
Novel automated spinal
ultrasound segmentation
approach for scoliosis
visualization

Weiwei Jiang*, Fang Mei and Qiaolin Xie

College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China

Scoliosis is a 3D deformity of the spine in which one or more segments of the

spine curve laterally, usually with rotation of the vertebral body. Generally,

having a Cobb angle (Cobb) greater than 10° can be considered scoliosis. In

spine imaging, reliable and accurate identification and segmentation of bony

features are crucial for scoliosis assessment, disease diagnosis, and treatment

planning. Comparedwith commonly used X-ray detectionmethods, ultrasound

has received extensive attention from researchers in the past years because of

its lack of radiation, high real-time performance, and low price. On the basis of

our previous research on spinal ultrasound imaging, this work combines

artificial intelligence methods to create a new spine ultrasound image

segmentation model called ultrasound global guidance block network

(UGBNet), which provides a completely automatic and reliable spine

segmentation and scoliosis visualization approach. Our network incorporates

a global guidance block module that integrates spatial and channel attention,

through which long-range feature dependencies and contextual scale

information are learned. We evaluate the performance of the proposed

model in semantic segmentation on spinal ultrasound datasets through

extensive experiments with several classical learning segmentation methods,

such as UNet. Results show that our method performs better than other

approaches. Our UGBNet significantly improves segmentation precision,

which can reach 74.2% on the evaluation metric of the Dice score.
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1 Introduction

Scoliosis is a 3D deformity of the spine, and it includes coronal, sagittal, and axial

sequence abnormalities (Konieczny et al., 2013). The commonly used detection

method today is to take a standing-position, full-spine X-ray. If the frontal X-ray

film shows that the spine has a lateral curvature of more than 10°, the person is

diagnosed as having scoliosis (Kawchuk and Mcarthur, 1997). The causes of scoliosis

include congenital, acquired, or degenerative problems, but the cause of most scoliosis
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cases is unknown; this type is called idiopathic scoliosis, which

is the most common type of scoliosis at present. According to

statistics, about 80% of scoliosis cases belong to this category,

and the difference between genders is significant, with women

outnumbering men by 7:1. This condition often occurs during

adolescence and is known as adolescent idiopathic scoliosis

(AIS) (Weinstein et al., 2008). During the period of rapid

growth, the development accelerates and then gradually

deteriorates, leading to complications. For mild patients,

conservative treatment with brace correction can be

adopted (Negrini et al., 2011), but for severe patients,

permanent spinal fusion surgery is a common method.

However, permanent spinal fusion surgery greatly limits the

patient’s range of motion, and the complexity of the surgery is

prone to complications. Therefore, the best treatment is

early detection and frequent monitoring (Reamy and

Slakey, 2001).

Currently, the clinical detection of scoliosis mainly relies

on X-rays. However, X-rays are radioactive, and routine

monitoring during rehabilitation interventions is not

advisable. In addition, observing the 3D structure of the

human spine on X-ray films is difficult. Magnetic resonance

imaging (MRI) is a safe imaging examination based on the

principle of nuclear magnetic resonance. However, MRI

usually requires the patient to be in a prone position, which

may cause changes in spinous process morphology (Sailer

et al., 2008). Moreover, it is expensive and takes a long time, so

it cannot be used on occasions with high real-time

requirements. Compared with the commonly used X-ray

and MRI detection methods, ultrasound has no radiation,

high real-time performance, and low price (Yang et al.,

2021). Ultrasound is a mechanical wave generated by

mechanical vibration (Ahmed et al., 2018). The wave can

enter the human body and pass through various tissues to

generate echoes and form images through computer

calculations. Therefore, spine ultrasound imaging has

become a research hotspot in the field of spine imaging.

2D images cannot be directly used to guide the

examination of scoliosis due to the limitation of visual field

space in 2D images. Recent studies have indicated that 3D

ultrasound has a broad application prospect in the diagnosis of

scoliosis. How to visualize the 3D shape of the spine and use it

for subsequent clinical research has become a hot issue.

