
The giant escape neurons of
crayfish: Past discoveries and
present opportunities

Jens Herberholz  *

Department of Psychology, University of Maryland, College Park, MD, United States

Crayfish are equipped with two prominent neural circuits that control rapid,

stereotyped escape behaviors. Central to these circuits are bilateral pairs of

giant neurons that transverse the nervous system and generate escape tail-flips
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Introduction

Crayfish are equipped with two prominent neural circuits that control rapid,

stereotyped escape behaviors. Central to these circuits are bilateral systems of giant

neurons that transverse the nervous system and generate escape tail-flips in opposite

directions away from threatening stimuli. This review describes the beginnings of crayfish

giant circuit discovery and investigation, the fruitful advances that have been made over

the past century, and it highlights some exciting opportunities for future research. After

the giant escape neurons of crayfish were first anatomically identified in the late 19th

century, they have been studied extensively by hundreds of scientists. That makes writing

a comprehensive review a challenge, and it becomes unavoidable to omit some of the

existing literature, unintentionally or not. There will be some personal bias in my account,

and I apologize in advance to those whose undoubtedly important contributions to this

field are not acknowledged, or not as much as they deserve. In addition, excellent reviews

already exist as journal publications (e.g., Edwards et al., 1999) or in form of book chapters

(e.g., Sillar et al., 2016), but a fresh look, including some of the more recent developments,

might still be warranted. Important discoveries of broad significance have been made in

the crayfish escape circuits. While the model might be considered less fashionable and

even “non-traditional” in the context of current funding priorities, it has stimulated the

curiosity of many research labs across different disciplines.

General design of the nervous system and giant escape
fiber pathways

The basic organization of the crayfish nervous system is a decentralized structure

that features a chain of ganglia localized in different body segments. From head to tail,

this includes the supraesophageal ganglion (brain), the subesophageal ganglion, five
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thoracic ganglia, and six abdominal ganglia (Figure 1A). The

bilateral pairs of giant escape neurons (lateral and medial)

receive their main sensory inputs on opposite sides of the

body. The medial giant (MG) neuron is excited by sensory

input to the brain while the lateral giant (LG) neuron is

primarily stimulated by caudal mechanosensory inputs. Both

giant fibers activate a discrete set of postsynaptic premotor

(i.e., segmental giants) and motor (i.e., motor giants) neurons in

the thoracic and abdominal ganglia (Figure 1B). This leads to

different patterns of muscle activity that produce rapid tail

flexions in all abdominal segments (MG) or around the

thoracic-abdominal joint (LG), resulting in escape

trajectories away from the point of stimulation.

The beginnings

George Edwin Johnson is often credited with the discovery of

the crayfish giant fibers almost 100 years ago (Johnson, 1924), but

he refers to earlier work by Krieger (1880) who identified large

medial and lateral fibers in cross-section of the nerve cord. In

addition, Retzius (1890) used methylene blue staining to show

medial giant fibers in thoracic and abdominal ganglia. Johnson,

however, was the first one to provide a detailed anatomical

description of the giant fibers combining cross-sectioning and

dye staining. He reported that the medial giant fibers (MGs)

originate in the brain where their cell bodies are located, and they

project to the last abdominal ganglion. He also described the

FIGURE 1
(A) A drawing of the decentralized nervous system of crayfish with major parts labeled. From Huxley (1880). (B) A simplified schematic of the
giant neuron circuits with some of the input/output connections of MG (green) and LG (blue) indicated. MG receives sensory input of different
modalities in the brain. LG receives mechanosensory input in the abdomen, both directly from primary sensory afferents (SA) and via sensory
interneurons (SI). Some SIs also inhibit LG. The sensory pathway to LG is only shown for the last abdominal ganglion (A6). Both LG and MG
activate the segmental giants (SG) as well as the motor giants (MoGs) in rostral abdominal ganglia (A2). The SGs activate groups of fast flexor muscles
(FFs). Both the MoGs and FFs send axons to the muscles via the third ganglionic nerves. Only a single giant neuron (MG, LG, SG, MoG) is shown
although these neurons exist as bilateral pairs in the ganglia. SAs, SIs, and FFs are groups of neurons. Axonal projections for MoGs and FFs are only
shown for one nerve.
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lateral giant fibers (LGs), which he named segmental giant fibers

because he recognized that they are single neurons tightly

coupled to their posterior/anterior homologues in all

abdominal and the most caudal thoracic ganglia. Johnson also

found what appeared to be intraganglionic coupling between the

bilateral pair of LGs, and he was able to identify connections

between the giant fibers and the giant motor fibers (MoGs). He

further traced the axons of the MoGs in the third segmental

nerves and proposed a putative motor pathway to the trunk

muscles and related to tail flexion (Figure 1B). Lastly, Johnson

discovered that the last abdominal ganglion contains two sets of

LGs and MoGs, as well as twice as many nerves compared to

anterior ganglia, which he attributed to the nature of an

additional, fused terminal segment. Given that neuron-to-

neuron communication was thought to happen via (chemical)

synapses or by transmission via a nerve-net structure at the time,

Johnson recognized the “strikingly unique” connection that the

LGs make with their segmental homologues. In hindsight, this is

not surprising because electrical neurotransmission was

unknown at the time, and it took another 30 years before the

first clear evidence for an electrical synapse was provided by

Furshpan and Potter (1957). Interestingly, it was in the same

circuit, between the LGs and MoGs, where this important

discovery was made. Several years later, this led to the

identification of “septate junctions” that connect the LGs in

each segment along the nerve cord (Watanabe and Grundfest,

1961).

Building on Johnson’s comprehensive anatomical studies,

C.A.G. Wiersma performed the first functional investigation of

the crayfish giant circuits (Wiersma, 1938). In a brief paper

published in Proceedings of the Society for Experimental Biology

and Medicine, he reported that a single stimulus to one of the

giant fibers “causes a twitch-like contraction of the flexor muscles

of the tail”. Wiersma partially dissected the animal and used

extracellular electrodes to stimulate each of the four giant fibers

he individually separated from surrounding axons and tissue in

the desheathed brain connectives (“oesophageal commissures”).

He found that a suprathreshold stimulus to either giant fiber

would cause the tail flexion, an all-or-nothing response. Cutting

of the third nerve roots of abdominal ganglia (which contain the

axons of the MoGs; Figure 1B) prevented the tail-flip after giant

fiber stimulation, suggesting that all giant neurons utilize the

same motor pathway.

Wiersma’s ability to perform such clever experiments on

individual neurons was undoubtedly aided by the large size of the

giant fiber axons, which are between 100 µm (LGs) and 200 µm

(MGs) in diameter in the brain connectives of adult crayfish and

visible under a standard light microscope, although their

diameters vary widely in animals of different size (Wiersma

1947; Wine and Krasne 1972; Glantz and Viancour 1983;

Edwards et al., 1994a).

