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Background: An early diagnosis model with clinical phenotype classification is

key for the early identification and precise treatment of sepsis-associated acute

respiratory distress syndrome (ARDS). This study aimed to: 1) build a machine

learning diagnostic model for patients with sepsis-associated ARDS using easily

accessible early clinical indicators, 2) conduct rapid classification of clinical

phenotypes in this population, and 3) explore the differences in clinical

characteristics, outcomes, and treatment responses of different phenotypes.

Methods: This study is based on data from the Telehealth Intensive Care Unit

(eICU) and Medical Information Mart for Intensive Care IV (MIMIC-IV). We

trained and tested the early diagnostic model of sepsis-associated ARDS

patients in the eICU. We used key predictive indicators to cluster sepsis-

associated ARDS patients and determine the characteristics and clinical

outcomes of different phenotypes, as well to explore the differences of in-

hospital mortality among different the positive end-expiratory pressure (PEEP)

levels in different phenotypes. These results are verified in MIMIC-IV to evaluate

whether they are repeatable.

Results: Among the diagnostic models constructed in 19,249 sepsis patients

and 5,947 sepsis-associated ARDS patients, the AdaBoost (Decision Tree)

model achieved the best performance with an area under the receiver
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operating characteristic curve (AUC) of 0.895, which is higher than that of the

traditional Logistic Regression model (Z = −2.40,p = 0.013), and the accuracy of

70.06%, sensitivity of 78.11% and specificity of 78.74%. We simultaneously

identified three sepsis-associated ARDS phenotypes. Cluster 0 (n = 3,669)

had the lowest in-hospital mortality rate (6.51%) and fewer laboratory

abnormalities (lower WBC (median:15.000 K/mcL), lower blood glucose

(median:158.000 mg/dl), lower creatinine (median:1.200mg/dl), lower lactic

acid (median:3.000mmol/L); p < 0.001). Cluster 1 (n= 1,554) had the highest in-

hospital mortality rate (75.29%) and the most laboratory abnormalities (higher

WBC (median:18.300 K/mcL), higher blood glucose (median:188.000 mg/dl),

higher creatinine (median:2.300 mg/dl), higher lactic acid (median:

3.900mmol/L); p < 0.001). Cluster 2 (n = 724) had the most complex

condition, with a moderate in-hospital mortality rate (29.7%) and the longest

intensive care unit stay. In Clusters 0 and 1, patients with high PEEP had higher

in-hospital mortality rate than those with low PEEP, but the opposite trend was

seen in Cluster 2. These results were repeatable in 11,935 patients with sepsis

and 2,699 patients with sepsis-associated ARDS patients in the MIMIC-IV

cohort.

Conclusion: A machine learning diagnostic model of sepsis-associated ARDS

patients was established. Three phenotypes with different clinical features and

outcomeswere clustered, and these had different therapeutic responses. These

findings are helpful for the early and rapid identification of sepsis-associated

ARDS patients and their precise individualized treatment.

KEYWORDS

acute respiratory distress syndrome, sepsis, phenotype, cluster analysis, machine
learning

Background

Acute respiratory distress syndrome (ARDS), one of the most

common respiratory syndromes in intensive care unit (ICU), is

characterized by rapidly progressive respiratory failure,

pulmonary edema, diffuse alveolar damage, and inflammatory

cell infiltration (Thompson et al., 2017). Although many basic

and clinical studies in the past 50 years have continuously

clarified the pathophysiological mechanisms of ARDS and

proposed new treatments (Meyer et al., 2021), the mortality

rate of ARDS patients is still as high as 40% (Bellani et al., 2016;

Huang et al., 2020), and at least 50% will develop complications

of varying degrees (Huang et al., 2020). Sepsis is a common risk

factor for ARDS. Studies have shown that sepsis-associated

ARDS is more serious than non-sepsis-associated ARDS,

because it is more difficult to recover from lung injury caused

by the former and its mortality rate is relatively high (Zhao et al.,

2020). Improving the diagnosis and phenotypic classification of

ARDS, as well as performing precision medicine, remain some of

the main research directions in the field of respiratory critical

care. In particular, high mortality conditions such as sepsis-

associated ARDS with high mortality should be more actively

diagnosed to reduce burden. It is important to predict the

occurrence of sepsis-related ARDS at an early time, as well as

to classify the clinical subgroups in the early stage and improve

the effectiveness of interventions for target subgroups.

