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Despite substantial evidence of the effectiveness of intermittent pneumatic

compression (IPC) treatments for range of motion (ROM) improvement, little

evidence is available regarding how different IPC stimuli affect ankle dorsiflexion

(DF) ROM. This study aimed to investigate the effects of different IPC stimuli on the

ankle DF ROM. Fourteen, university intermittent team sportmale athletes (age: 21 ±

1 year, height: 1.74 ± 0.05m, bodymass: 70.9 ± 7.7 kg, body fat percentage: 14.2 ±

3.6%, body mass index: 23.5 ± 2.5 kg/m2; mean ± standard deviation) completed

four experimental trials in a random order: 1) no compression with wearing IPC

devices (SHAM), 2) the sequential compression at approximately 80mmHg

(SQUEE80), 3) the uniform compression at approximately 80mmHg

(BOOST80), and 4) the uniform compression at approximately 135mmHg

(BOOST135). For the experimental trials, the participants were initially at rest for

10min and then assigned to either a 30-min SHAM, SQUEE80, BOOST80, or

BOOST135. Participants rested for 20min after IPC treatment. TheWeight-Bearing

Lunge Test (WBLT), popliteal artery blood flow, pressure-to-pain threshold (PPT),

muscle hardness, heart rate variability, and perceived relaxation were measured

before (Pre) and immediately after IPC treatment (Post-0) and 20min after IPC

treatment (Post-20), and the changes in all variables from Pre (Δ) were calculated.

ΔWBLT performance, ΔPPT, and Δperceived relaxation in all IPC treatments were

significantly higher than those in SHAM at Post-0 and Post-20 (p < 0.05).ΔPopliteal
artery blood flow in BOOST80 and BOOST135 was significantly higher than that in

SHAM and SQUEE80 at Post-0 (p < 0.05). ΔMuscle hardness and Δheart rate

variability did not differ significantly between trials. In conclusion, IPC treatments,

irrespective of applied pressure and mode of compression, increased ankle DF

ROM. This resulted from decreased pain sensitivity (i.e., increased PPT). In addition,

high inflation pressure and frequency did not provide additional benefits in

increasing ankle DF ROM.
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1 Introduction

Ankle dorsiflexion (DF) range of motion (ROM) is associated

with the risk of a wide variety of lower extremity injuries in

athletes (Mason-Mackay et al., 2017). Restricted ankle DF ROM

limits the ability to pass the leg forward over the foot and to lower

the center of mass during squat-type movements (Piva et al.,

2005). This may be compensated by subtalar and midfoot

pronation or valgus of the knee (Piva et al., 2005), which are

associated with chronic and acute injuries (Mason-Mackay et al.,

2017). Furthermore, restricted ankle DF ROM and associated

reductions in hip and knee flexion at landing increase the loading

rate and ground reaction forces, thereby increasing the risk of

injury (Mason-Mackay et al., 2017; Brazier et al., 2019). Ankle DF

ROM is associated not only with the risk of injuries, but also with

sports performance. Previous studies have shown that restricted

ankle DF ROM decreases changes in directional capability

(Gonzalo-Skok et al., 2015) and unilateral dynamic balance

(López-Valenciano et al., 2019), both of which are key skills

in intermittent team sports. Therefore, strategies to maintain and

improve ankle DF ROM are important for athletes.

Intermittent pneumatic compression (IPC) may be one such

treatment approach. The IPC treatment utilizes whole-leg sleeves

that operate by inflating and deflating a series of zones at selected

pressures. Historically, IPC has been employed in clinical settings

to combat vascular diseases by increasing the blood flow (Kumar

and Walker, 2002). IPC has been shown to improve lower-limb

artery hemodynamics (Sheldon et al., 2012), resulting from: 1) an

increase in the arteriovenous pressure gradient secondary to

venous emptying (Delis et al., 2000) and 2) an improvement

in endothelial function by the production of endothelial

vasodilators (i.e., nitric oxide and vascular endothelial growth

factor) in response to an increase in shear stress (Sheldon et al.,

2012). In addition, evidence regarding IPC in an athletic setting

has recently increased. Previous studies have reported that IPC

has little to no benefits in a 4-min cycling time-trial (Overmayer

and Driller, 2018), a 30-s Wingate anaerobic test (Martin et al.,

2015b), muscle glycogen synthesis (Keck et al., 2015), and

autonomic system recovery (Valenzuela et al., 2018). However,

some investigations have indicated that IPC increased flexibility

(Sands et al., 2014; Haun et al., 2017b), pressure-to-pain

threshold (PPT) (Sands et al., 2015; Haun et al., 2017b), and

blood lactate clearance (Martin et al., 2015b) and reduced skeletal

muscle oxidative stress and proteolysis markers (Haun et al.,

2017a; Haun et al., 2017b). Potential mechanisms contributing to

increased ROM following massage, including IPC, are quite

diverse. For example, decreased pain sensitivity (i.e., an

increase in PPT) of connective tissue may improve stretch

tolerance and thus increase ROM (Macdonald et al., 2014).