In 1947, Wiersma published a paper that further detailed the

relationship between giant fiber activation and tail-flip behavior.

He reported that a superthreshold stimulus to either MG was

sufficient to generate a stereotyped escape tail-flip. Using

recording electrodes placed on the nerve cord in caudal

locations, he first reported a conduction velocity of 15–20 m/s

for the MG neurons. However, when one LG fiber was stimulated

in the brain connectives, Wiersma observed two LG spikes in the

cord, confirming the functional coupling between both LGs that

Johnson had proposed years earlier (Figure 2A). In addition, after

cutting one of the LGs between the stimulating and recording

electrode, Wiersma demonstrated a conduction velocity of

10–15 m/s for an ipsilateral LG spike and proposed that

crossover of action potentials between one LG and its

contralateral homologue is restricted to the posterior thoracic

ganglia and the first five abdominal ganglia. Wiersma further

suggested a rostral receptive field for the MG, which is primarily

activated by optical stimulation, whereas the LG’s

mechanoreceptive field was thought to be restricted to the

posterior thorax and abdomen. In this seminal paper,

Wiersma also recorded action potentials in the nerves that

originated from the third abdominal ganglion after

stimulation of the giant fibers in the brain connectives. His

results confirmed that both LG and MG will produce a single,

large spike in the third nerve (i.e., the MoG axon connecting to

the abdominal flexor muscles), while no activity was observed in

the second nerve, and some, but less reliable activity was seen in

the first nerve.

Wiersma’s contribution to the scientific community cannot

be overstated. Taking advantage of the crayfish as a model system

with large, accessible, and individually identifiable neurons that

link directly to behavior, Wiersma laid the groundwork for future

generations of researchers who realized the great potential of the

crayfish giant circuits for investigating important scientific

questions that ranged from molecular biology to robotics.

20 years later, Stretton and Kravitz (1968) introduced the

first fluorescent intracellular dye (Procion Yellow), and this

discovery paved the way for injections into single neurons,

including the LGs and MGs as well as other parts of the giant

circuits. Because intracellular dyes of low molecular weight will

pass through gap junctions, the technique has been successfully

used to show the coupling of the LGs to their contralateral

homologue and across the septate junctions. An example is

shown in Figure 2B.

Behavioral relevance of the giant fiber
systems

In 1972, Jeff Wine and Frank Krasne published a paper that

beautifully illustrated the adaptive behavioral value of parallel

giant escape circuits in crayfish. By implanting recording

electrodes into the abdomen of freely behaving animals, they

were able to measure giant fiber activity in response to various

“natural” stimuli while observing the resulting behavioral
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actions. Based on prior results showing that crayfish can tail-flip

without giant fiber activation (Schrameck, 1970), and discrete

differences that exist in motor patterns and behavior between LG

and MG tail-flips (Larimer et al., 1971), they tapped, pinched, or

touched different body parts and analyzed the corresponding

neurobehavioral outcomes. They found that strong, phasic taps

to the abdomen stimulated the LG neurons and propelled the

animal upward and forward, away from the point of stimulation.

Taps to the most rostral body parts, however, evoked MG-

mediated tail-flips that propelled the animals backwards.

Visual stimuli were much less successful in activating MG

tail-flips but were often seen to produce tail-flips without

giant fiber activation. Both tail-flips produced by giant fibers

had very short latencies (~4 ms) whereas non-giant tail-flips were

initiated with much longer (~200 ms) and more variable delay.

Non-giant tail-flips were most successfully elicited with gradual

stimuli, and contrary to giant fiber mediated tail-flips, which

were highly stereotyped, they differed in escape direction and

angle. Moreover, non-giant tail-flips were abolished when the

nerve cord was cut above the thorax, suggesting control of non-

giant tail-flips in the subesophageal ganglion. The notion that

non-giant tail-flips are controlled by the subesophageal ganglion

was later revised by Lee et al. (1995) who demonstrated persistent

activity of non-giant motor neurons in abdominal segments after

thoracic-abdominal nerve cord transection.

The survival value of the escape circuits was tested many

years later when freely behaving juvenile crayfish were paired

with a natural predator (Herberholz et al., 2004). An example of

such an encounter between a juvenile crayfish and a dragonfly

nymph is shown in Figure 3A. The activity of the different escape

circuits in response to predator attacks was recorded with a pair

of electrodes fixed to the sides of a small aquarium, a technique

that was previously developed to measure escape circuit

activation in crayfish during intraspecific fights (Herberholz

et al., 2001). Because each tail-flip circuit creates a signature

field potential in the water surrounding the animal, this method

FIGURE 2
(A). Demonstration of the functional connections between bilateral LG neurons. After stimulating one LG in one of the brain connectives (com),
two LG spikes can be recorded between the fifth and sixth ganglia of the abdominal nerve cord. Top traces (A,B) are after stimulation of left and right
LG, respectively. Traces C-F are recordings after cut of the right LG (first cut) and cut of the left LG (second cut). Bottom traces, (G,H) are recordings
between A3 and A4 and time in milliseconds. FromWiersma (1947) (Figure 1). (Reused with permission Copyright Journal of Neurophysiology).
(B) Injection of fluorescent dye (Lucifer Yellow) into the LG neuron in the fourth abdominal ganglion of the crayfish nervous system shows dye
labeling of the adjacent LG neuron in the next, more anterior, segment and highlights the electrical synapses (“septate junctions”) that connect the
segmental LG neurons. (B) Injection of the same dye into one LG neuron (right side) in the sixth abdominal ganglion illustrates the electrical coupling
between the pair of LG neurons with dye spreading into the contralateral LG (C). Stars indicate approximate injections site. Arrow indicates the
septate junction. Scales = 400 µM (based on axon diameter). (Credit: Jens Herberholz; the images are for illustrative purposes only and do not
introduce new knowledge).
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FIGURE 3
(A). Single video frames (1–6) from a staged encounter between a dragonfly nymph and a juvenile crayfish recorded at 1,000 frames/sec. The
crayfish responds to the frontal attack with an instantaneous backward tail-flip but is still captured by the nymph’s mandibles. It quickly employs a
second, sideways-directed tail-flip to successfully free itself. (Credit: Jens Herberholz; the images are for illustrative purposes only and do not
introduce new knowledge). (B). Top: Bath electrode recordings of field potentials showing the initial giant mediated tail-flip and three
subsequent non-giant tail-flips produced by a juvenile crayfish in response to a dragonfly nymph attack. Bottom: Initial MG and non-giant tail-flips

(Continued )
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provided the unique advantage of non-invasive neural

recordings. When juvenile crayfish were attacked by dragonfly

nymphs, they engaged all three escape circuits albeit at different

success rates. Since most attacks were directed to the front, MG

mediated tail-flips were most common. Attacks to the rear

evoked LG tail-flips whereas non-giant tail-flips resulted from

attacks to the middle parts of the crayfish body. The escape rate

was quite high (44–50%) if the attack triggered a giant-mediated

tail-flip, but much less for non-giant tail-flips (20%). The poor

escape performance for non-giant tail-flips is likely attributed to

their longer response latencies, which were twice the duration of

giant fiber mediated tail-flips. However, the average escape

latencies for non-giant tail-flips were still significantly faster in

response to the predator attack when compared to a mechanical

tap using a handheld probe, while this was similar for MG and

LG tail-flips. This suggested that crayfish monitor the

approaching predator to prepare for a possible attack, thus

“priming” the non-giant system for faster responses to

anticipated attacks. In addition, crayfish that were captured by

the nymphs often generated a series of non-giant tail-flips,

especially if the attack first triggered an unsuccessful MG- or

non-giant tail-flip, which sometimes freed them from the

predator’s mandibles and improved their overall escape

success to ~80% (Figure 3B).