The use of artificial intelligence in the medical field has

recently become more frequent. Using machine learning to

build disease prediction models can predict the occurrence of

diseases at an early stage. Machine learning can also cluster

diseases to aid in making clinical decisions. Artificial intelligence

may have a role in guiding clinicians to make important

decisions, but there are some challenges as well as obstacles in

ICU, such as the weak interpretability of the model, lack of

robustness, and ethical concerns (Yoon et al., 2022). At present,

the diagnosis and prediction of sepsis-associated ARDS by

machine learning has not been studied, and there are no

specific studies on clinical subtypes of sepsis-associated ARDS,

with most subtype studies focusing on the entire ARDS

population. Seymour et al. (2019) identified four clinical

phenotypes of sepsis through cluster analysis, which were

related to host response patterns and clinical outcomes. Calfee

et al. (2014) classified ARDS patients into classic

hyperinflammatory and hypoinflammatory types, but the

definition of this biological phenotype requires the use of

plasma biomarkers as class-defining variables, such as sTNFR-

1 and interleukin (ILs), which are not routinely available and

cannot be quickly quantified at bedside. Therefore, the clinical
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applicability of this classification system may be limited. In 2021,

Liu et al. (2021) proposed a new division of ARDS patients into

three clinical phenotypes using rapidly accessible clinical

indicators. They concluded that the clinical phenotypes of

ARDS were associated with different treatment responses to

randomized interventions, but this study was based on the

entire ARDS population. Studies in the past few years have

used clustering methods to analyze the entire subtype of

ARDS or sepsis but have not identified the clinical subtype of

sepsis-associated ARDS. This classification is more detailed and

precise, and it can easily be applied for clinical use.

In this study, we used rapid and easy-to-obtain early clinical

indicators in a large-scale population of sepsis and sepsis-

associated ARDS patients to build an early diagnostic model

for these patients. A rapid early clinical subgroup classification

was adopted for this population, assuming that these phenotypes

have different clinical outcomes and different treatment

responses. We validated this model in another large sepsis

and sepsis-associated ARDS population.

Methods

Study design

Our study included two large databases and was a

retrospective study. First, we trained an early diagnosis model

for patients with sepsis-associated ARDS in the Telehealth

Intensive Care Unit (eICU) and tested the stability of the

model. At the same time, subgroup clustering of sepsis-

associated ARDS patients was performed using key predictors

(variables that are ultimately included in the models) to

determine differences in characteristics and clinical outcomes

among different phenotypes, as well as to explore the differences

in in-hospital mortality between different phenotypes with

different early positive end-expiratory pressure (PEEP) levels.

These results were validated in Medical Information Mart for

Intensive Care IV (MIMIC-IV) to assess whether they were

reproducible. The specific process is shown in Figure 1.

Patient population

Our training and testing data is based on the eICU database, a

multicenter ICU database with over 200,000 electronic medical

records from 335 units at 208 hospitals across the United States

between 2014 and 2015 (Pollard et al., 2018). We used the

International Classification of Diseases, Ninth Revision,

Clinical Modification (ICD-9-CM) Codes to retrieve sepsis

and ARDS patients, and sepsis-associated ARDS patients were

obtained by associating them with “patientunitstayid.” The

external validation dataset is based on the MIMIC-IV

database, which is a large, single-center, open-access database

of 76,540 ICU admissions between 2008 and 2019 (Johnson et al.,

2021). We used the International Classification of Diseases,

Ninth and 10th Revision, Clinical Modification (ICD-9-CM,I

FIGURE 1
Flowchart of this study.
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CD-10-CM) Codes to retrieve sepsis patients and ARDS patients,