Improved hemodynamics may induce warming and

thixotropic effects via neural feedback mechanisms (Behm

and Wilke, 2019). Moreover, a variety of receptors (e.g.,

Ruffini cylinders and Pacinian corpuscles) respond to massage

pressure, which may affect parasympathetic activation, resulting

in relaxation of muscles (i.e., reduced muscle hardness) (Behm

and Wilke, 2019).

Despite substantial evidence of the effectiveness of IPC

treatment for ROM improvement, there is little information

regarding the appropriate setting of IPC treatment

(i.e., applied pressure and mode of compression) for ROM

improvements. Various pressures and modes of compression

are commercially available; therefore, they are currently used in

clinical and athletic settings. It is important to address this issue

because clinicians and athletic trainers are challenged by the task

of providing evidence-based recommendations regarding IPC

treatment. A previous study investigated the impact of different

IPC stimuli (frequency: two to four impulses per min; applied

pressure: 60–140 mmHg; mode: IPC of the foot, calf, and both

foot and calf) for lower-limb venous emptying (Delis et al., 2000).

This study showed that foot and calf compression with higher

frequency and applied pressure caused improvements in lower-

limb venous emptying and the resultant increase in arterial blood

flow (Delis et al., 2000, 2001). As noted above, an improvement in

hemodynamics is one of the potential mechanisms contributing

to increased ROM following massage. Thus, the applied pressure

and mode of compression in IPC treatment may cause an

increase in ROM.

Therefore, the present study aimed to investigate the

effects of different IPC stimuli on ankle DF ROM. We

hypothesized that 1) IPC, irrespective of applied pressure

and mode of compression, would increase ankle DF ROM

resulting from increased artery blood flow and PPT, and 2) the

magnitude of improvement in ROM would be high under high

pressure and frequency concurrent massage due to a greater

increment in artery blood flow under high pressure and

frequency massage compared to low pressure and

frequency massage.

2 Materials and methods

2.1 Participants

Fourteen, university intermittent team sport male athletes

participated in this study (age: 21 ± 1 year, height: 1.74 ± 0.05 m,

body mass: 70.9 ± 7.7 kg, body fat percentage: 14.2 ± 3.6%, body

mass index: 23.5 ± 2.5 kg/m2; mean ± standard deviation [SD]). A

power calculation using ROM data from a previous study (Sands

et al., 2014) was performed using a calculated effect size (partial

η2) of 0.42, α = 0.05, and β = 0.20, which determined that eight

participants were required to demonstrate a difference in ROM

after IPC treatments. The participants did not have a history of

lower extremity injury within 6 months before the study and

were free of cardiovascular and peripheral vascular disease at the

time of the study. This study was approved by the Ethics in

Human Research Committee of Hiroshima University (Approval
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number: 2020043), and all participants provided written

informed consent to participate in this study.

2.2 Experimental design

All participants completed a preliminary visit to

determine their physical characteristics and to perform a

familiarization trial before completing four experimental

trials (1: no compression while wearing IPC devices

[SHAM], 2: IPC treatment using sequential compression

(commercial name: Squeeze) with an applied pressure of

approximately 80 mmHg [SQUEE80], 3: IPC treatment

using uniform compression (commercial name: Boost) with

an applied pressure of approximately 80 mmHg [BOOST80],

4: IPC treatment using uniform compression with an applied

pressure of approximately 135 mmHg [BOOST135]) using a

randomized cross-over design.

All trials were separated by at least 3 days and were

performed at the same time of day for each participant to

avoid any circadian rhythm-related variations. Participants

refrained from consuming alcohol and caffeine for 24 h prior

to each experimental trial and fasted for 3 h, except for the

consumption of water, before each experimental trial. The

participants were asked to avoid altering their regular lifestyle

habits, exercise, and diet throughout the study. All the trials were

performed during the competitive season.

2.3 Experimental procedure

During the preliminary visit, body weight and body fat

percentage were measured using multifrequency bioelectrical

impedance analysis equipment (InBody 470, InBody Japan,

Japan) (Alves et al., 2014). For familiarization, 30-min IPC

treatment using BOOST135 was performed.