Together, these studies illustrated the behavioral

importance of the three escape circuits in crayfish. The two

giant fiber circuits allow the animals to quickly escape strong

and phasic danger signals directed to the front or rear, and the

unique activation patterns of abdominal muscles lead to

appropriate motor action. Although highly efficient, the

giant-mediated responses lack behavioral plasticity. MG

and LG circuits are built for speed and the behavior is

stereotyped and “involuntary”. If time permits, the non-

giant circuit comes into play, which adds control over the

direction and angle of escape. When in the fangs of an insect

larva (and probably other predators as well), both versions can

be combined to maximize escape success.

Although comparison to other taxa is outside the scope of

this review, it is notable that the nature of “fast and slow” escape

circuits is a fairly universal phenomenon. Examples include the

giant Mauthner cells and parallel circuitry in teleost fish that

mediate short- and long-latency escapes as well as the giant fibers

and non-giant pathways in Drosophila (and other insects) that

underlie similar behavioral functions (e.g., Burgess and Granato

2007; Card 2012).

Mapping of the giant fiber circuits

Using the LG circuit, Furshpan and Potter (1957), Furshpan

and Potter (1959) identified the first electrical synapse in nervous

systems. Since then, the LG circuit has been almost entirely

mapped out, from the motion-sensitive hairs that cover the

crayfish tail to the motor neurons that activate the abdominal

muscles, and everything in-between (Figure 1B). Most neurons

and synapses in the circuit have been described, including a

complex system of inhibition.

The LG circuit
There has been a notable imbalance though in both research

efforts and resulting knowledge across the three escape circuits.

The LG circuit is arguably one of the best understood neural

circuits in the animal kingdom, whereas much is still to learn

about the MG circuit, and little is known about the non-giant

circuit (Edwards et al., 1999). This is mainly based on practical

considerations. It is easier to trace out to the periphery from large

giant neurons that provide accessible starting points. Moreover,

compared to the MG, the LG has the advantage of being a local

circuit that repeats in each of the abdominal ganglia. The ventral

nerve cord with all abdominal ganglia can be removed from the

animal and survives for many hours when bathed in saline

solution; this ex vivo preparation is well suited to study all

circuit features without the need of keeping the more fragile

brain (with the MG neurons) alive.

The LG neuron is activated by tactile or hydrodynamic forces

applied to the tail or abdomen. Hair mechanoreceptors, which

are directionally sensitive, activate primary afferents that project

into the abdominal ganglia (Wiese 1976; Wiese et al., 1976). The

afferents project centrally through sensory nerves and their

receptive fields are, at least partially, maintained on the level

of the interneurons (Zucker et al., 1971; Calabrese 1976;

Antonsen and Edwards 2003). In the last abdominal ganglion,

LG also receives monosynaptic excitatory input from

proprioceptive afferents that monitor movements of the

tailfan (Newland et al., 1997; Newland et al., 2000).

The afferents form direct electrical synapses with the LG

neuron, and they make chemical synapses with a number of

interneurons. The interneurons connect to LG via mixed

electrical and chemical, including inhibitory, synapses (Lee

and Krasne 1993). The excitatory inputs to LG are thus

biphasic, an early electrical excitatory postsynaptic potential

(EPSP), the α-component, is followed with short delay by a

FIGURE 3 (Continued)
are regularly followed by non-giant tail-flips after capture and improve the overall escape success to ~80%. The numbers are lower if the initial,
unsuccessful response to the attack was an LG tail-flip, presumably due to the capture point near the tail, which impeded subsequent non-giant tail-
flips. From Herberholz et al. (2004) (Figure 7). (Reused with permission from the Company of Biologists).
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second chemically mediated EPSP, the β-component (Krasne,

1969; Zucker, 1972a). The β-component of the EPSP is followed

by postexcitatory inhibition (Vu et al., 1997), presumably

produced by GABAergic interneurons, and a long-lasting,

variable γ-component, which present a mixture of excitatory

and inhibitory signals (Berkowitz et al., 1998). In juvenile

crayfish, the α-component of the LG EPSP is large enough to

reach threshold and trigger an action potential, but in adult

animals, it is much more attenuated due to isometric growth of

the LG, and the spike always rises from the depression-prone β-
component (Edwards et al., 1994b).

Primary afferents that couple electrically to the LG neurons

are also connected to each other by non-rectifying gap junctions.

This allows local depolarization to spread into neighboring

afferents and creates a lateral excitatory network that enables

rapid amplification of local sensory inputs to LG (Herberholz

et al., 2002; Antonsen et al., 2005). Afferents in different sensory

nerves also couple to each other through the LG dendrites as

synaptic potentials in LG spread antidromically into other

unstimulated afferents, which further contributes to afferent

recruitment and lowers the threshold for slightly delayed

stimuli (Figure 4). The LG itself acts as a coincidence

detector, and is maximally stimulated by simultaneous sensory

inputs, which makes it most sensitive to phasic stimuli (Edwards

et al., 1998).

The afferent-interneuron chemical synapse is nicotinic

cholinergic (Miller et al., 1992) and depresses after repeated

stimulation (Zucker, 1972b). This was an exciting finding at

the time because it was the first to uncover a specific

neurocellular mechanism underlying behavioral habituation.

The concept was later revised, however, as it became apparent

that behavioral habituation is also mediated by descending tonic

inhibition from the brain to the local LG circuits (Krasne and

Teshiba, 1995; Shirinyan et al., 2006).

Once the LG fires an action potential, it activates the MoGs in

the anterior abdominal ganglia (A1-A3), and the posterior thoracic

ganglia (T4-T5), which causes the jack-knife tail-flip that pitches the

animal upward and forward (Heitler and Fraser 1993). However, the

LG activates several other postsynaptic neurons as well. Electrical

coupling to the segmental giant (SG) neurons engages a pathway

that amplifies the output to the fast-flexor motor neurons (Kramer

et al., 1981a; Roberts et al., 1982; Heitler et al., 1985). The LG spike

also causes depolarizing inhibition of the primary afferents via the

SG neuron. This primary afferent depolarization (PAD) prevents

habituation of the afferent-interneuron chemical synapse during the

tail-flip (Kennedy et al., 1974; Kirk 1985).