Extended field-of-view ultrasound (United States EFOV)

imaging is a technique used extensively in the clinical field

to attain interpretable panorama of anatomy. Huang

et alproposed a novel method called double-sweep 2.5-D

EFOV to better image the spinal tissues and easily compute

the Cobb angle (Huang et al., 2019). Cheung et aldeveloped a

3D ultrasound system to assess AIS (Cheung et al., 2013). A

novel 2.5D extended field of view method was proposed for the

assessment of scoliosis (Huang et al., 2018). Zheng

et aldeveloped a 3D ultrasound imaging system called

Scolioscan that can be used for spine scanning (Zheng

et al., 2016). In recent years, with the gradual maturity of

artificial intelligence theory and applications, deep learning

technology has been widely used in the field of image

processing (Cai et al., 2020). Huang et alproposed a new

imaging method (Huang et al., 2022) to generate the 3D

structure of the human spine through tracked freehand

United States scanning. Tiny-YOLOv3 (Yi et al., 2019) and

K-means clustering were applied in their study to predict the

spatial location of vertebral landmarks; then, they modeled the

vertebrae based on the spatial position of the vertebral

landmarks to form the whole spine (Huang et al., 2022).

Another state-of-the-art research method was proposed by

Ungi et al. (2020). They used Unet (Ronneberger et al., 2015)

to segment bony features in ultrasound images and realized

the visualization of 3D spine models and measurement of

scoliosis degree with the help of 3DSlicer.

Inspired by these previous studies, we adopted a two-stage

processing strategy to visualize a 3D model of the spine.

Different from Ungi et al., we developed a novel

segmentation network for spinal ultrasound images,

namely, ultrasound global guidance block network

(UGBNet), to achieve an accurate segmentation of 2D

spinal ultrasound images. Traditional convolution neural

network segmentation, such as UNet, has local receptive

fields, lacks long-term dependence, and is unable to make

full use of the object-to-object relationship in the global view,

which may lead to potential differences between the

corresponding features of pixels with the same label. At the

same time, these networks do not make full use of the feature

information of the intermediate convolutional layer and

ignore the global context information of different scales. In

the current work, the proposed network UGBNet learns long-

range feature dependencies through the global guidance block

(GGB) module and aggregates non-local features in a spatial-

wise and channel-wise manner after processing by the GGB

module to obtain accurate segmentation results. The effective

information obtained from the segmentation is combined with

the position information obtained from the freehand

ultrasound imaging system (Cheung et al., 2015) to

visualize the 3D structure of the human spine. This

inexpensive approach is convenient and intuitive in

displaying the spine shape, realizes the visualization of the

3D shape of the spine, and is important for doctors’ follow-up

diagnoses and the formulation of treatment plans.

The rest of this paper is organized as follows. Section 2

introduces the overall medical image segmentation and the

detailed methods used for our spinal ultrasound image

segmentation and reconstruction. The experimental settings

and evaluation indicators are elaborated in Section 3. The

experimental results are presented in Section 4. The

discussion and conclusions are given in Sections 5 and Section

6, respectively.
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2 Materials and methods

2.1 Overview

Image segmentation plays an important role in the

quantitative and qualitative analyses of medical ultrasound

images, and it directly affects subsequent analysis and

processing (Patil and Deore, 2013). Correct segmentation

guarantees the accurate extraction of diagnostic information

from ultrasound images for clinical applications (Huang et al.,

2021). It is also a crucial part of quantitative analysis in real-time

clinical monitoring and precise positioning in computer-aided

operations (Luo et al., 2021). To effectively visualize the 3D shape

of the spine, we segmented the ultrasonic image. Medical

ultrasound images have low image quality due to the

limitation of imaging methods (Saini et al., 2010), but detailed

features are an important basis for doctors’ diagnoses and

identification. Therefore, the details of the original ultrasound

image should be preserved as much as possible even though the

ultrasound image is smoothed and denoised (Huang et al., 2020).

To obtain detailed features and fine segmentation results, we

need to derive global features and contextual information (Chen

L et al., 2017). Previous studies have suggested enlarging the

receptive field by expanding convolution and pooling operations

(Chen C et al., 2017) or fusing mid- and high-level features with

many task-related semantic features (Ronneberger et al., 2015;

Zhao et al., 2017). However, these methods cannot capture

contextual information in a global view and only consider the

interdependencies between spatial domains.