and sepsis-associated ARDS patients were obtained by

correlation with “stay_id.” We extracted data from the

medical ICUs (MICU), surgical ICUs (SICU), and medical-

surgical ICUs (Med-Surg ICU) in the two databases. Specialist

critical care units such as cardiothoracic and cardio-surgical

ICUs were excluded because of their specific patient cohorts

with distinct presentations of sepsis. In the MIMIC-IV, sepsis

was diagnosed based on the Sepsis-3 criteria, including suspected

infection and a SOFA score≥2 (Seymour et al., 2016). In the

eICU, sepsis and ARDS was identified according to the admission

diagnosis recorded on the Acute Physiology and Chronic Health

Evaluation IV (APACHE IV) dataset. We excluded patients who

were admitted for less than 24 h or diagnosed with ARDS within

24 h after admission. Patient identities in MIMIC-IV database

include subject_id, hadm_id and stay_id. Subject_id is unique to

a patient, even if the patient has been admitted multiple times.

Hadm_id is unique to a patient hospital stay, each hospital stay

has a different hadm_id. Stay_id is unique to a patient ward stay,

each ICU stay has a different stay_id. In MIMIC-IV database, we

correlated subject_id and stay_id, the subject_id is selected only

once, and excluded multiple analyses of the same patient. In

eICU, only one of the methods for identifying patients is

patientunitstayid, similar to the subject_id in MIMIC

database. In the eICU database, we excluded multiple analyses

of the same patient by screening out patients corresponding to

repeated patientuistayid.

We accessed the eICU and MIMIC-IV after completion of

the Protecting Human Research Participants exam (Record ID:

44151052). This study was conducted in accordance with the

principles of the Declaration of Helsinki in 2013, and patients

provided consent to have their data captured in the two

databases. Thus, the ethical approval statement was waived in

this study, as the data in the eICU and MIMIC-IV database were

unidentifiable.

Predictor variables

We used structured query language programming in

Navicat Premium (version 15) to extract clinical data from

the eICU and MIMIC-IV database. We collected information

related to the patients’ demographic characteristics, history of

diseases, laboratory findings, severity scores of illness and

outcomes. After evaluating data availability and clinical

variable missing rates in both databases, 27 variables were

selected as candidate training variables: age, gender, body

mass index (BMI), hypertension, diabetes, cancer, acute

physiology and chronic health evaluation IV (APACHE

IV)/acute physiology score III (APSIII), and the maximum

and minimum values of albumin, bicarbnonate (HCO3),

lactate, bilirubin, creatinine, glucose, platelet, prothrombin

time (PT), blood urea nitrogen (BUN), and white blood cell

count (WBC). In order to reflect the early stage and timeliness

of the model, we extracted the maximum and minimum values

of laboratory indicators within 24 h after admission. Since

APACHE IV index was not found in MIMIC-IV database,

APSIII was used instead.

Statistical analysis

We cleaned the data and interpolated the missing values

using the multiple imputation method, which is recognized as

a better approach to deal with missing observations in both

outcome and independent variables to ensure data integrity

prior to analysis. For single variables, the specific methods of

interpolation include linear regression, logistic regression and

predicted mean method (pmm). By default, five data sets were

generated. We averaged the data of these five data sets. We

also standardized data prior to cluster analysis. The normal

distribution of continuous variables was determined using the

Kolmogorov-Smirnov test. The skewed distributed variables

were expressed as the median and interquartile range (IQR),

while categorical variables were expressed as number and

percentages. Continuous variables between groups were

compared by Mann-Whitney test or the Kruskal–Wallis

test, as appropriate. Categorical variables between groups

were compared by Pearson’s chi-squared test or Fisher’s

exact test, as appropriate. SPSS23.0 software was used for

statistical analysis.