FIGURE 4
Electrotonic coupling between primary afferents across the sensory input pathways to the LG. (A). Increasing electrical stimulus (shock)
intensity applied to sensory nerve 2 (N2) in the last abdominal ganglion (A6) leads to postsynaptic potentials (PSPs) in the LG dendrite (LGB3) of
increasing sizes (black, blue, and red traces) as well as smaller, increasing biphasic PSPs in the initial axon segment (LG Axon). α and β refer to the
electrical and chemical components of the LG PSP, respectively. (B). The same stimulus sequence of increasing intensity also elicits small PSPs
in spatially removed primary afferents (1°A) such as those projecting to the LG dendrites via N5, indicating spread of LG potentials across the afferent
network. LG was injected with Texas Red, and the location of the recording electrode was confirmed with Cascade Blue injections. Scale bars:
100 µm. (C). Averaged amplitudes of synaptic potentials (with standard deviation) recorded in nerves N1-N5 for both the dendritic α-component of
the LG EPSP and for the antidromic synaptic potentials (APS) recorded in primary afferents (N = 6). Afferents closer to LG dendritic inputs receive
larger antidromic potentials. From Antonsen et al. (2005) (Figure 3). (Reused with permission. Copyright (2005) Society of Neuroscience.)
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The SG drives both primary afferent depolarizing

interneurons (PADIs) as well as corollary discharge

interneurons (CDIs) in the rostral ganglia of the abdominal

nerve cord. The CDIs, of which only two have been

individually identified (CDI2, CDI3) excite the flexor inhibitor

after LG or MG activation, and they participate in inhibition at

the afferent-interneuron synapse (Wine and Mistick 1977;

Kramer et al., 1981b).

The LG also inhibits itself. The LG action potential is

immediately followed by a depolarizing inhibitory PSP

(dIPSP), which lasts for tens of milliseconds, rendering the

LG unresponsive to any sensory stimulation for the duration

of the tail-flip (Roberts, 1968). This “recurrent” inhibition

prevents the LG from being activated by the behavior it

produces, which evokes massive stimulation to its sensory

input pathways. The inhibition is depolarizing due to the

opening of chloride channels and efflux of chloride ions,

which are highly concentrated in the LG neuron relative to

the outside. The depolarization is inhibitory because the

reversal potential of chloride is lower than LG threshold, and

the sustained depolarization mainly causes inactivation of

sodium channels (Edwards et al., 1991). Recurrent inhibition

is located near the LG spike initiation zone, and it is absolute,

meaning no excitation can overcome it (Vu and Krasne 1992).

The inhibitory neurons responsible for it have not been

identified, but its minimal delay after the action potential

makes a polysynaptic pathway unlikely. Although the LG

dIPSP can be suppressed with picrotoxin, a chloride channel

blocker, it has not been established whether this is based on

antagonism of GABA-gated or glutamate-gated chloride

channels, both of which exist in crayfish (Heitler et al., 2001;

Nagayama 2005).

Despite a near complete picture of the LG circuit, additional

discoveries have been reported in recent years. Although the

receptive field of the LG was long considered to be limited to the

rear of the animal, the LG does receive subthreshold excitation

from rostral sensory areas (Liu and Herberholz, 2010). For

example, electrical stimulation of the antenna II nerve or

protocerebral tract (i.e., optic nerve) caused small EPSPs in

LG, and when those inputs were combined with subthreshold

stimulation of tail afferents, they brought LG to threshold. The

small LG EPSPs are caused by monosynaptic inputs from

identified descending interneurons that receive sensory signals

in the brain. This adds an interesting new component to the LG

circuit, indicating that potential danger signals that are perceived

with rostral sensory systems might lower the LG threshold to

caudal attacks and thereby contribute to behavioral escape

decisions.

LG motor output was also long considered to be locally

restricted, primarily to the abdomen and caudal part of the

thorax. However, a recent study found that the LG also

activates a set of head appendages (i.e., antennal scales;

Figure 5A), and it does this with superb temporal precision

FIGURE 5
(A). Photograph of a juvenile crayfish during an LG-mediated
tail-flip. Frontal view shows the extended antennal scales below
the eyes that are fully extended at the time of tail flexion (arrows).
The function of the hairs that line the inner ridges of the
scales is currently unknown. (Credit: David D. Yager & Jens
Herberholz, University pf Maryland. The image is for illustrative
purposes only and does not introduce new knowledge). (B). Tactile
(“natural”) stimulation of MG or LG tail-flips with pokes to the head
or tail, respectively, reveal differences in the onset times of scale
extensions compared to other body movements. For MG tail-flips,
the scales extend before the tail and body start to move, whereas
scale extensions are delayed during LG tail-flips and start after the
tail and body moves. (C). Comparison of latencies to move the tail,
body, and scales after LG and MG tail-flips (data pooled). Giant-
mediated tail-flips were evoked with natural stimulation (N = 15),
implanted electrodes around the brain connectives for stimulating
MG tail-flips and around the ventral abdominal nerve cord for
stimulating LG tail-flip (N = 12), or intracellular current injections
into the giant neurons (N = 6). Natural stimuli produced
significantly shorter latencies for movement onsets, including
scale extensions in restrained animals. From Herberholz et al.
(2019) (Figures 2, 6). (Reused with permission, Copyright 2019;
Springer-Verlag GmbH Germany).
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(Herberholz et al., 2019). LG-mediated scale extensions are

delayed compared to body movements and full extension of

the scales coincides with full flexion of the tail, possibly aiding in

upward thrust. Scale extensions are also triggered during MG

tail-flips but start much quicker after stimulation of the MG

neurons (Figure 5B) and may thus act as rudders and/or help

with avoiding rotation during backward motion. Interestingly,

whenmovements of the tail, body, and scales were measured with

natural stimuli, implanted electrodes, or intracellular current

injections into the giant fibers, the delay was always

significantly shorter for natural stimuli (i.e., pokes with a

handheld probe), indicating that the giant circuits might be

primed under natural conditions (Figure 5C). As mentioned

earlier, a similar effect has been reported for non-giant tail-flips

(Herberholz et al., 2004).