In this work, we developed a new network structure called

UGBNet. It uses an architecture based on the ResNet network

module (He et al., 2016) to integrate features and unify the

feature maps generated by each ResNet building block to the

same size through interpolation. Concatenate and convolution

operations are performed to achieve multi-scale feature fusion

and generate multi-scale feature maps. We also incorporated a

GGBmodule (Xue et al., 2021) that integrates spatial and channel

attention through which long-range feature dependencies and

contextual scale information are learned. Our UGBNet can

integrate deep and shallow features to generate multi-level

synthetic features as the spatial and channel-wise guiding

information of non-local blocks (Chen L et al., 2017) and to

complement the edge details that are usually ignored by deep

CNNs. Guided by multi-level comprehensive features, our

UGBNet can aggregate non-local features in spatial and

channel domains, effectively combine long-term non-local

features provided by distant pixels in ultrasound images, and

learn the semantic information of powerful non-local features for

an enhanced segmentation.

Figure 1 shows the proposed UGBNet network structure. The

network uses 2D spine ultrasound images as the input. First,

Resnet’s structural blocks are employed to extract image features

and then combined with the dense atrous spatial pyramid

pooling (DASPP) module (Yang et al., 2018) to expand the

receptive field. Second, the GGB module is introduced to

make full use of the complementary information between

different CNN layers. The GGB algorithm refines features by

learning long-range feature dependencies under the guidance of

low-level comprehensive feature maps. The output feature map

of the GGBmodule is used as the prediction result of our network

structure. After processing by the GGB module, the spatial-wise

and channel-wise non-local features are aggregated to obtain an

accurate segmentation effect.

2.2 Feature extraction and multi-scale
fusion module

Image segmentation can be understood as a pixel-level

classification problem. To identify the category that an image

belongs to, we need to distinguish it from other image categories.

Feature extraction plays an important role in image recognition

and classification. Traditional feature extraction methods include

scale-invariant feature transform and histogram of oriented

FIGURE 1
Schematic illustration of the proposed spinal ultrasound image segmentation network called UGBNet. ResNet-101 is used to extract dense local
features.
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gradient. With the development of deep learning, feature

extraction through neural networks has been widely used. As

one of the best approaches, ResNet has been widely adopted in

image detection, segmentation, recognition, and other fields.

ResNet designs a residual structure by using skip connection,

which makes the network reach a deep level and endows it with

an identity mapping ability and improved performance.

On the basis of the powerful feature extraction capability of

ResNet, our UGBNet network structure adopts ResNet-101 (He

et al., 2016) as the basic feature extraction network and uses 2D

spine ultrasound images as the input. Each ResNet structure

block can generate different feature maps to extract different

features of the images. In particular, a DASPP module (Yang

et al., 2018) is connected to the ResNet block to expand the

receptive field, and its generated results are used as part of the

input to the GGB module. The GGB module is discussed in

Section 2.3.

To synthesize the semantic information of shallow and high-

level networks, we need to carry out multi-scale feature fusion.

Usually, different features can be observed at different scales to

accomplish different tasks (Chen et al., 2016). With the

deepening of the network layers, the receptive field of the

network gradually enlarges, and the semantic expression

ability is enhanced. However, this reduces the resolution of

the image, and many detailed features become increasingly

blurred after the convolutional operation of the multi-layer

network. The convolutional neural network extracts the

features of the target through layer-by-layer abstraction (Long

et al., 2017). In the presence of only small local features or when

the receptive field is too large, the obtained feature information is

one-sided, and the possibility of obtaining too much invalid

information arises. Using learned features at multiple scales helps

encode global and local contexts.