In the four experimental trials, participants were initially

at rest for 10 min and then wore an IPC device (Doctor

Medomer DM-4S, Nitto Kohki, Japan). Participants were

then assigned to either a 30-min SHAM, SQUEE80,

BOOST80, or BOOST135. Participants rested for 20 min

after IPC treatment. The participants remained in the

supine position throughout the study except for the

measurements. During this experiment, the participants

were only allowed to read books and were prohibited from

sleeping, using computers, or drinking water.

2.4 IPC treatments

The IPC stimuli are shown in Figure 1. The massage device

consisted of two leg sleeves that contained four circumferential

inflatable chambers encompassing the leg from the foot to the

distal thigh. The leg sleeve was connected to an automatic

pneumatic pump and controlled the target inflation pressure

and duty cycle of each chamber. The target pressure and duty

cycle were pre-programmed and commercially available. We

employed the applied pressure at 80 or 135 mmHg since 1)

the applied pressure at 80 mmHg was employed in previous

studies (Heapy et al., 2018; Overmayer and Driller, 2018; Oliver

and Driller, 2021) and 2) the applied pressure at 135 mmHg is

highest between the pre-programmed and commercially

available settings in BOOST. In the SQUEE compression, the

most distal chamber covering the high ankle to toes inflated for

approximately 10 s, after which pressure was held constant to

prevent backflow. The same process occurred in the next

proximal chamber. This continued until the most proximal

chamber (lower thighs) was reached. After inflation was

completed in all chambers, they were completely deflated.

This entire cycle of compression (approximately 39 s;

1.5 impulses per min) was repeated continuously over the

course of a single 30-min treatment session. The SQUEE

compression was employed in previous studies (Haun et al.,

2017a; 2017b; Oliver and Driller, 2021). In the BOOST

compression, all chambers inflated to target pressures for

approximately 16 s, and all chambers incompletely deflated

for approximately 1 s (approximately 45 mmHg and 8 mmHg

at the most distal and proximal chambers, respectively). This was

repeated for three times and then all chambers were completely

deflated for approximately 9 s. This entire cycle of compression

(approximately 60 s; three impulses per min) was repeated

continuously over the course of a 30-min treatment session.

The frequency at the BOOST mode was the highest among

commercially available settings.

The SHAM consisted of wearing the IPC devices and

connection to the pneumatic pump but was devoid of actual

compression. This trial was used to control any thermogenic

effect of the application of IPC devices, as heat loss from the legs

is likely affected.

FIGURE 1
Representative image of inflation protocols in intermittent
pneumatic compression (IPC) stimuli.
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2.5 Measurements
2.5.1 Ankle DF ROM

Ankle DF ROM in the dominant leg was measured using

the Weight-Bearing Lunge Test (WBLT) before (Pre),

immediately after IPC treatment (Post-0), and 20 min after

IPC treatment (Post-20). High inter-rater (r = 0.99) and intra-

rater (r = 0.98) reliabilities have been previously reported for

the WBLT (Bennell et al., 1998), and ankle DF ROM during

the WBL has been a more sensitive measure for identifying

those with high-risk movement patterns for injury compared

with non-WBL passive measures (Dill et al., 2014). In brief,

the participants stood upright against the wall and placed the

dominant leg next to a tape measure placed perpendicular to

the wall. The participants attached the front of the knee of the

dominant leg to the wall while keeping the heel firmly planted

on the floor. The involved limb progressed away from the wall

while maintaining knee contact without lifting the heel. To

ensure that no elevation of the heel occurred, a TheraBand was

placed under the heel, and tension was applied by the same

experimenter. The TheraBand would snap back if the heel

came off the floor, and the distance from the wall to the toe

was measured.

2.5.2 Physiological index

The time-averaged mean blood flow velocity (Vmean) and

vessel diameter in the popliteal artery were measured in the

dominant leg at Pre, Post-0, and Post-20 using ultrasonography

with Doppler and B-mode functions (JS2, Medicare, Japan) with

a 4–16 MHz linear transducer and proprietary software (JS2).

The Vmean wasmeasured with the probe appropriately positioned

to maintain an insonation angle of 60° or less. The sample volume

was maximized according to the vessel size. Using arterial

diameter and Vmean, blood flow in the popliteal artery as an

index of hemodynamics was calculated as follows: blood flow =

Vmean · π (vessel diameter/2)2 · 60.
PPT at the calf in the dominant leg as an index of pain

sensitivity was measured using an algometer (MF-129AA,

JTECH Medical, United States) at Pre, Post-0, and Post-20.

The 1.0-cm2 probe of the algometer was placed into the

gastrocnemius muscle belly at the position of the proximal

30% of the line connecting the popliteal line and the ankle

joint lateral malleolus (Inami et al., 2017). The graded force

was applied at a constant rate of 50–60 kPa per second until

participants verbally reported the presence of pain.