The MG circuit
The MG circuit has been much less explored, especially its

sensory input pathways, but relevant information exists

(Figure 1B). Wiersma (1947) proposed that the soma of both

MGs are located in the brain, and the two MGs can excite each

other. Horiuch et al. (1966) and Horiuchi et al. (1971) confirmed the

anatomical organization with stains of serial brain sections and

provided first descriptions of MG branching patterns, including

innervation of antenna I/II. Raymon Glantz and colleagues

provided detailed neuroanatomical and physiological description of

the MG neurons. Using intracellular dye injections, they confirmed

electrical coupling between two MG cells in the brain (Glantz and

Kirk 1980), confirmed branching into olfactory and antennal lobes,

and, using electrophysiological techniques, described basic neuronal

parameters such as MG time/length constants, membrane resistance

andmembrane capacitance (Glantz andViancour, 1983).Mellon and

Christison-Lagay (2008) demonstrated that electrical stimulation of

the bases of the antennules (i.e., antenna I) evoked action potentials in

crayfishMG neurons, and the authors suggested that these inputs are

mediated by mechanosensory hairs located on the flagella of the

antennules. Similar results have been obtained after electrical

stimulation of the antenna II nerve, which strongly depolarized

the MG neurons and occasionally caused action potentials (Liu

and Herberholz 2010; Swierzbinski and Herberholz 2018).

Behaviorally, MG tail-flips can be evoked with phasic tactile

stimuli directed to the antenna I/II, rostrum, claws, and legs, as

well as a rapidly approaching visual object, although visual

activation was initially considered to be much less effective

(Wine and Krasne 1972). However, the susceptibility of the

MG neurons to visual inputs was later demonstrated by

recording MG action potentials in freely behaving (and

foraging) juvenile crayfish exposed to rapidly approaching

shadows (Liden and Herberholz 2008; see below). In addition,

modulation of MG threshold was also suggested to include

olfactory signals, providing further evidence that the MG

circuit integrates multiple sensory modalities (Liden et al.,

2010; Schadegg and Herberholz 2017).

Similar to the LG neurons, the motor output of the MGs also

extends beyond the abdomen and thorax. The MGs drive the

extension of the aforementioned antennal scales, but they do this

with much shorter temporal delay (Herberholz et al., 2019;

Figure 5B). When the MG neurons were activated in freely

behaving animals by poking the head with a handheld rod,

full extension of the scales was completed before the animal

began to move backward. For LG tail-flips, however, the

extension was precisely timed to coincide with full flexion of

the tail. This suggested that the scales have different functions,

possibly acting as a rudder for steering in MG tail-flips while

increasing the “squeeze force” of water between scales and tail-

fan for LG tail-flips. However, relevant behavioral investigation

to test this hypothesis is still missing.

As we have seen, much is still unknown about theMG circuit,

and not surprisingly, this is a consequence of increased

complexity and reduced accessibility. Yet, the multimodal

sensory nature of the MG circuit offers great promise for

uncovering neurobehavioral mechanisms underlying

multisensory integration.

The cellular interactions between the two giant fiber systems

have also been sparsely studied. Roberts (1968) demonstrated

that MG action potentials generated a long-lasting depolarizing

inhibition in LG neurons. This inhibition, like LG’s recurrent

inhibition, was sensitive to picrotoxin, and prevented LG

activation for the duration of an MG tail-flip. This makes

good sense because LG activation during an MG tail-flip

should be considered maladaptive. For example, a frontal

attack that drives the crayfish backwards, possible into an

obstacle, which then activates the LG circuit, would

immediately propel the animal forward into the predator or

opponent that evoked the initial response. The inhibitory

interneurons, most likely GABAergic, that mediate the fast

inhibition of LG have not been identified. Surprisingly,

whether this MG-LG inhibitory relationship exists in the

opposite direction is currently unknown and needs further

investigation.

Changing the threshold of the giant
escape neurons

Behavioral modulation
One of the great benefits of studying the giant fiber circuits in

crayfish is their unambiguous link to concrete behavioral

outcomes. If the giants fire, the animal will tail-flip. Thus, it

can be safely assumed that changing the threshold of giant fiber

activation provides crayfish with much needed flexibility in

varying environments and situations. One such mechanism is

tonic inhibition. This form of inhibition is commonly found in

the nervous systems of many species and is distinguished from

synaptic inhibition by its global release patterns, slower activity,

and the binding to specific receptor subtypes, often
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extrasynaptically, and mostly of the GABAergic type (Farrant

and Nusser 2005). Most of the work on crayfish tonic inhibition

(TI) has been provided by Frank Krasne and colleagues. TI in

crayfish descends from the brain and changes the excitability of

the LG neurons locally in the abdomen. This was demonstrated

by cutting the brain connectives, which eliminated TI (Vu and

Krasne 1993). TI is picrotoxin-sensitive, presumably acts on

inhibitory receptors that are found distally on the LG

dendrites, and it can be overcome by strong excitatory inputs,

making it “relative” rather than “absolute” such as LG recurrent

inhibition (Lee and Krasne 1993; Vu et al., 1993). As mentioned

earlier, TI also contributes to habituation of the LG circuit

(Krasne and Teshiba 1995).

Most importantly, TI allows the crayfish to discretely up- or

downregulate giant fiber excitability by increasing or decreasing

shunting of excitatory inputs to the dendrites (e.g., Vu et al.,

1993), and thus allows to modulate escape behavior in various

contexts. For example, when crayfish were physically restrained,

the thresholds for LG and MG tail-flips increased, but these

threshold changes disappeared when the brain connectives were

cut, suggesting TI as the underlying mechanism (Krasne and

Wine 1975). The purpose of rendering the giant neurons less

responsive during restraint is hypothesized to be based on the

many elements that are shared between giant- and non-giant

circuits, including sensory input pathways, which allows for a

more voluntary, directional type of escape. This idea is further

supported by the aforementioned finding that juvenile crayfish

exclusively engaged non-giant circuitry after they had been firmly

captured by a dragonfly nymph, while the initial response to an

attack was predominately giant-mediated tail-flip escape

(Herberholz et al., 2004).

Threshold modulation of the LG neurons was also

illustrated when crayfish were offered food of different sizes

(Bellman and Krasne 1983). LG activation threshold was

reduced when crayfish ate food, but only when the size of

the food prevented the animals to hold on to it when tail-

flipping. If the food item was small, LG threshold did not

change (or went up), because the animals did not have to

sacrifice the tasty meal for the equally important response to a

predator. The site of action is the LG neuron itself (and

presumably mediated by TI), which responded less - or

more - to dendritic inputs from primary afferents and

sensory interneurons (Krasne and Lee 1988).

When juvenile crayfish were enticed to approach a food odor

release point and suddenly exposed to a visual danger signal

(i.e., shadow), they responded with only one of two incompatible

behaviors, freezing or MG tail-flips (Liden and Herberholz 2008).

The threshold for activating the MG neurons depended on both

extrinsic and intrinsic conditions. For example, if the food quality

was high, crayfish suppressed MG activation in response to the

shadow and mostly froze (Figure 6A). This is certainly adaptive

because a great meal is worth a bit more risk (Liden et al., 2010). If

crayfish were hungry, the same happened for the same reason,

the meal was of higher value and activation of MG tail-flips,

which increased the distance to the food, was not the most

desirable option (Schadegg and Herberholz 2017; Figure 6B). It is

tempting to propose that these value-based (“neuroeconomic”)

decisions in crayfish are mediated by TI acting on the MG

threshold, but evidence for this is lacking. In fact, the neurons

that produce TI in either of the two giant circuits have not been

identified, and this is a missing piece critically needed for further

advancement.