In our paper, multi-scale feature prediction fusion is

denoted as F1. We adopt ResNet-101 to extract dense local

features. In this situation, because the features of each scale have

different resolutions, they are up-sampled to a common

resolution via bilinear interpolation. Then, feature maps

from all scales are concatenated to form a tensor, which is

convolved to create multi-scale feature prediction fusion. We

generate feature maps from Res-2, Res-3, Res-4, and Res-5 in

ResNet and unify them to the same scale through bilinear

interpolation (Mastyło, 2013), channel stacking, and

convolution to form a multi-scale fusion feature map F1, as

illustrated in Figure 1. Therefore, our multi-scale fusion feature

maps combine low-level details from shallow layers with high-

level semantics learned in deep layers.

2.3 GGB

The traditional convolutional and recurrent operations of

convolutional neural networks usually process only one local

neighborhood and capture its spatial dependencies at a time

(Wang et al., 2018). Although we can learn long-range

dependencies by stacking convolutional layers, repeated local

convolutions are time consuming. In addition, due to the

limitation of imaging methods, spine ultrasound images

usually contain speckles and shadows, and the signal-to-noise

ratio is low (Bvsc, 2005). Diagnosis and identification pose

difficulties. In this regard, we introduce GGB. The GGB

module utilizes a guiding feature map to learn long-range

dependencies by considering spatial and channel

information, which is essential for achieving improved

segmentation results.

2.3.1 Spatial-wise GGB
Figure 2 presents our spatial-wise GGB module. The output

feature map of the DASPP module (Yang et al., 2018) is

represented by FX, and the guidance feature map is denoted

as FG. Lα(x), Lβ(x), and L γ(x) are three 1×1 convolutional layers

with different parameters, and FX is sent to them by the spatial-

wise GGBmodule. Feature maps α(x), β(x), and γ(x) are generated
at the end. Then, matrix reshaping is performed. α(x), β(x), and
γ(x) are reshaped as Rhw×c matrices. In the end, we multiply the

transpose of the reshaped α(x) with the reshaped β(x) to derive a

multiplication result. A softmax layer is applied to the

multiplication result to calculate hw×hw spatial-wise position

similarity map SW as follows:

SW � Softmax(FT
XL

T
α(x)Lβ(x)FX).

The traditional sigmoid activation function is followed by a

softmax layer, and it is applied to each hw × hwFT
XL

T
α(x)Lβ(x)FX.

Lη(g) and Lρ(g) are two 1×1 convolutional layers with parameters,

and they are applied to guidance map FG. Afterward, we acquire

feature maps η(x)and ρ(x), reshape η(x) and ρ(x), and multiply the

reshaped η(x) to the transpose of the reshaped ρ(x). Then, a softmax

layer is used again, which generates another hw×hw matrix of

positional similarity from guidance map FG (denoted as MG).

MG � Softmax (FT
GL

T
ρ(g)Lη(g)FG))

When the two similarity matrices SW and MG are obtained, we

conduct element-wise multiplication of SW and MG, and a

softmax layer is applied to their result. This operation

generates a guided similarity matrix MS. In the end, we

multiply MS with the feature γ(x) to derive a new feature

map FY, which is then added with input feature FX to

generate output feature map Y.

Y � γ(x)Sof tmax(SW ·MG) + FX

2.3.2 Channel-wise GGB
When learning long-range correlations, our spatial

segmentation algorithm treats each feature channel equally

and ignores the correlations between different feature
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channels. In recent years, many researchers have adopted

strategies that allow for different contributions of different

feature channels, thus achieving excellent results in many

computer vision tasks (Hu et al., 2019; Lee et al., 2020). On

this basis, a channel-wise GGB (channel-wise GGB) is introduced

to further understand the long-range interdependencies among

different feature channels. Figure 3 shows a schematic of the

proposed channel-wise GGB. Feature map Y and guidance map

FG are used as two inputs to the channel-wise GGB module.