Gastrocnemius muscle hardness as an index of objective

relaxation of muscle was measured using an ultrasonography

with a strain elastography function (JS2, Medicare, Japan) at Pre,

Post-0, and Post-20. An acoustic coupler (EZU-TECPL1, Hitachi

Aloka Medical, Japan, elastic modulus: 22.6 kPa) was used as the

reference material and was placed between the transducer and

the skin. Ultrasonography gel was applied between the

transducer and coupler, and between the coupler and skin.

The strain ratio was calculated as: strain ratio = strain ratio in

the target muscle/strain ratio in the coupler (Yanaoka et al.,

2021). Two 6-s video clips were recorded at each measurement

point, and the average value of six randomly chosen images was

calculated.

Heart rate variability (HRV) as an index of parasympathetic

activation was measured using a wearable heart rate sensor

(WHS-1, Union Tool, Japan) for 2 min at Pre, Post-0, and

Post-20 in the supine position (Arikawa et al., 2020). It is

generally recommended for HRV that analysis be performed

on a recording at least 2 min (Smith et al., 2013). During the

measurement, the respiratory rate was maintained at 15 breaths/

min. For the time-domain analysis, the mean heart rate (HR), SD

of normal-to-normal interval (SDNN), and square root of the

mean squared differences of successive normal-to-normal

intervals (RMSSD) were measured. For the frequency-domain

analysis, the high-frequency component (HF, 0.15–0.40 Hz),

low-frequency component (LF, 0.04–0.15 Hz), and ratio of LF

to HF (LF/HF) were calculated. The natural logarithm (Ln)

values were calculated for LF and HF.

2.5.3 Perceptual index

Perceived relaxation was measured using a visual

evaluation scale (VAS) before, Post-0, and Post-20 (Wood

et al., 2021). The VAS scores ranged from 0 to 10, with

0 representing no relaxation and 10 representing the most

relaxed state.

2.6 Statistical analysis
The Shapiro–Wilk test was used to check for normality of

distribution. Differences between trial, time, and trial × time for

the changes in all variables from Pre (Δ) were analyzed using

linear mixed models. This analysis was preferred because it

allows for missing data, can accurately model different

covariate structures for repeated-measures data, and can

model between-subject variability (Vandenbogaerde and

Hopkins, 2010). Where significance was found, the values

were subsequently analyzed using the Bonferroni multiple

comparison test. A pseudo-R2 is reported as a measure of

global effect size in linear mixed models, and we used the

predicted score for each participant in the sample, calculated

the correlation between the observed and predicted scores, and

squared that correlation (Roldan-Valadez et al., 2018). A

pseudo-R2 was classified as small (0.10–0.29), moderate

(0.30–0.49), and large (≥0.5) (Cohen, 1988). Cohen’s d effect

size was also presented where necessary, whereby >2.0 was

categorized as a very large effect, 1.2–2.0 as a large effect,

0.6–1.2 as a moderate effect, and 0.2–0.6 as a small effect

(Hopkins et al., 2009). Statistical significance was set at p <
0.05. Statistical analysis was performed using the SPSS software

(version 26.0, SPSS Japan, Japan). All values are shown as the

mean ± SD.
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3 Results

All mean values are presented in Supplementary Table S1.

The global effect sizes (pseudo-R2 correlation between the

observed and predicted scores) were 0.44 for ΔWBLT

performance, 0.27 for Δblood flow, 0.32 for ΔVmean,

0.06 for Δvessel diameter, 0.18 for ΔPPT, 0.07 for Δmuscle

hardness, 0.19 for ΔHR, 0.09 for ΔSDNN, 0.11 for ΔRMSSD,

0.13 for ΔLnHF, 0.14 for ΔLnLF, 0.13 for ΔLnLF/LnHF, and

0.25 for Δperceived relaxation.

3.1 Ankle DF ROM

Figure 2A shows the changes in WBLT performance. There

was a trial × time interaction (F [6,143] = 6.364, p = 0.001).

ΔWBLT performances in all IPC treatments were significantly

higher than SHAM at Post-0 (SQUEE80: p < 0.001, d = 1.62,

BOOST80: p < 0.001, d = 1.75, BOOST135: p < 0.001, d = 1.88)

and Post-20 (SQUEE80: p < 0.001, d = 1.73, BOOST80: p <
0.001, d = 1.72, BOOST135: p < 0.001, d = 2.05). In all PC

treatments, ΔWBLT performances at Post-0 and Post-20

significantly increased compared to those at Pre (vs. Post-0;

SQUEE80: p = 0.005, d = 1.18; BOOST80: p < 0.001, d = 1.36;

BOOST135: p < 0.001, d = 1.54, vs. Post-20; SQUEE80: p =

0.019, d = 1.74; BOOST80: p = 0.001, d = 1.54; BOOST135: p <

0.001, d = 1.98). In SHAM, ΔWBLT performances at Post-0

significantly decreased compared to that at Pre (p = 0.030,

d = 1.10).