FIGURE 6
(A). In response to an approaching visual danger stimulus,
foraging crayfish (N = 61) freeze more often if the expected food
quality is high and tail-flip more often if it is low. Although freezing
might be considered the riskier choice, most crayfish decide
to stay near a food signal of high value rather than tail-flipping
away from it to avoid a potential predator attack, thus balancing
the different behavioral options based on a cost-benefit analysis.
From Liden et al. (2010) (Figure 5A). (Reused with permission,
Copyright 2010; The Royal Society). (B). Under standard food odor
conditions, hungry (unfed) crayfish (N = 30) produce more freezes
and fewer MG tail-flips than satiated (fed) crayfish (N = 29),
indicating that intrinsic states affect their “economic” decision-
making. From Schadegg and Herberholz (2017) (Figure 4). (Reused
with permission, Copyright 2017; Springer-Verlag Berlin
Heidelberg).
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The notion of food- and hunger-related suppression of giant-

mediated tail-flips was further supported by Kato et al. (2018).

The authors compared habituation rates between fed or starved

crayfish alone and in the presence of food after mechanical

stimuli were directed to the rostral body parts. Although they

did not measure whether the evoked tail-flip responses were in

fact produced by the MG neurons or non-giant circuitry, they

considered them “MG-type” tail-flips, and they found that

starved crayfish habituated more quickly to the repeated

stimuli with or without food present during the experiment.

This implies that crayfish that are hungry or actively engaged

with food (or its odor) lower the probability of costly escape by

suppressing giant neuron excitability while also increasing its rate

of habituation.

Neurochemical modulation
Numerous studies have investigated the effects of biogenic

amines on crayfish neural circuits and behavior. It is impossible

to cover all the literature here, and other than for the more recent

developments, excellent reviews already exist (e.g., Krasne and

Edwards 2002). In general, systemic injections of neuroactive

substances into the hemocoel of freely behaving crayfish, or bath

application (i.e., superfusion) of the crayfish isolated nervous

system, in combination with electrophysiological and/or

immunohistochemical approaches, have been productively

used in many studies. The application methods mirror the

naturally occurring neurohormonal actions that are produced

when neurosecretory cells release circulating monoamines (and

other substances such as neuropeptides) directly into the

hemolymph, which reach their neuronal targets via the

pericardial sinus, heart, and arteries that densely innervate the

nervous tissue, including the ventral nerve cord (e.g., Brown and

Sherwood 1981; Beltz 1999; Christie 2011).

Serotonin (5-HT), common to most nervous systems, has

received most of the attention although there are examples for

many others, including octopamine (OA). In 1980, Livingstone

et al. (1980) reported that injections of 5-HT or OA into live

crayfish (and lobster) elicited postural changes that resembled

those seen in dominant or subordinate animals, respectively. This

inspired a large number of subsequent studies, linking the actions

of individual neuromodulators to social status in crayfish.

Crayfish are highly aggressive animals and will determine

social rank relationships during agonistic dyadic encounters

from which one animal emerges as the dominant and the

other one as the subordinate. During their fights for social

dominance, crayfish tail-flip (a lot!) and employ a non-

defensive fourth type of tail-flip (“offensive tail-flip”) to

demonstrate physical fitness to their opponents (Herberholz

et al., 2001). The threshold of the LG neurons changes during

fights, but only in subordinates, which experience a substantial

decrease in LG excitability (Krasne et al., 1997). Although this

may seem counterintuitive at first since subordinates should have

low threshold for escape when interacting with a fierce dominant

opponent that keeps attacking them, the reason for this is similar

to the idea discussed earlier for LG threshold changes during

restraint. Suppression of LG excitability “frees up” shared circuit

components that are used for more effective non-giant escape

behavior. Another possibility, which also follows an argument

used earlier, is that LG threshold in subordinates is high because

crayfish typically face each other and interlock their claws at

escalated fight intensities and being pushed into an obstacle by

the stronger dominant opponent could trigger an unwanted

forward-directed escape. However, none of these hypotheses

has been explicitly tested.

How is LG threshold modulated? Based on earlier discussion,

tonic inhibition might be at play. It seems reasonable to assume

that a gradual increase in TI could change LG threshold in

subordinates. This is speculative, however, and most of the

existing evidence points towards 5-HT (and, albeit somewhat

less investigated, OA).

Glanzman and Krasne (1983) found that LG excitability is

affected by both amines, but in opposite directions. Using

intracellular recordings of LG excitatory postsynaptic

potentials (EPSPs) after stimulation of mechanosensory

afferents, they demonstrated that the addition of 5-HT to the

bathing solution of a dissected crayfish preparation produced a

decrease of LG EPSP sizes, but an increase in EPSP sizes

following superfusion with OA. The activity of Interneuron

A, which provides excitatory input to LG, was also facilitated by

OA, but unaffected by 5-HT. These experiments were done on

socially isolated crayfish. Several years later, Yeh et al. (1996),

Yeh et al. (1997) replicated the experiments (for 5-HT) in

dominant and subordinate crayfish. They found that the

effects of 5-HT were status-dependent, and 5-HT strongly

reduced LG EPSPs in subordinates while causing an increase

in dominants. This was a remarkable result because it showed

that the effects of a single neurochemical on the same neuron

depended on the social status of the animal. The authors also

provided some explanation for the underlying mechanisms.

Using different agonists for specific 5-HT receptor subtypes,

they were able to show that the socially-mediated changes in LG

excitability are likely related to differences in the expression of

5-HT1 and 5-HT2 receptors. In short, the overall take-away

from this intriguing work is that 5-HT1 receptors suppress LG

excitability while 5-HT2 receptors promote it, and thus, the LG

of subordinate crayfish expresses more of the first type and the

LG of dominants more of the second type. A next logical step

would be to measure expression profiles of these receptors on

the LG neurons, ideally comparing dominants and

subordinates; however, this has not happened yet. Both

receptor subtypes have been sequenced and cloned in

crayfish (Spitzer et al., 2008) and given the recent

developments in single-cell transcriptomics/proteomics, this

appears to be a fruitful avenue for future studies (see below).

Yeh et al. (1996), Yeh et al. (1997) also measure 5-HT related

LG EPSP changes in socially isolated crayfish. Contrary to earlier
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reports (Glanzman and Krasne 1983, 1986), they found that 5-

HT increased LG EPSP size rather than reducing it. Eventually,

researchers from both labs teamed up and discovered that the

effects of 5-HT in isolates depend on the concentration of 5-HT

and its application rate (Teshiba et al., 2001). For example, fast

and short 5-HT application caused inhibition, which was

opposite to facilitation observed after slow and long

application. Thus, a single neuromodulator can have

excitatory or inhibitory function on a single neuron

depending not only on the social status of the animal, but

also on its application parameters (Krasne and Edwards

2002). This further highlights the complex interrelationship

between serotonin and nervous system function, suggesting

that presynaptic release rate and postsynaptic receptor targets

(and their corresponding second messengers) all influence the

outcome.