Model training and testing

In building a sepsis-associated ARDS diagnostic model, we

divided the patients in the eICU at a 7:3 ratio into a training

set and a test set, respectively. Weight by correlation algorithm

was used to screen the key predictors of sepsis-associated

ARDS. We have trained five models: Naive Bayes, Logistic

Regression, Gradient Boosted Trees, AdaBoost (Decision

Tree), and Random Forest. Model performance was

measured using the area under the receiver operating

characteristic curve (AUROC), accuracy, sensitivity and

specificity. We used the Youden index maximum method

to determine the optimal working point of the ROC curve

and the corresponding sensitivity and specificity. Area under

the receiver operating characteristic curves (AUCs) were

compared using DeLong’s method. After the best

performance model is selected, external verification is

carried out in MIMIC-IV. In the construction of sepsis-

associated ARDS clinical subgroup classification, we used

K-means clustering model through key predictors. After the

optimal phenotypes were derived, the results were visualized

using a scatter plot and centroid chart. The clinical

characteristics and outcomes of different phenotypes were
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TABLE 1 Baseline demographic and clinical characteristics of patients from the eICU database.

Total sepsis
(n = 19,249)

No sepsis-associated ARDS
(n = 13,302)

Sepsis-associated ARDS
(n = 5,947)

p

Demographics

Age, year 67.000 (55.0.78.0) 67.000 (55.0.78.0) 67.000 (56.0.78.0) 0.045p

Male, n (%) 9,935 (51.61%) 6,785 (51.01%) 3,150 (52.97%) 0.012p

BMI, kg/m2 27.359 (23.0.33.0) 27.300 (23.0.32.9) 27.500 (23.1.33.2) 0.191

Comorbidities

Hypertension, n (%) 10,063 (52.28%) 6,972 (52.41%) 3,091 (51.98%) 0.575

Diabetes, n (%) 3,132 (16.27%) 2,228 (16.75%) 904 (15.20%) 0.007pp

Cancer, n (%) 3,592 (18.66%) 2,505 (18.83%) 1,087 (18.28%) 0.362

Myocardial infarction, n (%) 1,571 (8.16%) 1,024 (7.70%) 547 (9.20%) <0.001pp
CHF, n (%) 3,092 (16.06%) 2075 (15.60%) 1,017 (17.10%) 0.009pp

COPD, n (%) 2,975 (15.46%) 1982 (14.90%) 993 (16.70%) <0.001pp
Asthma, n (%) 1,418 (7.37%) 931 (7.00%) 487 (8.19%) 0.003pp

Systemic use of hormones, n (%) 4,827 (25.08%) 3,318 (24.94%) 1,509 (25.37%) 0.524

Systemic use of immunosuppressants, n (%) 1,168 (6.07%) 705 (5.30%) 463 (7.79%) <0.001pp
Vitals

Maximum WBC, K/mcL 15.700 (10.8.21.3) 15.600 (10.7.21.3) 15.900 (10.9.21.4) 0.054

Minimum WBC, K/mcL 11.200 (7.3.15.7) 11.100 (7.3.15.7) 11.200 (7.4.15.6) 0.713

Maximum albumin, g/dL 2.966 (2.6.3.4) 3.000 (2.6.3.4) 3.000 (2.5.3.3) <0.001pp
Minimum albumin, g/dL 2.623 (2.2.3.0) 2.600 (2.2.3.0) 2.600 (2.2.2.9) <0.001pp
Maximum HCO3, mmol/L 23.297 (22.0.23.3) 23.300 (23.0.23.3) 23.300 (21.0.27.0) <0.001pp
Minimum HCO3, mmol/L 20.739 (20.0.21.0) 20.700 (20.7.20.7) 20.700 (18.0.24.0) <0.001pp
Maximum lactate, mmol/L 3.394 (1.8.3.4) 3.200 (1.7.3.4) 3.400 (1.8.3.6) <0.001pp
Minimum lactate, mmol/L 2.000 (1.2.2.0) 1.900 (1.1.2.0) 2.000 (1.2.2.0) <0.001pp
Maximum creatinine, mg/dL 1.460 (0.9.2.4) 1.500 (1.0.2.5) 1.500 (0.9.2.4) 0.024p