3.2 Popliteal artery blood flow

Figure 3 shows the changes in the blood flow in the popliteal

artery. There were trial × time interactions for Δblood flow (F

[6,142] = 3.050, p = 0.008) andΔVmean (F [6,142] = 4.024, p = 0.001).

ΔBlood flow in BOOST80 and BOOST135 was significantly higher

than SHAM and SQUEE80 at Post-0 (vs. SHAM; BOOST80: p =

0.001, d = 1.14; BOOST135: p < 0.001, d = 1.20, vs. SQUEE80;

BOOST80: p = 0.005, d = 1.05; BOOST135: p = 0.001, d = 1.11).

ΔBlood flow in BOOST80was significantly higher than SQUEE80 at

Post-20 (p = 0.039, d = 0.91). In SHAM, Δblood flow at Post-0 and

Post-20 significantly decreased compared to that at Pre (Post-0: p =

0.018, d = 1.29, Post-20: p = 0.044, d = 1.07). In SQUEE80, Δblood
flow at Post-20 significantly decreased compared to that at Pre (p <
0.001, d = 1.60).

ΔVmean in BOOST80 was significantly higher than SHAM at

Post-0 (p = 0.001, d = 1.34). ΔVmean in BOOST135 was

significantly higher than SHAM and SQUEE80 at Post-0 (vs.

SHAM; p < 0.001, d = 1.50, vs. SQUEE80; p < 0.001, d = 1.19). In

SHAM, ΔVmean at Post-0 and Post-20 significantly decreased

compared to that at Pre (Post-0: p = 0.002, d = 1.45, Post-20: p =

FIGURE 2
Changes in theWeight-Bearing Lunge Test [WBLT: (A)], pressure-to-pain threshold [PPT: (B)], muscle hardness (C), and perceived relaxation (D)
among all trials. Mean ± SD, n = 14. a: SHAM vs. SQUEE80 p < 0.05, b: SHAM vs. BOOST80 p < 0.05, c: SHAM vs. BOOST135 p < 0.05, ‡: vs. Pre in SHAM
p < 0.05, *: vs. Pre in SQUEE80 p < 0.05, †: vs. Pre in BOOST80 p < 0.05, # vs. Pre in BOOST135 p < 0.05.
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0.002, d = 1.53). In SQUEE80, ΔVmean at Post-20 significantly

decreased compared to that at Pre (p < 0.001, d = 1.96). In

BOOST135, ΔVmean at Post-0 significantly increased compared

to that at Pre (p = 0.031, d = 0.80). Owing to missing data,

hemodynamics data at Post-20 in BOOST80 were analyzed for

13 participants.

3.3 PPT

Figure 2B shows the changes in PPT. There was a trial × time

interaction for ΔPPT (F [6,142] = 2.283, p = 0.039). ΔPPTs in all

IPC treatments were significantly higher than SHAM at Post-0

(SQUEE80: p = 0.002, d = 0.94, BOOST80: p = 0.004, d = 0.94,

BOOST135: p = 0.001, d = 1.05) and Post-20 (SQUEE80: p =

0.002, d = 1.19, BOOST80: p = 0.002, d = 1.24, BOOST135: p =

0.032, d = 0.84). In BOOST135, ΔPPT at Post-0 significantly

increased compared to that at Pre (p = 0.048, d = 0.79). Owing to

missing data, PPT data at Post-20 in BOOST135 were analyzed

for 13 participants.

3.4 Muscle hardness and HRV

Figure 2C shows the changes in gastrocnemius muscle

hardness, and Table 1 shows the changes in the HRV data.

There were no trial × time interactions for Δmuscle hardness and

ΔHRV (p > 0.05, Figure 2C and Table 1). Owing to missing data,

HRV data were presented for 13 participants.

