calponin

is another example of an actin-myosin binding protein

inhibiting ATPase activity through an interaction with and

phosphorylation by RhoA/Rho-kinase (Kaneko et al., 2000).

With respect to the latter, consider current experimental

interest in cytoskeletal remodeling, an event strongly,

although not exclusively, tied to the state of actin

polymerization. This dynamic process is regulated by

several transduction pathways, one of note to G-protein

coupled receptors and downstream Rho/Rho-kinase

signaling being LIM kinase regulation of Cofilin, a protein

that guides actin depolymerization (Walsh et al., 2013).

The synopsis above briefly highlights how vascular

smooth muscle, through multiple points of regulation, can

tune contractile development to a voltage-dependent rise in

[Ca2+]i. Decidedly absent from this discussion is whether

L-type Ca2+ channels themselves can be functionally tuned.

This idea was first raised by Fallon and colleagues who noted

that these channel’s C-termini interact with one another

(Fallon et al., 2009), facilitating a state whereby the

opening of one channel fosters the opening of a

companion. The result of said “functional coupling” would

be enhanced Ca2+ influx and contraction at a defined voltage

(Dixon et al., 2022). An alternative means of so called

“tuning” would be to traffic additional L-type Ca2+

channels to the plasma membrane to enhance cluster

formation and cooperative gating (Ghosh et al., 2018).

Both aspects of regulatory control (i.e., Cooperative gating

and Channel trafficking) will be discussed in the subsequent

chapters by highlighting key literature and classic

experiments.

FIGURE 1
Mechanisms of cross-bridge cycling and
MLC20 phosphorylation in vascular smooth muscle.
Mechanosensor/receptor activation induces depolarization by
activating transient receptor potential channels and inhibiting
hyperpolarizing K+ currents. Depolarization opens L-type Ca2+
channels, with the resulting influx of Ca2+ enhancing MLCK and
cross-bridge cycling through binding to CaM. Conversely,
G-protein coupled receptors further enhance contraction by
inhibiting MLCP (aka-Ca2+ sensitization) through two regulatory
pathways. The first entails PKC activation by PLC-β and DAG, a
series/threonine kinase that phosphorylates: 1) CPI-17 to inhibit
PP1c; or 2) target proteins that set actin stabilization/
polymerization. The second involves G12-13 activation of RhoA
and Rho-kinase, the latter of which controls the phosphorylation
state of: 1) MYPT1 (Threonine–696 and Threonine–853 (mouse
numberings)); or 2) target proteins that set actin polymerization.
Note, Ca2+ release from the sarcoplasmic reticulum, resulting
from receptor-induced IP3 production, can also contribute to
MLCK activation. Abbreviations: MLCK, Myosin light chain kinase;
MLCP, Myosin light chain phosphatase, PLC, Phospholipase C;
DAG, Diacylglycerol; CPI-17, Cytosolic phosphatase inhibitory
protein of 17-kDa; IP3, Inositol trisphosphate; MYPT1, Myosin light
chain phosphatase targeting subunit 1; MLC, Myosin regulatory
light chain; CaM, Calmodulin; PKC, Protein Kinase C; PP1c, Type
1 protein phosphatase 1c.
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Cooperative gating of L-type Ca2+
channels

Vascular L-type Ca2+ channels are comprised of a CaV1.2

α1 pore-forming subunit along with an auxiliary α2
(150 kDa), δ (17–25 kDa), β (50–78 kDa), and γ (32 kDa)

subunit to ensure proper gating, regulation, and trafficking

(Catterall et al., 2003; Feng et al., 2018). The CaV1.2 α1
subunit retains the transmembrane sequences that confer

voltage-gating, and a C-terminus is notable for a diverse

array of regulatory sites. L-type Ca2+ channels are the

primary drivers of Ca2+ influx in vascular smooth muscle,

and traditional physiology assumes their activity is nearly

exclusively set by voltage, with each channel operating

independently of one another. Observations collected over

the past decade have begun to challenge this dogma by noting

that subpopulations of closely situated L-type Ca2+ channels

work cooperatively with one another to enhance their open

probability. First described in 2005 by Navedo and others,

L-type Ca2+ channels were rationalized to cluster on the

plasma membrane in a configuration where the open

probability of each individual channel was markedly

higher (Navedo et al., 2005). The clustering of active

channels creates regions on the plasma membrane of

persistent Ca2+ influx, resulting from the generation of so-

called Ca2+ sparklets (Figure 2A). Note, Ca2+ sparklets differ

from Ca2+ sparks, events driven by ryanodine channels on

the sarcoplasmic reticulum, as their duration is longer, their

amplitude coupled to voltage, and their pharmacological

profile distinct (Navedo et al., 2005). The latter is

exemplified by the nifedipine block of Ca2+ sparklets, akin

to that of L-type Ca2+ currents; in contrast, nifedipine has no

effects on Ca2+ sparks. While data is limited, Amberg and

others argued that ~50% of SMC Ca2+ current is sparklets-

related (Amberg et al., 2007), the remaining current being

assigned to non-coupled independent channels.