Using isolated crayfish, Araki et al. (2005) investigated the

effects of 5-HT and OA on habituation of the LG neurons. They

found that both neuromodulators reduced habituation rates

(i.e., more stimuli were needed to habituate LG), and they

were able to link the effects of 5-HT to an increase of

intracellular cAMP levels, while the effects of OA were

independent of cAMP. The potentiation of LG responses to

sensory stimulation by OA was later shown to depend on IP3
as the intracellular second messenger (Araki and Nagayama

2012). Thus, these two neuromodulators appear to activate

separate signaling cascades when interacting with their

respective LG receptors. The rate of LG habituation also

varied with social status. Araki et al. (2013) and Nagayama

and Araki (2015) found that the LG neurons of dominant and

subordinate crayfish habituated more slowly when compared to

isolated animals, and this effect lasted for at least 1 week after

social status was established. These status-dependent changes of

habituation were locally mediated and did not require brain-

derived tonic inhibition.

Crayfish have also been shown to respond behaviorally and

physiologically to several drugs of abuse, including cocaine,

morphine, amphetamines, and ethanol (e.g., Friedman et al.,

1988; Shipley et al., 2017). These effects have not been connected

to the giant neurons, except for ethanol (EtOH). Swierzbinski

et al. (2017) found that juvenile crayfish are behaviorally sensitive

to EtOH, and this sensitivity is affected by the prior social

experience of the animals (Figure 7). By placing crayfish into

a mix of water and ethanol, they observed discrete behavioral

changes as the animals became more intoxicated, from changes

in posture (“elevated stance”) to spontaneous (unprovoked) tail-

flipping and eventually loss of motor control (Figure 7A). The

timing of these behavioral changes was found to be dose-

dependent, i.e., crayfish progressed more quickly through all

stages of intoxication at higher EtOH concentrations. Using

reduced preparations, the authors further demonstrated that

the LG neurons are sensitive to EtOH and LG EPSPs (and

action potentials) elicited by constant sensory stimulation

increased after EtOH exposure (Figure 7B). Together these

results illustrated that crayfish taken from a communal tank

exhibit higher behavioral and physiological sensitivity to EtOH

compared to socially isolated crayfish.

Soon after, Swierzbinski and Herberholz (2018) showed that

EtOH also facilitated the response of the MG neurons to sensory

inputs. In addition, the authors highlighted the role of the

GABAergic system in mediating this effect. Agonizing GABAA

receptors eliminated the EtOH facilitation of the MG neurons in

socially isolated crayfish. The socially dependent effects of EtOH

on the LG neurons in juvenile crayfish were later replicated in

adults (Venuti et al., 2021). In addition, hemolymph EtOH

concentration was found to be similar for communally housed

and isolated crayfish, indicating that the social differences are not

based on EtOH uptake or metabolism. The same study found

that differences in the expression of GABAA receptors are

FIGURE 7
(A). The behavioral latencies for spontaneous tail-flipping and
supine posture (i.e., falling on the back) after acute alcohol (EtOH)
exposure are significantly longer in isolated crayfish (ISO = 20)
compared to communally housed animals (COM;N=24). (B).
With increased exposure time to EtOH, the number of action
potentials in the LG neuron evoked by constant stimulation of the
sensory nerves increased in COMs (N = 7) compared to ISOs (N =
5). From Swierzbinski et al. (2017) (Figures 1, 4). (Reused with
permission from The Company of Biologists).
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partially responsible for the lower EtOH sensitivity of the LG

neurons in isolated crayfish. One type of GABAA receptor

pharmacologically identified in the study contained delta

subunits, a receptor subtype found in other species, including

mammals, which is located extrasynaptically and has high

binding affinity for EtOH. Although still somewhat

speculative, these results suggest that social isolation causes a

change in the expression of specific receptors in the crayfish giant

circuits, including those that are targeted by EtOH.

The next decade

Although few neural circuits in the animal kingdom can rival

the LG in terms of structural and functional understanding, there

are still important gaps to fill in the coming years.

The LG circuit features an abundance of electrical

neurotransmission (Figure 8). As mentioned earlier, the first

(rectifying) electrical synapse was described by Furshpan and

Potter between the presynaptic LG and postsynaptic MoG.

Electrical transmission via gap junctions is abundant in the

nervous systems of many animals, where it plays largely

conserved and highly important functional roles (Connors

and Long 2004; Pereda and Macagno 2017). Historically,

however, electrical transmission has been overlooked in favor

of chemical synapses, which were considered more adaptable and

plastic. This has changed in recent years and new findings have

uncovered surprising plasticity in electrical neurotransmission.

For example, coupling across electrical synapses can be

modulated by various mechanisms and on various timescales,

and just like chemical synapses, gap junctions exhibit hallmarks

of learning and memory such as long-term potentiation (LTP)

and long-term depression (LTD.) (Curti and O’Brien 2016; Haas

et al., 2016; Coulon and Landisman 2017). Importantly, prior

work on the LG circuit has demonstrated LTP across the sensory

input pathways, including the electrical synapses between

interneurons and LG. Originally the potentiation of LG EPSPs

after high-frequency stimulation of the sensory nerves that

contain primary afferents was attributed to plasticity in the

chemical synapses between afferents and interneurons (Miller

et al., 1987), but this idea was later expanded to include the

electrical synapses that connect the mechanosensory

interneurons to LG (Tsai et al., 2005). In addition, the

number of gap junctions changed across LG septate junctions

after high-frequency mechanical stimulation of the tail,

indicating plasticity in response to strong activation (Ohta

et al., 2011). The LGs also form gap junctions on the output

side with other large, identified neurons such as the MoGs and

SGs (Mittenthal and Wine 1973; Leitch et al., 1989; Figure 8).

FIGURE 8
Diagram of the LG circuit as it may appear in the rostral
abdominal ganglia (A1-A3). Not all connections are shown. The
circuit primarily consists of (rectifying) electrical synapses.
Excitation: On the sensory side LG receives electrical inputs
from sensory afferents (SA) and sensory interneurons (SI). The
sensory afferents couple electrically to each other via non-
rectifying synapses. On the output side, LG makes electrical
synapses with the motor giant (MoG) neurons and segmental giant
(SG) neurons. The SGs make electrical synapses with the fast-
flexor (FF) motor neurons, the motor giant inhibitor (MoGI)
neurons, and the corollary discharge (CDI) interneurons.
Inhibition: The LG receives inhibition from unidentified sensory
interneurons (SI), from unidentified inhibitory neurons that
produce recurrent inhibition (RI) as well as from unidentified
descending interneurons that originate in the brain and produce
tonic inhibition (TI). LG also receives direct inhibition from primary
afferent depolarizing interneurons (PADI), which predominantly
inhibit the terminals of SAs. Dashed circles indicate unidentified
neuronal populations.