Refined feature map Z is subsequently generated. In addition,

feature map Y is reshaped to Rc×hw; we multiply the reshaped Y

by its transpose and use the softmax layer to obtain channel-wise

similarity feature map MZ ∈ Rc×c. For input guidance feature

map FG, the informative feature channels of channel FG are

emphasized, and the less-used feature channel is suppressed

using the squeeze-and-excitation block. For this purpose, we

utilize global average pooling to generate channel-wise statistics

λ, and the k-th layer element of the descriptor (λ) is given by

λk � 1
h × w

∑h

i�1 ∑
w

j�1 FG(i, j, k),

where FG(i, j, k) represents the element of the guidance map at

position (i,j,k). Two fully connected (FC) layers and a sigmoid

activation function are applied to channel-wise statistics λ, thus
generating coefficient vector Vc as follows:

Vc � δ(P2ϕ(P1λ)),

where P1 and P2 represent the parameters of the two FC layers

and ϕ and δ are the ReLU and sigmoid activation functions,

respectively. Next, we multiply Vc with FG to assign different

weights to the FG channel, resulting in a refined feature map

(denoted as F̂G). After obtaining F̂G, we reshape it to Rc×hw and

multiply the reshaped F̂G and the transpose of the reshaped F̂G. A

softmax layer is then used to generate c×c similarity feature map

MĜ. Subsequently, we multiply MZ with MĜ, and a softmax

layer is used for this process. At the end of this process, guided

similarity mapMQ is acquired. We multiply input Y withMQ to

obtain new feature map FZ. FZ is added to input feature Y,

which produces the output feature map Z of our channel-

wise GGB.

2.4 Loss function

In this study, we use binary cross entropy (BCE) loss for

network training. BCE is one of the widely used loss functions in

two-class image segmentation tasks, and it reflects the direct

difference between predicted masks and ground-truth labels. Its

definition can be expressed as

ℓBCE � −∑(i,j) Y(i, j) · logX(i, j) + (1 − Y(i, j)) · log(1
− X(i, j),

FIGURE 2
Schematic illustration of the details of spatial-wise GGB, where FG is the guidance map and FX is the input feature map.
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where Y(i, j) ∈ [0, 1] represents the ground-truth label of pixel

(i, j) and X(i, j) ∈ [0, 1] denotes the predicted masks.

3 Experiments

3.1 Experimental settings

During training, we selected the ADAM optimizer to train

our network. The initial learning rate of our network was 0.001.

Multiple cross-validations showed that the segmentation

performance was excellent when the epoch and batch sizes

were set to 50 and 8, respectively. Our experimental device

was a PC with four NVIDIA Geforce RTX 2080Ti GPUs. The

development environment was Ubuntu 16.04, Python 3.6, and

Pytorch 1.4.0. When outputting the training results in the testing

phase, we used FC CRFs (Chen et al., 2014) on the refined

segmentation results outputted by the GGB module to obtain the

final predicted segmentation results. FC CRFs (Chen et al., 2014)

can process the classification results obtained by deep learning in

consideration of the relationship between all pixels in the image.

It can also optimize the rough and uncertain labels in the

classified image, correct the delicate misclassification areas,

and obtain detailed segmentation boundaries.

3.2 Data acquisition

Our experimental data were scanned using the freehand

3D ultrasound imaging system (Figure 4 provides an

illustration). Freehand 3D ultrasound refers to a 3D

ultrasound formed by using traditional 2D black-and-white

ultrasound diagnostic equipment combined with a certain

positioning mechanism to obtain a series of 2D ultrasound

images and the corresponding spatial positions through

freehand scanning and perform 3D reconstruction (Gee

et al., 2003). Freehand scanning is performed with a

doctor’s hand-held probe, which is consistent with clinical

ultrasound diagnosis and treatment applications, and the

probe movement is not restricted. Images in any direction

can be obtained. It is an economical, convenient, and flexible

imaging method. Our study was conducted in accordance with

local institutional review board standards, and all participants

(or parents of participants under 18 years of age) provided

written informed consent to participate in the study. A total of

102 AIS patients were recruited, and each participant could

record approximately 2000 B-mode ultrasound images and

their corresponding spatial data. The images we obtained were

all 640×480 grayscale images, and the typical ultrasound

images we used are shown in Figure 5.

FIGURE 3
Schematic illustration of the channel-wise GGB, where FG is the guidance map and Y is the input feature map.
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3.3 Evaluation metrics

The similarity between the ground truth and CNN-based

segmentation results can be assessed by employing several

comparison metrics. We adopted four commonly used metrics

to quantitatively compare different methods of spinal

ultrasound image segmentation. The four metrics were Dice

coefficient (denoted as Dice from hereon), Jaccard index

(denoted as Jaccard from hereon), recall, and precision.