3.5 Perceived relaxation

Figure 2D shows the changes in perceived relaxation. There

was a trial × time interaction for Δperceived relaxation (F

[6,143] = 2.587, p = 0.021). ΔPerceived relaxations in all IPC

treatments were significantly higher than SHAM at Post-0

(SQUEE80: p = 0.001, d = 1.05, BOOST80: p < 0.001, d =

1.08, BOOST135: p = 0.022, d = 0.73) and Post-20

(SQUEE80: p = 0.028, d = 0.76, BOOST80: p < 0.001, d =

0.95, BOOST135: p = 0.004, d = 0.81). In all PC treatments,

ΔPerceived relaxations at Post-0 and Post-20 significantly

increased compared to those at Pre (vs. Post-0; SQUEE80: p =

0.001, d = 1.48; BOOST80: p < 0.001, d = 1.37; BOOST135: p =

0.006, d = 0.96, vs. Post-20; SQUEE80: p = 0.005, d = 1.25;

BOOST80: p < 0.001, d = 1.30; BOOST135: p < 0.001, d = 1.20).

4 Discussion

This study aimed to investigate the effect of different IPC

stimuli on ankle DF ROM. The present findings demonstrate

that, in accordance with one of our hypotheses, all IPC

treatments significantly increased ankle DF ROM at Post-0

and Post-20, as compared with SHAM. Moreover, the present

study showed that all IPC treatments increased PPT at Post-0

and Post-20 compared to SHAM. This suggests that one of the

mechanisms of increased ankle DF ROM is an increase in PPT, at

least in the present study. These findings support previous

findings regarding IPC and flexibility (Sands et al., 2014, 2015;

Haun et al., 2017b) and contribute to the growing body of

evidence supporting recommendations regarding the use of

IPC to increase flexibility. Moreover, to our knowledge, the

present study is the first to compare how different IPC stimuli

affect ankle DF ROM. No significant differences in WBLT

FIGURE 3
Changes in the blood flow (A), blood velocity (B), and vessel
diameter (C) of the popliteal artery among all trials. Mean ± SD, n =
14. b: SHAM vs. BOOST80 p < 0.05, c: SHAM vs. BOOST135 p <
0.05, d: SQUEE80 vs. BOOST80 p < 0.05, e: SQUEE80 vs.
BOOST135, ‡: vs. Pre in SHAM p < 0.05, *: vs. Pre in SQUEE80 p <
0.05, # vs. Pre in BOOST135 p < 0.05.
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performance at Post-0 and Post-20 were found between all IPC

treatments, suggesting that high inflation pressure and frequency

may not provide an additional benefit to increase ankle DF ROM,

as opposed to our hypotheses.

A decrease in ankle DF ROM has been reported as a

predisposing factor for increasing the risk of hamstring strain

and ankle injuries (van Dyk et al., 2018), ACL ruptures (Fong

et al., 2011), and Achilles and patellar tendinopathies (Backman

and Danielson, 2011) in several intermittent team sports with

high-intensity stretch-shortening cycles (e.g., soccer and

basketball) (Witvrouw et al., 2004). Moreover, ankle DF ROM

is critically important in multidirectional running tasks,

unilateral dynamic balance, and changes in direction

capability (Gonzalo-Skok et al., 2015; López-Valenciano et al.,

2019). However, ankle DF ROM throughout the competitive

season in professional intermittent team sports is reduced

because of the high demand to perform sudden accelerations

and decelerations, changes in direction, and jumping and landing

tasks (Moreno-Pérez et al., 2020). For instance, Moreno-Pérez

et al. reported a significant reduction in WBLT performance in

dominant (-9.6%) and non-dominant (-13.8%) ankles from pre-

season to post-season (Moreno-Pérez et al., 2020). The present

study showed significant increases in WBLT performance in

SQUEE80 (+6.1%), BOOST80 (+7.4%), and BOOST135 (+8.2%)

at Post-0. Thus, an improvement in ankle DF ROM can be

achieved by IPC treatment, which may contribute to avoiding

injuries and maintaining exercise performance in sports

involving high-intensity stretch-shortening cycles. Although

the present study cannot conclude the chronic effects of IPC

treatments on exercise performance and risks of injury, it would

be interesting to determine whether long-term IPC treatments

would have implications for improving exercise performance and

injury prevention for intermittent team sports athletes.

Theoretically, the potential mechanisms contributing to

increased ROM following massage are a reduction in pain

sensitivity, increased hemodynamics, and activation of the

parasympathetic nerve (Behm and Wilke, 2019). In the

present study, the hemodynamic and parasympathetic aspects

were assessed using blood flow, HRV, and muscle hardness. The

present study showed 1) no improvement in blood flow in

SQUEE80 and 2) no affecting HRV and muscle hardness by

employing IPC treatments. Thus, at least in the present study,

TABLE 1 Mean Δvalues for heart rate variability.