The regulatory elements driving Ca2+ sparklets activity

have become a source of active experimental inquiry. Initial

work argued that PKCα was an essential activator of Ca2+

sparklets, consistent with its impact on the whole cell L-type

current (Wesselman et al., 2001; Korzick et al., 2004; Jarajapu

et al., 2005; Amberg et al., 2007). Aligning with and building

upon these findings, immunohistochemical and TIRF

microscopy observations revealed close spatial membrane

localization of Ca2+ sparklets, CaV1.2 clusters, and PKCα
(Santana et al., 2008). The anchoring of PKCα in close

proximity to CaV1.2 is achieved through A-kinase

anchoring protein, AKAP5, also known as AKAP150 (mice)

and AKAP79 (humans), being prominently expressed

(Santana et al., 2009; Perino et al., 2012) and capable of

binding to the C-terminus of the α1 subunit (Fallon et al.,

2009; Dixon et al., 2015). PKCα release leads to displacement

of Calmodulin from IQ domain which decreases Ca2+-induced

inactivation of L-type Ca2+ channels (Faux and Scott, 1997;

Santana et al., 2009). In light of AKAP5 bringing L-type Ca2+

channels in close apposition to PKCα (Coghlan et al., 1995;

Oliveria et al., 2007), it follows that Ca2+ sparklets regulatory

control is lost in AKAP150 deletion mice (Navedo et al., 2008).

Subsequent studies have revealed that PKA and Calcineurin

also bind AKAP5 in close apposition to L-type Ca2+ channels

adding another regulatory layer to Ca2+ sparklets activity.

PKA mobilization leads to phosphorylation of α1 subunit

C-terminus at the Ser 1928, increasing the open probability

of L-type Ca2+ channels (Nystoriak et al., 2017; Prada et al.,

2019; Syed et al., 2019; Prada et al., 2020). In contrast,

Calcineurin’s effects oppose PKCα, with its activation

limiting Ca2+ sparklets activity (Navedo et al., 2006;

Santana et al., 2009). This Yin-Yang relationship between

PKA, Calcineurin, and PKCα can be functionally viewed as

creating a flexible platform for Ca2+ sparklets regulation

(Navedo et al., 2006; Santana et al., 2009).

Moving beyond cellular observations, the next logical

question centers on the physiological and pathobiological

FIGURE 2
Cooperative gating and trafficking of L-type Ca2+ channels.
(A) L-type Ca2+ channels can work as independent channels or in a
cooperative gating manner due to proximate localization and the
formation of connections at the CaV1.2 C-terminus.
Cooperatively gated channels exhibit functional coupling
properties, such as synchronous opening, higher Po, and more
persistent current compared to individually gated channels. AKAP5
(mouse numbering), PKC, and PKA play a critical role in the
promotion of functional coupling properties. (B) Depolarization
enhances the trafficking of L-type Ca2+ channel subunits to the
plasma membrane. This key biological process entails the
movement of vesicles from the Golgi apparatus to caveolae
strategically positioned on the plasma membrane. Abbreviations:
AKAP5, A-kinase anchoring protein -5; PKA, Protein kinase A; PKC,
Protein kinase C; MLCK, Myosin light chain kinase; MLCP, Myosin
light chain phosphatase.
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role of Ca2+ sparklets. As to the former, experiments

performed on AKAP−/− and PKCα−/− have observed that

limited Ca2+ sparklets activity coincides with a marked

reduction in myogenic tone, suggestive of the former

driving the latter (Navedo et al., 2008; Navedo et al.,

2010a). Secondly, it has been argued that clustered L-type

Ca2+ channels are loosely coupled with ryanodine receptors

and SERCA pump, thus impacting the Ca2+ load/release of the

sarcoplasmic reticulum (Navedo et al., 2010b). This idea

aligns with: 1) structural data showing close apposition of

CaV1.2 clusters with sarcoplasmic reticulum release/uptake

proteins; and 2) functional data noting that regions of CaV1.2-

Ca2+ sparklet activity overlap with areas notable for the

tranisent Ca2+ release from ryanodine receptors. Moreover,

experimental data demonstrates that reducing Ca2+ sparklets

activity notably slows Ca2+ refilling of the sarcoplasmic

reticulum (Essin et al., 2007; Takeda et al., 2011).