Dice and Jaccard measure the similarity between the

segmentation result and the ground truth. Precision and

recall compute the pixel-wise classification accuracy to

evaluate the segmentation result. In general, a good

segmentation result has high values of these metrics. These

evaluation metrics are calculated as follows:

1 Dice coefficient:

Dice (X,Y) � 2|X ∩ Y|
|X| + |Y|

2 Jaccard index:

Jaccard (X,Y) �| intersection (X,Y) | /( union (X,Y))

�
∣∣∣∣X ⋂ Y

∣∣∣∣∣∣∣∣X ⋃ Y
∣∣∣∣

�
∣∣∣∣X ⋂ Y

∣∣∣∣
|X| + |Y| − ∣∣∣∣X ⋂ Y

∣∣∣∣
where X is the gold standard, which is the average result marked

by experienced clinical experts; Y is the region segmented by the

model; and X ∩ Y represents the region of overlap between the

gold standard and the segmentation output of the model.

3 Recall:

Recall � TP

TP + FN

4 Precision:

Precision � TP

TP + FP

The calculation of recall and precision is associated with the

true positive (TP), true negative (TN), false positive (FP), and

false negative (FN) of the confusion matrix. TP is the positive

image block correctly recognized by the network. FP is a negative

image block that is incorrectly identified by the network as

belonging to the positive image block. FN is a positive image

block that is not recognized as belonging to the target image

block.

FIGURE 4
3D freehand ultrasound imaging. Freehand imaging allows the physician to move the probe freely so the B-scans can have arbitrary relative
locations. The advantages of freehand scanning are low cost and scanning flexibility.

FIGURE 5
Typical spinal ultrasound image.
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4 Results

4.1 Segmentation results

To evaluate the segmentation effect of different network

structures, we performed ablation experiments on our dataset.

To accomplish the task of cross-validation on the dataset, we

also conducted data labeling (the training dataset was labeled).

We invited relevant practitioners to serve as a guide in

annotating bony features, such as spinous processes,

transverse processes, and ribs, in the 2D images obtained

by our ultrasound scan; the features were then used as the

ground truth in our experimental dataset. We compared our

network against several deep-learning-based segmentation

methods, including Unet (Ronneberger et al., 2015),

NestedUnet (Zhou et al., 2018), SegNet (Badrinarayanan

et al., 2017), and CENet (Gu et al., 2019). To ensure the

fairness of the comparison, all comparative experiments

were performed on the same spinal ultrasound dataset via

four-fold cross-validation.

Visual comparison. According to the visualization results of

the segmentation shown in Figure 6, our approach precisely

segmented the spinous processes and laminae from the

ultrasound images despite the presence of serious artifacts,

whereas the other methods tended to generate over- or under-

segmented results. Our network could successfully segment

images with vague boundaries and detect small objects in the

images. Its results were the most consistent with the ground truth

among all the segmentation results.

Quantitative comparison. The quantitative evaluation of

the segmentation results of spinal ultrasound images produced

by the different segmentation methods is presented in Table 1.

Compared with the other methods, our approach achieved

higher values on Dice, Jaccard, precision, and recall

measurements, demonstrating the high accuracy of

the proposed approach in spinal ultrasound image

segmentation.

FIGURE 6
Segmentation results of different methods on our spinal ultrasound image dataset. The ground truth is denoted as GT. From left to right are our
original images and the segmentation results of SegNet, Unet, Unet++, CENet, and our method. The last column is the ground truth.

TABLE 1 Quantitative evaluation of different methods for spinal
ultrasound image segmentation.