SHAM SQUEE80 BOOST80 BOOST135

ΔHR (bpm)

Pre 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Post-0 -1.5 ± 6.2 -1.2 ± 4.5 -1.9 ± 3.2 -2.5 ± 5.0

Post-20 -1.8 ± 4.9 -3.0 ± 5.1 -0.7 ± 2.7 -3.0 ± 3.9

ΔSDNN (ms)

Pre 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Post-0 1.8 ± 17.5 4.4 ± 21.6 16.1 ± 29.4 6.9 ± 16.7

Post-20 19.0 ± 17.7 8.9 ± 34.6 19.3 ± 17.1 5.7 ± 30.6

ΔRMSSD (ms)

Pre 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Post-0 -6.1 ± 22.1 1.3 ± 14.9 8.7 ± 22.9 6.7 ± 19.7

Post-20 5.6 ± 15.1 7.8 ± 22.1 6.2 ± 23.7 5.6 ± 35.0

ΔLnHF (A.U.)

Pre 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Post-0 -0.54 ± 1.20 0.08 ± 1.10 0.13 ± 0.47 0.12 ± 0.90

Post-20 -0.29 ± 0.78 -0.19 ± 0.79 0.06 ± 0.50 0.07 ± 1.08

ΔLnLF (A.U.)

Pre 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Post-0 0.27 ± 0.56 0.24 ± 0.61 0.19 ± 0.68 -0.02 ± 0.54

Post-20 0.45 ± 0.71 0.15 ± 0.70 0.28 ± 0.62 -0.06 ± 0.62

ΔLnLF/HF (A.U.)

Pre 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Post-0 0.10 ± 0.21 0.03 ± 0.06 0.03 ± 0.08 0.00 ± 0.09

Post-20 0.08 ± 0.12 0.03 ± 0.09 0.03 ± 0.09 0.00 ± 0.12

Mean ± SD, n = 13. HR: heart rate, SDNN: standard deviation of normal-to-normal interval, RMSSD: square root of the mean squared differences of successive normal-to-normal intervals,

LnHF: natural logarithm high-frequency component, LnLF: natural logarithm low-frequency component, LF/HF: ratio of LnLF to LnHF.
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these may not be the main mechanisms contributing to increased

ROM following IPC treatment. However, the present study

demonstrated that all IPC treatments increased PPT as

compared with SHAM. The reduction in pain sensitivity

observed in the present study may be related to the gate

control theory of pain (Moayedi and Davis, 2013) and diffuse

noxious inhibitory control (Chaillet et al., 2014). Massage

stimulates a variety of mechanoreceptors and nociceptors,

which can alter the transmission of ascending nociceptive

information via small-diameter Aδ fibers and give rise to a

descending inhibitory effect that facilitates pain inhibition

(Moayedi and Davis, 2013). Massage also triggers an

endorphinergic system, which reduces pain everywhere except

in the stimulated area (Chaillet et al., 2014). Reduction in pain

sensitivity and resultant increase in flexibility following IPC

treatment are consistent with previous findings reported by

other investigators (Sands et al., 2014, 2015; Haun et al., 2017b).

In addition, the present study observed no difference between

the IPC treatments in the magnitude of increases in PPT and

flexibility. Massage does not need to be unduly painful to

decrease pain sensitivity. A previous study suggested that pain

inhibition occurs after light rolling massage (Aboodarda et al.,

2015). Yanaoka et al. also found that the intensity of rolling

massage did not affect the magnitude of the increase in ROM

(Yanaoka et al., 2021). Mechanoreceptors and nociceptors are

present in both muscle and skin; thus, even light stimulation can

decrease pain sensitivity (Behm and Wilke, 2019). Thus, in the

present study, no differences in pain sensitivity between IPC

treatments may contribute to a similar increase in flexibility

following all IPC treatments.

IPC treatments have been widely employed in clinical

settings to increase lower-limb artery hemodynamics,

resulting in the prevention of deep venous thrombosis and

reduction of both lymphedema and venous ulcer healing times

(Kumar and Walker, 2002). In addition, an increase in blood

flow following IPC potentiates greater oxygenation (Helmi

et al., 2014) and nutrient delivery (e.g., blood glucose and

plasma insulin) (Keck et al., 2015) and metabolite clearance

(e.g., blood lactate) (Martin et al., 2015b) after exercise, which is

intriguing in the context of athletes’ recovery. Although

popliteal artery blood flow during IPC treatments could not

be measured because of the encapsulating nature of the leg

sleeves, the present study revealed that popliteal artery blood

flow at Post-0 in SHAM and SQUEE80 was decreased by 16.2%

and 12.4%, respectively, from Pre; whereas this decrease was

significantly prevented by BOOST80 (+5.8%) and BOOST135

(+7.8%). Decrements in arterial blood flow at Post-0 in SHAM

and SQUEE80 are consistent with previous findings suggesting

lower resting limb blood flow after a 1-h IPC treatment (squeeze

method, ~70 mmHg) and sham (wearing IPC devices without

compression) (Martin et al., 2015a). In addition, the present

study is the first to observe significant prevention of decreased

arterial blood flow at Post-0 in BOOST80 and BOOST135.