Minimum creatinine, mg/dL 1.100 (0.7.1.8) 1.100 (0.8.1.9) 1.100 (0.8.1.7) 0.009pp

Maximum BUN, mg/dL 30.000 (18.0.47.0) 29.000 (18.0.47.0) 31.000 (19.0.47.0) <0.001pp
Minimum BUN, mg/dL 23.000 (14.0.37.0) 23.000 (13.0.37.0) 24.000 (15.0.38.0) 0.004pp

Maximum glucose, mg/dL 156.000 (122.0.209.0) 152.000 (120.0.204.0) 164.000 (127.0.219.0) <0.001pp
Minimum glucose, mg/dL 111.000 (91.0.138.0) 110.000 (91.0.135.3) 113.000 (91.0.142.0) <0.001pp
Maximum total bilirubin, mg/dL 0.900 (0.5.1.4) 0.900 (0.5.1.4) 0.900 (0.5.1.4) 0.193

Minimum total bilirubin, mg/dL 0.700 (0.4.1.1) 0.700 (0.4.1.1) 0.700 (0.4.1.1) 0.954

Maximum platelet, K/mcL 225.000 (157.0.302.0) 224.000 (156.0.301.3) 230.000 (162.0.302.0) 0.011p

Minimum platelet, K/mcL 181.000 (123.0.245.0) 180.000 (123.0.244.0) 184.000 (123.0.245.0) 0.356

Maximum PT, sec 19.600 (14.7.19.6) 19.600 (14.7.19.6) 19.600 (14.5.19.6) 0.621

Minimum PT, sec 17.000 (14.2.17.0) 17.000 (14.3.17.0) 17.000 (14.0.17.0) 0.043p

APACHE IV 68.006 (51.0.79.0) 67.000 (49.0.75.0) 68.000 (58.0.91.0) <0.001pp
Complications

AKI, n (%) 6,825 (35.46%) 4,002 (30.09%) 2,823 (47.47%) <0.001pp
Shock, n (%) 2,213 (11.50%) 1,286 (9.67%) 927 (15.49%) <0.001pp
Vasopressor treatment, n (%) 6,559 (34.07%) 4,056 (30.49%) 2,503 (42.09%) <0.001pp
DIC, n (%) 114 (0.59%) 50 (0.38%) 64 (1.08%) <0.001pp

Outcome

LOS, days 2.300 (1.2.4.6) 2.000 (1.1.3.7) 3.400 (1.7.7.0) <0.001pp
Mortality, n (%) 3,242 (16.84%) 1,618 (12.16%) 1,624 (27.31%) <0.001pp

p p < 0.05 pp p < 0.01 If the variable is a continuous value, it is expressed as the median (interquartile range), and if the variable is a categorical value, it is expressed as a number (percentage

of the total). p values represent the comparison between the no sepsis-associated ARDS group and the sepsis-associated ARDS group. BMI: body mass index; WBC: white blood count;

HCO3: bicarbonate; BUN: blood urea nitrogen; PT: prothrombin time; APACHE IV: acute physiology and chronic health evaluation iv; LOS: length of stay; CHF: congestive heart failure;

COPD: chronic obstructive pulmonary disease; AKI: acute kidney injury; DIC: disseminated intravascular coagulation.
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TABLE 2 Baseline demographic and clinical characteristics of patients from the MIMIC-IV database.

Total sepsis
(n = 11,935)

No sepsis-associated ARDS
(n = 9,236)

Sepsis-associated ARDS
(n = 2,699)

p

Demographics

Age, years 65.000 (54.0.76.0) 66.000 (54.0.77.0) 63.000 (53.0.75.0) <0.001pp
Male, n (%) 6,533 (54.74%) 5,073 (54.93%) 1,460 (54.09%) 0.445

BMI, kg/m2 27.774 (23.3.31.5) 27.600 (23.2.31.5) 28.300 (23.7.31.6) <0.001pp
Comorbidities

