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Objective:No new U-net (nnU-Net) is a newly-developed deep learning neural

network, whose advantages in medical image segmentation have been noticed

recently. This study aimed to investigate the value of the nnU-Net-basedmodel

for computed tomography angiography (CTA) imaging in assisting the

evaluation of carotid artery stenosis (CAS) and atherosclerotic plaque.

Methods: This study retrospectively enrolled 93 CAS-suspected patients who

underwent head and neck CTA examination, then randomly divided them into

the training set (N = 70) and the validation set (N = 23) in a 3:1 ratio. The

radiologist-marked images in the training set were used for the development of

the nnU-Net model, which was subsequently tested in the validation set.

Results: In the training set, the nnU-Net had already displayed a good

performance for CAS diagnosis and atherosclerotic plaque segmentation.

Then, its utility was further confirmed in the validation set: the Dice similarity

coefficient value of the nnU-Net model in segmenting background, blood

vessels, calcification plaques, and dark spots reached 0.975, 0.974 0.795,

and 0.498, accordingly. Besides, the nnU-Net model displayed a good

consistency with physicians in assessing CAS (Kappa = 0.893), stenosis

degree (Kappa = 0.930), the number of calcification plaque (Kappa = 0.922),

non-calcification (Kappa = 0.768) and mixed plaque (Kappa = 0.793), as well as

the max thickness of calcification plaque (intraclass correlation coefficient =

0.972). Additionally, the evaluation time of the nnU-Net model was shortened

compared with the physicians (27.3 ± 4.4 s vs. 296.8 ± 81.1 s, p < 0.001).

Conclusion: The automatic segmentation model based on nnU-Net shows

good accuracy, reliability, and efficiency in assisting CTA to evaluate CAS and

carotid atherosclerotic plaques.
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Introduction

Carotid artery stenosis (CAS), a common vascular disease, is

one of the main pathological causes of ischemic stroke, which

could be identified in nearly 20% of stroke patients; meanwhile,

the prevalence of asymptomatic CAS ranges from 0.3% to 5.7%

(Cheng et al., 2019; Carreira et al., 2020; Arasu et al., 2021; Heck

and Jost, 2021). Concerning the initiation of CAS, the

atherosclerotic plaque is nonignorable, which leads to

narrowness or occlusion in the main neck arteries and further

impacts the blood supply (Bos et al., 2021; Larson et al., 2021;

Qaja et al., 2022). Due to the unique structure of the carotid

artery (the Willis circle), a large number of patients are evaluated

as asymptomatic CAS, who are easy to miss the best treatment

timing and suffer from poor prognosis; hence, the accurate and

timely diagnosis is essential (Carreira et al., 2020; US Preventive

Services Task Force et al., 2021). At present, digital subtraction

angiography (DSA) is considered to be the golden standard of

CAS diagnosis; as it is an invasive surgery with a relatively high-

dose contrast agent, many patients tend to choose computed

tomography angiography (CTA), whose trauma and radiation

quantity are milder (Dos Santos et al., 2016; Dohring et al., 2021).

However, the CTA images still need clinicians to provide artificial

judgment, which would take a relatively long time and the

accuracy highly depends on the clinical experiences of

physicians (Ghekiere et al., 2017). Therefore, some assistant

diagnostic means [such as artificial intelligence (AI)] are

generated to improve the efficiency and accuracy of CAS

diagnosis, so as to promote the application of CTA in clinical

practice.

U-net, a semantic segmentation algorithm of fully

convolutional networks, is widely used in various imaging

automatic segmentation and auxiliary diagnoses of many

vascular diseases (Meshram et al., 2020; Zhou et al., 2021; Yin

et al., 2022). For instance, a previous study develops a carotid

segmentation model based on U-net to segment carotid

bifurcation in CTA images (Zhou et al., 2021). No new U-net

(nnU-Net), based on U-net technology, is a newly-developed deep

learning neural network with a self-adapting function, which could

handle various image properties and target structures (Isensee

et al., 2021; Zhang et al., 2021b). Recently, the advantages of nnU-

Net in medical image segmentation have been noticed in some

studies (Heidenreich et al., 2021; Savjani, 2021). One study

establishes a self-configuring nnU-Net model for automatic

infarct segmentation in myocardial infarction patients;

meanwhile, the infarct zone volumes obtained from this model

and manual show good consistency (Heidenreich et al., 2021).

Nevertheless, the application of nnU-Net in assisting CTA to

evaluate CAS and to segment atherosclerotic plaque is rare.