Previous studies reported that sequential compressions may

have a greater and more sustained increase in lower-limb

hemodynamics than uniform compressions [see the previous

review of these, (Helmi et al., 2014)]; thus, the present result is

inconsistent with previous findings. This may be due to the

differences in compression frequencies between SQUEE

(1.5 impulses per min) and BOOST (three impulses per

min). One of the mechanisms of improved arterial blood

flow following IPC treatment is an increase in arteriovenous

pressure gradient secondary to venous emptying (Delis et al.,

2000, 2001). Delis et al. investigated the optimum IPC stimulus

for venous emptying and suggested that a frequency of three

impulses per min generated significantly higher venous

emptying than a frequency of two impulses per min at

applied pressures of 60–140 mmHg when IPC was applied at

both the foot and calf (Delis et al., 2000). A frequency of three

impulses per min can provide refilling that starts at the end of

compression because the venous refill time is approximately

20 s (Delis et al., 2000). This suggests that the frequency of

1.5 impulses per min used in the present study may be

insufficient to maintain empty veins. Thus, compression

frequency may contribute to a significant prevention of

decreased arterial blood flow at Post-0 in BOOST80 and

BOOST135.

A previous study reported that IPC treatment suppresses

parasympathetic activation, as evidenced by decreased HF

(Valenzuela et al., 2018). Increased parasympathetic activation

can contribute to decreased pain sensitivity, increased muscle

relaxation, and increased hemodynamics (Weerapong et al.,

2005); thus, the context of recovery for athletes is critical. The

present study demonstrated that IPC treatment had no influence

on HRV, which is inconsistent with a previous study (Valenzuela

et al., 2018). This may be due to the difference in compression

sites between the present and previous studies (Valenzuela et al.,

2018). The previous study employed abdominal compression

(Valenzuela et al., 2018). Bladder distension has been clearly

demonstrated in human sympathetic activation (Fagius and

Karhuvaara, 1989). Indeed, abdominal compression by

pneumatic anti-shock garments activated the sympathetic

nervous system as compared to limb compression (Garvin

et al., 2014).

Despite the insights provided by this study, there are some

limitations that need to be considered. First, the present study

cannot conclude the recovery effects of IPC treatment on ankle

DF ROM. IPC treatments are likely employed after exercise to

accelerate recovery (Overmayer and Driller, 2018). Further

research is needed to investigate how IPC treatment affects

ankle DF ROM recovery. Second, popliteal artery blood flow

was not measured during IPC treatment. It is reasonable to

assume that the popliteal artery blood flow increases during IPC

treatment (Delis et al., 2000, 2001). It would be interesting to

determine whether the different IPC stimuli used in the present

study would have similar effects on increases in popliteal artery
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blood flow. Third, the interpretation of results in ankle DF ROM

must be acknowledged. Although IPC treatments increase

flexibility, this is likely to promote better performances and

decreases the risk of injuries in only sports with a high

intensity of stretch-shortening cycles (Witvrouw et al., 2004).

In sports containing low-intensity or limited stretch-shortening

cycles (e.g., jogging, cycling, and swimming), increased flexibility

may not be advantageous (Witvrouw et al., 2004). Finally, we

could not compare between SQUEE at 135 mmHg and the other

IPC treatments since SQUEE at 135 mmHg did not pre-program

commercially.

In conclusion, this study demonstrated that IPC treatment,

irrespective of applied pressure and mode of compression,

increased ankle DF ROM due to an increase in PPT.

Additional benefits of high pressure and frequency were not

observed for the increase in ankle DF ROM. In addition, IPC

treatments in BOOST increased popliteal artery blood flow

immediately after IPC compared to SHAM and SQUEE.

4.1 Practical applications

This study revealed that IPC treatments, irrespective of

applied pressure and mode of compression, increased ankle

DF ROM; however, blood flow at Post-0 was higher after

high-frequency IPC treatments than that with low-frequency

treatments. These suggested that IPC treatments with high

frequency may promote recovery for athletes. In addition, IPC

can be mixed with other recovery modalities, such as hydration

and nutritional strategies. When athletes must play in several

twilight matches per week (e.g., FIFA World Cup in football,

Olympic games in basketball), maximizing recovery within a

short amount of time becomes critical. The accumulation and

combination of several recovery techniques would support

maximal recovery; thus, IPC treatments, which can be easily

performed with other recovery modalities, would be

recommended for athletes.
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