Hypertension, n (%) 6,346 (53.17%) 4,938 (53.47%) 1,408 (52.15%) 0.075

Diabetes, n (%) 3,774 (31.62%) 2,988 (32.35%) 786 (29.12%) 0.002pp

Cancer, n (%) 1,262 (10.57%) 974 (10.55%) 287 (10.63%) 0.637

Myocardial infarction, n (%) 1,006 (8.43%) 766 (8.29%) 240 (8.89%) 0.325

CHF, n (%) 2017 (16.90%) 1,496 (16.20%) 521 (19.30%) <0.001pp
COPD, n (%) 2,441 (20.45%) 1856 (20.10%) 585 (21.67%) 0.074

Asthma, n (%) 1,130 (9.47%) 858 (9.29%) 272 (10.08%) 0.219

Systemic use of hormones, n (%) 2,287 (19.16%) 1,551 (16.79%) 736 (27.27%) <0.001pp
Systemic use of immunosuppressants, n (%) 609 (5.10%) 452 (4.89%) 157 (5.82%) 0.055

Vitals

Maximum WBC, K/mcL 13.100 (8.7.19.0) 13.300 (8.8.19.0) 12.700 (8.5.18.7) 0.038*

Minimum WBC, K/mcL 9.700 (6.4.14.1) 9.800 (6.4.14.2) 9.400 (6.3.13.7) <0.010pp
Maximum albumin, g/dL 3.029 (3.0.3.0) 3.000 (3.0.3.0) 3.000 (3.0.3.1) 0.608

Minimum albumin, g/dL 2.9232.900.2.923] 2.900 (2.9.2.9) 2.900 (2.9.3.0) 0.937

Maximum HCO3, mmol/L 24.000 (21.0.27.0) 24.000 (21.0.26.0) 24.000 (21.0.28.0) <0.001pp
Minimum HCO3, mmol/L 21.000 (18.0.24.0) 21.000 (18.0.24.0) 21.000 (18.0.25.0) <0.001pp
Maximum lactate, mmol/L 3.238 (1.9.3.2) 3.200 (2.0.3.2) 3.200 (1.7.3.2) <0.001pp
Minimum lactate, mmol/L 1.958 (1.4.2.0) 2.000 (1.5.2.0) 2.000 (1.2.2.0) <0.001pp
Maximum creatinine, mg/dL 1.300 (0.9.2.2) 1.300 (0.9.2.1) 1.400 (0.9.2.5) <0.001pp
Minimum creatinine, mg/dL 1.100 (0.7.1.8) 1.100 (0.7.1.8) 1.100 (0.7.2.0) 0.003pp

Maximum BUN, mg/dL 27.000 (17.0.45.0) 26.000 (16.0.44.0) 31.000 (19.0.51.0) <0.001pp
Minimum BUN, mg/dL 22.000 (14.0.38.0) 22.000 (13.0.36.0) 25.000 (15.0.42.0) <0.001pp
Maximum glucose, mg/dL 144.000 (115.0.196.0) 142.000 (114.0.192.0) 150.000 (118.0.206.0) <0.001pp
Minimum glucose, mg/dL 107.000 (89.0.132.0) 107.000 (90.0.131.0) 107.000 (89.0.133.0) 0.882

Maximum total bilirubin, mg/dL 1.800 (0.6.2.4) 1.900 (0.6.2.4) 1.500 (0.5.2.4) <0.001pp
Minimum total bilirubin, mg/dL 1.400 (0.5.2.0) 1.500 (0.5.2.0) 1.200 (0.4.2.0) <0.001pp
Maximum platelet, K/mcL 212.000 (143.0.299.0) 211.000 (143.0.296.0) 216.000 (140.0.307.0) 0.25

Minimum platelet, K/mcL 176.0 (114.0.252.0) 175.000 (114.0.250.0) 178.000 (112.0.258.0) 0.757

Maximum PT, sec 16.100 (13.6.20.1) 16.100 (13.6.20.1) 16.100 (13.4.20.2) 0.763

Minimum PT, sec 14.8 (12.9.16.8) 14.800 (12.9.16.8) 14.800 (12.7.17.4) 0.895

APSIII 51.000 (38.0.68.0) 49.000 (37.0.65.0) 57.000 (42.0.77.0) <0.001pp
Complications