Thus, this study established a nnU-Net-based automatic-

segmentation model for CTA imaging in the training set and

further verified its accuracy in the validation set, aiming to

investigate its performance in assisting the evaluation of CAS

and atherosclerotic plaque.

Materials and methods

Participants

This study retrospectively enrolled 93 patients with suspected

CAS who underwent head and neck CTA examination between

February 2021 and November 2021. The inclusion criteria were:

1) patients with suspected CAS, and had typical symptoms

including transient monocular amaurosis or visual field defect,

aphasia, limb numbness, clumsiness of motion; 2) had two or

more risk factors for stroke, including hypertension, atrial

fibrillation, diabetes, dyslipidemia, smoking, overweight, and

history of transient ischemic attack; 3) underwent head and

neck CTA examination; 4) had CAS and plaque confirmed by

CTA. The exclusion criteria were: 1) history of interventional or

surgical treatment, such as carotid stenting or carotid

endarterectomy; 2) had cervical hemangioma or carotid artery

vascular malformation; 3) CTA images were unclear or

incomplete and insufficient for subsequent image processing;

4) missing clinical data. All 93 patients with suspected CAS were

randomly divided into a training set (N = 70) and a validation set

(N = 23) in a 3:1 ratio. The Institutional Review Board of The

First Affiliated Hospital of Soochow University approved this

study. The written informed consents were obtained from all

participants.

Clinical data collection

Clinical data of all patients were obtained through Electronic

Health Record System, including age, gender, BMI (body mass

index), smoke, hypertension, hyperlipidemia, diabetes, CKD

(chronic kidney disease), CVD (cardiovascular disease),

education level, marriage status, and place of residence.

Computed tomography angiography
image acquisition

The CTA examination was performed using a Toshiba 320-

row-detector spiral computed tomography (CT) scanner

(Aquilion ONE, Toshiba Medical Systems, Tokyo, Japan). The
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patients were placed in a supine position during the examination

and were scanned at the end of the expiration when holding their

breath. The parameters of scanning were as follows: reference

186 mAs, tube voltage 100 kV, pitch 0.8, rotation time 0.5 s,

scanning time 3–4 s, delay time 2 s, collimator width 160 mm ×

0.5 mm. Scan range was from the aortic arch to the level of both

eyes, and the localization line was at the ascending aortic arch

and the skull base, respectively. After completion of the

conventional neck scan, the iodinated contrast media,

iopamidol injection (Isovue-M®, United States) was used for

the enhanced scan. A 30–45 ml bolus of non-ionic contrast

material was injected by a dual barrel high-pressure injector at

a flow rate of 4.5–5.0 ml/s with the threshold set at 180 HU in the

descending aorta. Then, the scan raw data was transferred to the

Vitrea (Vital Images, Minnetonka, MN, United States) software

for post-processing. After the bone images were subtracted, the

carotid vessels were reconstructed by image post-processing such

as raw map, volumetric imaging, multi-planar reconstruction,

and maximum density projection.

Physicians’ annotations

The luminal stenosis location, plaque location, and plaque

type (calcified plaque, non-calcified plaque, and mixed

plaque) on CTA images of all patients were marked by two

senior professional radiologists. Besides, the number of

calcified plaques, non-calcified plaques, mixed plaques, the

maximum calcified plaque thickness, and overall evaluation

time was recorded. The plaques were segmented and labeled

by the ITK-Snap tool (available at http://www.itksnap.org/

pmwiki/pmwiki.php?n=Downloads.SNAP3). In case of

disagreement, the two doctors discussed and decided on the

best results.

Carotid artery stenosis and its severity
evaluation

The percentage of stenosis was calculated via the diameter

measurements and the North American Symptomatic Carotid

Endarterectomy Trial (NASCET) formula (North American

Symptomatic Carotid Endarterectomy Trial Collaborators

et al., 1991). Then the stenosis degree (if multiple stenoses

were present, the most severe one was applied) was classified

according to the Society of Cardiovascular Computed

Tomography (SCCT) classification (American College of

Cardiology Foundation et al., 2012). In detail, stenosis degree

was classified as follows: 0%, no stenosis; 1%–49%: mild stenosis;

50%–69%: moderate stenosis; 70%–99%: severe stenosis; and

100%: blocking. Meanwhile, the occurrence of CAS was

defined as “≥1% stenosis.”