Dice% Recall% Jaccard% Precision%

UGBNet 74.2 ± 1.2 78.5 ± 1.8 66.8 ± 1.5 79.5 ± 1.6

Unet 63.3 ± 1.6 62.2 ± 2.1 56.8 ± 1.4 68.4 ± 1.5

SegNet 61.3 ± 1.6 64.3 ± 1.8 54.3 ± 1.2 65.2 ± 1.4

Unet++ 68.8 ± 1.3 71.2 ± 1.4 58.9 ± 1.6 73.5 ± 2.1

CENet 71.5 ± 1.4 75.1 ± 1.6 59.5 ± 1.7 77.2 ± 1.1
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5 Discussion

At present, the clinical measurement of scoliosis is mainly

based on X-rays, but the radiation of X-rays makes it difficult to

be used for long-term monitoring (Kim et al., 2010). Compared

with X-rays, the new spinal ultrasound imaging method is a real-

time, economical, radiation-free technology (Ahmed et al., 2018).

However, ultrasound images also have their inherent limitations.

Given the limitations of imaging methods, ultrasound images

often have acoustic artifacts, spots, and reticulated noise, which

easily hide bony features, such as spinous and transverse

processes, thereby making manual recognition and

segmentation increasingly difficult. Inspired by Ungi et al., our

research group adopted a two-stage processing strategy for the

measurement and visualization of scoliosis, that is, the spine

ultrasound image was segmented and recognized, the irrelevant

information and noise were eliminated, and 3D visualization of

spine shape was carried out. The main contribution of our study

is the development of a novel segmentation network structure

called UGBNet for spine ultrasound images; UGBNet performs

feature extraction and multiscale fusion and incorporates a GGB

module, which learns long-range feature dependencies,

aggregates non-local features in spatial and channel domains,

and refines the features to obtain accurate segmentation results.

Traditional spine imaging often shows the spine morphology

through 3D reconstruction, which is performed directly using

images obtained from ultrasound sweeps (Cheung et al., 2015).

However, due to the limitations of the depth setting of the

ultrasonic probe and the surrounding magnetic field, the

quality of the captured 2D images cannot be guaranteed. The

large amount of shadows and noise in low-quality images bring

difficulties to the subsequent image recognition and 3D

reconstruction visualization. This study proposed a two-stage

processing strategy, that is, the bony features in the spine

ultrasound image are recognized and segmented, followed by

3D reconstruction and visualization of the spine. This two-stage

processing strategy can minimize the interference of irrelevant

information, such as acoustic artifacts and speckle noise, and has

positive significance for the subsequent visualization of 3D spine

morphology and measurement of scoliosis degree. In the

segmentation and recognition of bony features of spine

ultrasound images, we improved the segmentation algorithm

and proposed the UGBNet network structure. Multiple

qualitative and quantitative experiments showed that our

method achieved higher values of Dice, precision, and other

evaluation metrics compared with traditional image

segmentation algorithms, such as UNet.

However, our method cannot guarantee accurate

segmentation of all spinal ultrasound images. In terms of

ultrasonic data acquisition, due to the inexperience of the

operator, some scanning problems may arise, resulting in the

poor quality of the collected 2D ultrasonic images and the

presence of abundant shadows and noise (Rohling et al.,

1999). Our methods are often inadequate when dealing with

such images. In our future research, we will consider

preprocessing the acquired 2D ultrasound image to enhance

the weight of the structure of interest, find ways to improve

the image contrast and image quality, and lay a good foundation

for subsequent research. In addition, the performance of deep

learning networks needs to be tested in a larger and more diverse

patient population than the current one (Cai et al., 2020). Our

sample size is relatively small, and continued large-scale clinical

trials are needed to validate the feasibility of using the proposed

method in the diagnosis, treatment, and screening of scoliosis.

6 Conclusion

In summary, we propose a novel spinal ultrasound image

segmentation network called UGBNet, which can accurately

segment and identify bony features, such as spinous and

transverse processes, in spinal ultrasound images. The

proposed network considers long-range dependencies in a

spatial-wise and channel-wise manner and embeds contextual

information from different layers. Our method can be used as

the first step in a two-stage processing strategy for spinal

ultrasound 3D imaging and scoliosis measurement, which is

important for subsequent visualization of spinal 3Dmorphology

and scoliosis measurement. Our approach is radiation-free and

inexpensive, and it provides a new idea for the clinical

measurement and treatment of scoliosis. It is a feasible

alternative to current approaches that use X-ray as the main

diagnostic method, and we look forward to its large-scale

promotion in the future.
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