Considering the preceding physiological observations, it

follows that pathobiological processes impinging on Ca2+

sparklet activity will be destined to impact the contractile state

of vascular smooth muscle. For example, the marked

upregulation/AKAP binding of PKCα (hypertension) and

PKA (hyperglycemia and diabetes type II) is notable for

enhancing arterial tone (Navedo et al., 2008; Navedo et al.,

2010a; Navedo et al., 2010b). The latter observation highlights

the importance of localized PKA signaling as global activation

will relax vascular smooth muscle through hyperpolarization

(Navedo et al., 2010a; Morotti et al., 2017; Nystoriak et al.,

2017; Prada et al., 2019). Genetic mutations to the

CaV1.2 C-terminus, mimicking those observed with Timothy

Syndrome, also impact functional coupling and vessel

contractility (Navedo et al., 2010b; Napolitano et al., 2014;

Priori et al., 2018; Han et al., 2019). So albeit in physiology or

pathobiology, the dynamic balancing of PKCα, PKA, and

Calcineurin activity is critical to the functional tuning of

L-type Ca2+ channels as they respond to defined voltage

stimuli. The recent review by Dixon and colleagues provides a

more detailed examination of this phenomenon. (Dixon et al.,

2022).

Ca2+ channel trafficking and its
implication on smooth muscle
contraction

An alternative means to enhance the Ca2+ influx

response to depolarization is to increase the number of

L-type Ca2+ channels embedded in the plasma membrane.

Protein trafficking is key, and work in expression systems

provides foundational knowledge of how CaV1.2 subunits

are chaperoned to and inserted into the plasma membrane

(Figure 2B). Following synthesis in the sarcoplasmic

reticulum, CaV1.2 subunits are packaged into vesicle

structures which are then guided to the membrane along

structural filaments, including actin fibers and microtubules

(Simms et al., 2012). This movement is enabled by the key

motor proteins, kinesin and dynein, and interestingly these

vesicles can switch from actin to microtubules and visa

versa, making the trafficking flexible and sensitive to

changes in cytoskeletal reorganization (Ross et al., 2008;

Smyth et al., 2010). Observing trafficking behavior in tsA-

201 cells, Ghosh and others intriguingly noted that a

resident pool of CaV1.2 containing vesicles displays a

distinct pattern of movement and interaction with the

plasma membrane (Ghosh et al., 2018). This included

vesicular structures undergoing a dynamic fusion and

fission on a second-time scale, with fusion processes

displaying “kiss and stay” and “kiss and run” behavior.

This study also noted that recently incorporated vesicles

displayed Ca2+ sparklets activity, consistent with channel

clustering, and this process was dependent on the

cytoskeleton (Ghosh et al., 2018). While observations are

limited in vascular smooth muscle cells, evidence points to

caveolae being a site of convergence for L-type Ca2+

channels in resistance arteries (Martinsen et al., 2014;

Suzuki et al., 2013). Little is known of the stimuli that

foster L-type Ca2+ channel trafficking, but their targeted

transport to caveolae suggests a potential regulatory role for

mechanical forces like pressure. This perspective aligns with

findings from acute hypertension models, where increased β
and α2δ subunit expression (Herlitze et al., 2003; Klugbauer

et al., 2003) is associated with enhanced surface expression

of CaV1.2 subunits and vasoconstrictor drive (Bannister

et al., 2012).

Conclusion and future directions

This mini-review summarizes current thinking on how the

functional tuning of L-type Ca2+ channels could be tuned in

vascular smooth muscle to impact Ca2+ influx and tissue

contractility. Mechanisms of note include; 1) cooperative

gating among neighboring L-type Ca2+ channels; and 2)

stimulus-induced protein trafficking. Experimental research

now defines how each mechanism is regulated by protein

kinases, anchoring proteins, cytoskeletal structures, and

initiating stimuli. Translating this knowledge into relevant

biological settings is the next Frontier and one destined to

intrigue the next generation of vascular biologists. Are, for

example, the number and size of L-type Ca2+ channel clusters

truly tuned in temporally concert with the changing

physiological environment? Likewise, how do L-type Ca2+

channel clusters change in pathobiological settings like

sepsis, where the proinflammatory environment

progressively leads to circulatory collapse? This deeper

understanding of L-type Ca2+ channels and its linkage to
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vascular tone is expected to reveal new conceptual avenues for

therapeutic development.
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