No new U-net model development

After enhancing and normalizing the images, the annotated

images were thresholded for binarization. Combined with

threshold segmentation and region growing algorithm, the

common carotid artery to the extracranial segment of the

internal carotid artery was segmented. The marked images in

the training set were used for the development of a nnU-Net

model, introducing residual convolution and null convolution

modules. After forming the algorithm, the model was tested in

the validation set. The principle of the nnU-Net deep neural

network framework referred to the previous studies (Isensee

et al., 2021). In the nnU-Net network, the size of the input and

output 4D image block was 2 × 48 × 160 × 160. The encoding and

decoding stages both contained five layers. In the coding phase, the

first layer contained two 3 × 3 × 3 convolutions and two Leaky

Linear Units (ReLU), and other layers contained a 3 × 3 ×

3 convolution and a Leaky ReLU in turn. Except for the last

convolution layer, each layer was followed by a 3 × 3 × 3 down

sampling convolution with strides of 2 in each dimension. The

channel number of the first convolution layer was set to 30, and the

following convolution layer doubled the number of channels in

turn. In the decoding phase, the five deconvolution layers with a size

of 3 × 3 × 3 and stride size of 2 were deployed corresponding to the

five down-sampling convolution layers. Every up-convolution layer

was followed by two 3 × 3 × 3 convolutions. Each convolution layer

except for the last layer halved the number of featuremaps channels

in turn. The last layer reduced the number of output channels to the

number of labels using a 1 × 1 × 1 convolution kernel. Five shortcut

connections from layers of equal resolution in the analysis path

transmitted the essential high-resolution features to the synthesis

path. In the training step, the batch size was set to 4. Adam

optimizer with an initial learning rate of 3e-4 was used to

optimize network weight. The network was trained 21,900 times

in 300 epochs. The detailed framework of the nnU-Net model was

presented (Supplementary Figure S1). The coronal and axial

imaging presentations of plaque segmentation assessed by the

nnU-Net model and physicians in the training set

(Supplementary Figures S2A–F) and the validation set

(Supplementary Figures S3A–F) were displayed. The green area

represented calcification plaques; the red area represented vascular

lumens; the blue area represented dark spots.

The performance of the nnU-Net model in segmenting

carotid plaque calcification was evaluated via area accuracy.

The manually marked carotid plaque calcification areas in the

dataset were used as the standard and compared with the results

of the nnU-Net model automatic segmentation. Then the Dice

similarity coefficient (DSC) was assessed as an evaluation index.

DSC was a common measurement for assessing the similarity

between manual and automatic segmentation; DSC ≥ 0.8 was

considered a high similarity (Dionisio et al., 2021). The specific

formula was as follows:
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DSC � SEG ∩ GT

SEG + GT
× 2

where SEG = segmented picture; GT = ground truth. In this

study, SEG represented the calcified area obtained by nnU-Net

model automatic segmentation and GT represented the calcified

area obtained by manual segmentation.

Statistical analysis

The statistical analyses were performed via SPSS v27.1 (IBMCorp.,

United States). The graphs weremapped by RV.4.0.5 (ggplot2 package,

available at www.r-project.org) and GraphPad Prism v8.01 (GraphPad

Software Inc., United States). The comparison of variables between the

training set and validation set was evaluated through Student’s t-test,

Chi-square test, Fisher exact test or Mann-Whitney U test. The

consistency between the nnU-Net model and physicians in

evaluating CAS was assessed through the Kappa coefficient test

(Kappa ≥ 0.7 was considered highly consistent, 0.4 ≤ Kappa < 0.

7 was considered moderately consistent, Kappa < 0.4 was considered

weakly consistent). The consistency between the nnU-Net model and

physicians in measured max thickness of calcification plaque was

evaluated through the intraclass correlation coefficient (ICC) test. A

p value < 0.05 indicated statistical significance.

Results

Clinical characteristics

The whole process of this study was presented (Figure 1). A

total of 93 patients with a mean age of 62.1 ± 8.3 years were

randomly divided into the training set (N = 70) and validation set

(N = 23) in a 3:1 ratio, whose mean age was 61.6 ± 8.5 years and

FIGURE 1
Study flow.
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63.7 ± 7.8 years, respectively (Table 1). Concerning gender, the total

patients consisted of 37 (39.8%) females and 56 (60.2%) males;

besides, there were 29 (41.4%) females and 41 (58.6%) males in the

training set, 8 (34.8%) females and 15 (65.2%)males in the validation

set. Notably, all clinical characteristics were of no difference between

the training set and validation set, including age, gender, BMI,

smoke, hypertension, hyperlipidemia, diabetes, CKD, CVD,

education, marriage status, and location (all p > 0.050). The

detailed clinical characteristics were listed in Table 1.