FIGURE 9
Confocal image illustrating immunolabeling of GABA (green)
and GABAA receptors (red) on the ventral side of the fifth
abdominal ganglion of crayfish. Rostral is to the left. From Venuti
Winter L.S. 2020; Ph.D. Thesis, ProQuest 27738217 (Reused
with permission obtained from author).
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Although invertebrate and vertebrate gap junction proteins differ

in primary sequence, they are structurally similar (e.g., same

membrane topology) and considered functionally identical

(Phelan 2005; Skerrett and Williams 2017). Thus, the crayfish

LG circuit is well suited to make important contributions to our

limited understanding of electrical neurotransmission, including

those of biomedical relevance since dysfunction of gap junctions

has been implied in several major neurological diseases (e.g.,

Dere and Zlomuzica 2012; Aasen 2021).

Despite a large network of inhibition in the LG circuit, very

few of the inhibitory neurons that participate in feedback,

feedforward, recurrent, or tonic inhibition have been

identified. This is somewhat surprising given the historical

role of the crayfish model in discovering not only basic

inhibitory mechanisms but providing first evidence of the

inhibitory action of GABA, the main inhibitory

neurotransmitter in most animal species (e.g., Hagiwara

et al., 1960; Dudel 1962; Kravitz et al., 1963). What is

relatively well known are the inhibitory output pathways

that follow action potentials of the giant neurons. In fact,

some of the largest cells in the abdominal ganglia, including

those that mediate flexor and extensor inhibition of the tail

muscles, often label prominently in immunocytochemical

stains for GABA. Given the abundance of GABAergic cells

and receptors found in crayfish ganglia (Figure 9), many of the

early experiments on LG circuit inhibition measured the effects

of picrotoxin, which blocks ligand-gated chloride channels.

However, picrotoxin enters the pore of the channel rather

than antagonizing the binding site of the ligand, and thus,

part of the observed effects could also be mediated by

glutamate-gated chloride channels, which will produce

similar chloride-mediated inhibition in crayfish and other

invertebrates (Heitler et al., 2001; Wolstenholme 2012). Since

there is new urgency in understanding how the balance of

excitation and inhibition affects homeostasis in healthy and

diseased nervous systems (e.g., Sohal and Rubenstein 2019;

Chen et al., 2022), the LG circuit of crayfish, which is rich in

interconnected inhibitory and excitatory networks and

provides access to single neurons that experience both

events, seems well suited to productively contribute to this

literature.

Undoubtedly, the LG circuit has provided enormous new

insight into discrete neural mechanisms that regulate

behavior. Analysis of the MG circuit, however, has

progressed much slower, as already discussed earlier in this

review. Additional work on the MG circuit is especially

important given the behavioral relevance of MG tail-flips in

both intra- and inter-specific interactions (Herberholz et al.,

2001, Herberholz et al., 2004).

While this review is primarily focused on the giant circuits in

crayfish and only makes occasional reference to the non-giant

circuit and the behavior it controls, a better understanding of this

circuit is of great interest as well. As mentioned before, non-giant

tail-flips exhibit greater behavioral plasticity than giant-mediated

tail-flips, are used more “voluntarily”, and allow for directional

control and (related) improved escape rate after an attack.

Unfortunately, our understanding of the non-giant circuitry is

quite limited and fades in comparison to the LG and (even) the

MG circuit. This is, at least in part, due to the challenges of

mapping out a complex circuit without the luxury of having

large, accessible neurons as starting points. Nevertheless, after

Joan Schrameck (1970) first published the identification of a

crayfish escape tail-flip without giant fiber activity, some exciting

behavioral analyses and important work on the underlying

mechanisms have been done, much of it provided by Jeff

Wine and colleagues. This includes discoveries about different

employment of non-giant tail-flips, either as a direct response to

more gradually delivered “threat” stimuli, or as a sequence of

repeated swimming movements, controlled by a central pattern

generator, that sometimes follow a giant-mediated escape (e.g.,

Reichert et al., 1981; Reichert and Wine 1983; Kramer and

Krasne 1984; Krasne and Wine 1984; Lee and Wine 1984;

Figure 2). More research efforts directed to the structural and

functional features of the non-giant circuit is certainly desirable,

including its interactions with the giants in the context of

decision-making during escape.

The giant circuits are highly suitable for a wide range of

experimental approaches, but they clearly lag behind in

productive experimental areas such as genomics and

proteomics. Progress has been limited compared to other

genetically tractable invertebrate models because fully

sequenced and annotated genomic data for crayfish was not

available until very recently (Gutekunst et al., 2018; Shi et al.,

2018; Xu et al., 2021). Now, there seems to be a new urgency to

integrate these useful molecular tools with existing experimental

methods (Stein et al., 2022; see contribution in this special topics

issue). This will certainly shift focus towards a new set of exciting

experiments, including ones that feature the crayfish giant

circuits, which provide years of existing, detailed knowledge

about their physiological function, and which link directly to

adaptive behavior.

Lastly, despite the wide abundance of different crayfish

species (>350 in the US alone), comparative approaches on

circuit mechanisms are rare. In fact, most research has been

done in members of one genus, Procambarus, with the Red

Swamp Crayfish (Procambarus clarkii) being the most popular

species across research labs. Fewer, but equally important,

contributions include other genera in the US as well as

worldwide such as Orconectes, Cherax, Astacus, and

Pacifastacus. All crayfish species have LG and MG giant

escape circuits, which is not the case for other crustaceans

(e.g., Espinoza et al., 2006), and they live in different habitats,

face different predators, display varying levels of aggression,

reproduce sexually or asexually, and so on. Thus, it would be

interesting to better understand how much adaptation to

different environments shapes circuit structure and function, a
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question that has been productively studied in other

invertebrates such as mollusks (e.g., Orr et al., 2008;

Newcomb et al., 2012; Sakurai and Katz 2017). Moreover,

most crayfish labs perform their experiments on wild-caught

crayfish, which provides another unique advantage for

undertaking such ecologically relevant, comparative studies.

Conclusion

Over the past century, research on the giant circuits of crayfish

have generated significant knowledge on neural mechanisms that

produce natural behavior. Much has been uncovered about circuit

formation, structure, and function, but additional work is needed

to fill existing gaps. The availability of new technologies (e.g.,

genetic tools) will aid in forming relevant questions and provide

additional exciting opportunities for the future. Although not

discussed here, the crayfish escape circuits have also provided

unmatched training opportunities for students at all career levels,

either in the lab or in the classroom. Despite the shift in funding

priorities towards animal models of “higher” biomedical

importance, the many advantages of the crayfish escape circuits

for uncovering basic and generalizable, or equally important,

unique neurobehavioral mechanisms continue to exist more

than 100 years after their discovery.
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