The segmentation performance of the no
new U-net model

In the training set, the nnU-Net model achieved the DSC

value of 0.977, 0.962, 0.791, and 0.489 in segmenting

background, blood vessels, calcification plaques, and dark

spots. Meanwhile, the respective DSC value of the nnU-Net

reached 0.975, 0.974, 0.795, and 0.498 in the validation set

(Table 2).

TABLE 1 Clinical characteristics.

Items Total
patients (N = 93)

Training
set (N = 70)

Validation
set (N = 23)

p value*

Age (years), mean ± SD 62.1 ± 8.3 61.6 ± 8.5 63.7 ± 7.8 0.287

Gender, No. (%) 0.572

Female 37 (39.8) 29 (41.4) 8 (34.8)

Male 56 (60.2) 41 (58.6) 15 (65.2)

BMI (kg/m2), mean ± SD 23.9 ± 2.9 24.1 ± 3.0 23.4 ± 2.3 0.276

Smoke, No. (%) 0.245

No 35 (37.6) 24 (34.3) 11 (47.8)

Yes 58 (62.4) 46 (65.7) 12 (52.2)

Hypertension, No. (%) 0.559

No 24 (25.8) 17 (24.3) 7 (30.4)

Yes 69 (74.2) 53 (75.7) 16 (69.6)

Hyperlipidemia, No. (%) 0.234

No 62 (66.7) 49 (70.0) 13 (56.5)

Yes 31 (33.3) 21 (30.0) 10 (43.5)

Diabetes, No. (%) 1.000

No 74 (79.6) 56 (80.0) 18 (78.3)

Yes 19 (20.4) 14 (20.0) 5 (21.7)

CKD, No. (%) 0.726

No 82 (88.2) 61 (87.1) 21 (91.3)

Yes 11 (11.8) 9 (12.9) 2 (8.7)

CVD, No. (%) 0.400

No 67 (72.0) 52 (74.3) 15 (65.2)

Yes 26 (28.0) 18 (25.7) 8 (34.8)

Education, No. (%) 0.555

Primary school or below 23 (24.7) 16 (22.9) 7 (30.4)

Junior high school 29 (31.2) 22 (31.4) 7 (30.4)

High school 25 (26.9) 20 (28.6) 5 (21.7)

University or above 16 (17.2) 12 (17.1) 4 (17.4)

Marriage status, No. (%) 0.864

Married 66 (71.0) 50 (71.4) 16 (69.6)

Divorced or widowed or single 27 (29.0) 20 (28.6) 7 (30.4)

Location, No. (%) 1.000

Urban 12 (12.9) 9 (12.9) 3 (13.0)

Rural 81 (87.1) 61 (87.1) 20 (87.0)

SD, standard deviation; BMI, body mass index; CKD, chronic kidney disease; CVD, cardiovascular disease.

*Represented the p value for comparison of variables between the training set and validation set.
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Consistency of carotid artery stenosis
diagnosis and stenosis degree evaluation
between the no new U-net model and
physicians

The nnU-Net model and physicians displayed good

consistency in assessing CAS both in the training set

(Kappa = 0.860, p < 0.001) and validation set (Kappa = 0.893,

p < 0.001) (Table 3). Also, the nnU-Net model exhibited a

pleasing consistency with the physicians in evaluating stenosis

degree both in the training set (Kappa = 0.874, p < 0.001) and the

validation set (Kappa = 0.930, p < 0.001) (Table 4).

Consistency of atherosclerotic plaque
number and max thickness evaluation
between the no new U-net model and
physicians

In the training set, the nnU-Net model and physicians

showed good consistency in evaluating the number of

calcification plaque (Kappa = 0.892, p < 0.001) and the

number of mixed plaque (Kappa = 0.705, p < 0.001), while

they only displayed a moderate consistency in evaluating the

number of non-calcification plaque (Kappa = 0.617, p < 0.001)

(Figures 2A–C). Besides, in the validation set, the bubble plots

showed good consistency between the nnU-Net model and

physicians in evaluating the number of calcification plaque

(Kappa = 0.922, p < 0.001), the number of non-calcification

plaque (Kappa = 0.768, p < 0.001), and the number of mixed

plaque (Kappa = 0.793, p < 0.001) (Figures 2D–F). The above

data suggested that the nnU-Net model achieved the highest

consistency with physicians in evaluating calcification plaque

number, followed by mixed plaque number, and the lowest in

non-calcification plaque number.

Concerning the evaluation of calcification plaque max

thickness, the nnU-Net model also achieved good consistency

with physicians both in the training set (ICC = 0.959, p < 0.001,

Figure 3A) and the validation set (ICC = 0.972, p < 0.001,

Figure 3B).

Comparison of evaluation time between
the no new U-net model and physicians

The evaluation time of the nnU-Net model was shortened

compared with the physicians both in the training set (30.2 ±

8.4 s vs. 295.0 ± 111.9 s, p < 0.001, Figure 4A) and the validation

set (27.3 ± 4.4 s vs. 296.8 ± 81.1 s, p < 0.001, Figure 4B).

Discussion

U-Net has been widely applied in medical imaging auxiliary

diagnoses and vessel segmentation for several cardiovascular and

cerebrovascular diseases since its development (Shelhamer et al.,

TABLE 2 The performance of the nnU-Net model.

Total
patients (N = 93)

Dice similarity coefficient

Background Blood vessels Calcification plaques Dark spots

Training set (N = 70) 0.977 0.962 0.791 0.489

Validation set (N = 23) 0.975 0.974 0.795 0.498

TABLE 3 Consistency between nnU-Net model and physicians in evaluating carotid artery stenosis in training and validation sets.

No. (%) Assessed by nnU-Net model Kappa coefficient p value

Non-stenosis Stenosis

Training set (N = 70)

Assessed by physicians Non-stenosis 48 (68.6) 1 (1.4) 0.860 <0.001
Stenosis 3 (4.3) 18 (25.7)

Validation set (N = 23)

Assessed by physicians Non-stenosis 16 (69.6) 1 (4.3) 0.893 <0.001
Stenosis 0 (0.0) 6 (26.1)
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FIGURE 2
The nnU-Net model showed good consistency of atherosclerotic plaque number evaluation with physicians in the training set and validation
set. The consistency between the nnU-Net model and physicians in evaluating the number of calcification plaque (A), non-calcification plaque (B),
and mixed plaque (C) in the training set. The consistency between the nnU-Net model and physicians in evaluating the number of calcification
plaque (D), non-calcification plaque (E), and mixed plaque (F) in the validation set.

TABLE 4 Consistency between nnU-Net model and physicians in evaluating carotid artery stenosis degree in training and validation sets.

No. (%) Assessed by nnU-Net model Kappa
coefficient

p value

No stenosis Mild
stenosis

Moderate
stenosis

Severe
stenosis

Training set (N = 70)

Assessed by
physicians

No stenosis 31 (44.3) 1 (1.4) 0 (0.0) 0 (0.0) 0.874 <0.001
Mild stenosis 0 (0.0) 16 (22.9) 1 (1.4) 0 (0.0)

Moderate
stenosis

0 (0.0) 3 (4.3) 12 (17.1) 0 (0.0)

Severe stenosis 0 (0.0) 0 (0.0) 1 (1.4) 5 (7.1)

Validation set (N = 23)

Assessed by
physicians

No stenosis 13 (56.5) 0 (0.0) 0 (0.0) 0 (0.0) 0.930 <0.001
Mild stenosis 0 (0.0) 3 (13.0) 1 (4.3) 0 (0.0)

Moderate
stenosis

0 (0.0) 0 (0.0) 3 (13.0) 0 (0.0)

Severe stenosis 0 (0.0) 0 (0.0) 0 (0.0) 3 (13.0)
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2017; Dong et al., 2021; Zhao et al., 2021; Yin et al., 2022). For

instance, a previous study develops a U-Net-based deep learning

model to automatically segment coronary arteries in invasive

coronary angiography, whose average DSC reaches 0.889,

proving its potency in auxiliary coronary artery disease

diagnosis (Zhao et al., 2021). However, as a newly-established

algorithm based on three U-net architectures, the clinical

application of the nnU-Net model in assisting CTA to

diagnose CAS has not been studied yet. In this study, the

nnU-Net model showed good performance in blood vessel

segmentation with a DSC value of 0.977 in the training set

and 0.975 in the validation set, which was numerically

superior compared to the aforementioned study (Zhao et al.,

2021). A probable reason might be that: U-Net had some

inevitable shortcomings, including the inability to extract good

features, insufficient high-resolution contour information, and

the asymmetry between edge-cutting form and feature image (Li

et al., 2022). While nnU-Net realized optimization of

preprocessing, training, and data post-processing, which

avoided ambiguity in contour segmentation (Zhang et al.,

2021a). Therefore, the blood-vessel segmenting performance

of the nnU-Net model was better than the U-Net model.

Additionally, the consistency of CAS diagnosis and stenosis

degree evaluation between the nnU-Net model and physicians

was also satisfying, which might also contribute to its accurate

blood-vessel segmenting performance. Besides, the data set was

divided into the training set and validation set in a 3:1 ratio,

which could be explained by that: the data set of this study was

FIGURE 3
The nnU-Netmodel showed good consistency of calcification plaquemax thickness evaluationwith physicians in the training set and validation
set. The consistency between the nnU-Netmodel and physicians in evaluating themax thickness of calcification plaque in the training set (A) and the
validation set (B).

FIGURE 4
The nnU-Netmodel took less time for CAS and atherosclerotic plaque evaluation comparedwith physicians. Comparison of the evaluation time
between the nnU-Net and physicians in the training set (A) and the validation set (B).
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relatively small, and the majority of data should be applied for

model establishment to reduce the risk of overfitting.

Apart from the blood vessels, the exact segmentation of

atherosclerotic plaque is also essential for CAS diagnosis

(Kondakov and Lelyuk, 2021; Kowara and Cudnoch-

Jedrzejewska, 2021). However, the calcified area frequently

exists shadow artifacts and “blooming artifacts,” which would

interfere with the diagnosing accuracy of AI-assisted diagnosis

under CTA and cause detection errors (Jinnouchi et al., 2020).

While, in the present study, the DSC value of the nnU-Net model

in segmenting calcification plaques reached 0.791 (in the training

set) and 0.795 (in the validation set); meanwhile, the consistency

between the nnU-Net model with physicians was also pleasing in

evaluating atherosclerotic plaque numbers and the max thickness

of calcification plaque. The results reflected the good

atherosclerotic plaque-segmentation performance of the nnU-

Net model, which could be explained as follows: the nnU-Net

algorithm sharpened the edge of calcification components during

the imaging processing, meanwhile, its deep learning methods on

the edge features of calcification plaque and other components

improved the segmentation accuracy (Li et al., 2021).

Unfortunately, the DSC value of the nnU-Net model in

segmenting dark spots was only 0.489 and 0.498 in the

training set and the validation set, correspondingly, suggesting

that the network structure needed further improvement.

Considering that the traditional manual image-marking is

time-consuming and inefficient, which greatly occupies the

diagnosis time of clinicians, the time-saving advantage of nnU-

Net is highlighted in previous studies (Mihelic et al., 2021). For

instance, a previous study reports that the nnU-Net model takes

approximately 20 s for the whole breast segmentation and nearly

15 s for the fibroglandular tissue segmentation under the dynamic

contrast-enhanced magnetic resonance images (Huo et al., 2021).

Similarly, the current study also noticed that the evaluation time of

the nnU-Net model was shortened compared with the physicians

in both the training set (30.2 ± 8.4 s vs. 295.0 ± 111.9 s) and the

validation set (27.3 ± 4.4 s vs. 296.8 ± 81.1 s). A possible

explanation might be as follows: nnU-Net was an automated

configuration, covering the entire segmentation without any

manual decision, meanwhile, it contained simple execution

rules which realized the simplified compute resources (Isensee

et al., 2021; Tan et al., 2021). Consequently, owing to its flexible

and reliable strategy, nnU-Net exhibited its convenience in CAS

assessment and atherosclerotic plaque segmentation. Additionally,

the evaluation time represented the mean value of 300 epochs,

whose difference between the validation set and training set lacked

statistical significance; hence, it could not be concluded that the

feasibility and efficiency were improved after the training set.

Some limitations were noticed in this study. Firstly, the small

sample size (N = 93) might lead to a relatively weak statistical

power. Meanwhile, the small number of patients in the validation

set would hinder the presentation of the efficacy of the nnU-Net-

based automatic segmentation model. Thus, further studies with

a larger data set were necessary. Secondly, this was a retrospective

study whose selective bias was hard to avoid. Thirdly, in order to

validate the universality of this model, external validation was

necessary to conduct in further studies. Fourthly, this study

enrolled CAS-suspected patients (but not CAS-confirmed or

stroke patients) to generally investigate its potential in the

cardio/cerebrovascular field; hence, further studies conducted

in some specific diseases were warranted.

Collectively, the automatic segmentation model based on

nnU-Net shows good accuracy, reliability, and efficiency in

assisting CTA to evaluate CAS and carotid atherosclerotic

plaques, implying the prospect of deep-learning AI technology

in auxiliary imaging diagnosis.
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