AKI, n (%) 4,852 (40.65%) 3,481 (37.69%) 1,371 (50.80%) <0.001pp
Shock, n (%) 1,591 (13.33%) 1,062 (11.50%) 529 (19.60%) <0.001pp
Vasopressor treatment, n (%) 4,151 (34.78%) 2,956 (32.01%) 1,195 (44.28%) <0.001pp
DIC, n (%) 207 (1.73%) 129 (1.40%) 78 (2.89%) <0.001pp

Outcome

LOS, days 2.110 (1.2.4.1) 2.000 (1.1.3.7) 2.900 (1.5.6.7) <0.001pp
Mortality, n (%) 1971 (16.51%) 1,376 (14.90%) 595 (22.05%) <0.001pp

*p < 0.05 pp p < 0.01 If the variable is a continuous value, it is expressed as the median (interquartile range), and if the variable is a categorical value, it is expressed as a number (percentage of

the total). p values represent the comparison between the no sepsis-associated ARDS group and the sepsis-associated ARDS group.BMI: body mass index; WBC: white blood count; HCO3:

bicarbonate; BUN: blood urea nitrogen; PT: prothrombin time; APSIII: acute physiology score iii; LOS: length of stay; CHF: congestive heart failure; COPD: chronic obstructive pulmonary

disease; AKI: acute kidney injury; DIC: disseminated intravascular coagulation.
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analyzed, and the differences of in-hospital mortality of

different PEEP levels in different phenotypes were

compared. The same method was used for external

validation in MIMIC-IV. The overall model was built using

RapidMiner Studio 9.10.001 and python 3.7.

Results

Participants

A total of 19,249 patients with sepsis were included in the

eICU database, including 5,947 patients with sepsis-associated

ARDS (Table 1). Meanwhile, 11,935 patients with sepsis were

included in the MIMIC-IV database, including 2,699 patients

with sepsis-associated ARDS (Table 2). Source of infection in

septic patients and in septic-associated ARDS from

gastrointestinal, cutaneous/soft tissue, pulmonary,

gynecologic, renal, urinary tract infection, abdominal

infection and unknown. In the eICU database, the overall

population of sepsis patients had an in-hospital mortality rate

of 16.84% and median ICU stay of 2.3 days, whereas for

patients with sepsis-associated ARDS, these values were

27.31% and 3.4 days, respectively. For the MIMIC-IV

database, the overall population of sepsis patients had an

in-hospital mortality rate of 16.51% and median ICU stay

of 2.1 days, whereas for patients with sepsis-associated ARDS,

these values were 22.05% and 2.9 days, respectively.

Establishment and verification of sepsis-
associated ARDS diagnostic model

A total of 19,249 sepsis patients, including 5,947 patients

with sepsis-associated ARDS, were selected from the eICU

database. The entire cohort was randomly divided into a

training cohort (13,474, 70%) and a test cohort (5,775,

30%). We used the weight by correlation algorithm to

select the key predictors among the 27 input variables. We

selected 14 key predictors (Figure 2) with high weight (>0.02),
which are APACHE IV and minimum and maximum HCO3,

lactate, creatinine, albumin, glucose, WBC, and age. Using

14 variables as input factors, five machine learning methods,

including Naive Bayes, Logistic Regression, Gradient Boosted

Trees, AdaBoost (Decision Tree), and Random Forest were

established to predict the occurrence of sepsis-associated

ARDS. In the eICU test queue, the AUC and corresponding

accuracies, sensitivities and specificities of the five models are

as follows: Naive Bayes: 0.644 (95%CI: 0.632–0.656) (68.89%

(95%CI:68.69%–69.10%) accuracy, 72.67% (95%CI:72.42%–

72.92%) sensitivity, 48.75% (95%CI:45.83%–51.67%)

specificity), Logistic Regression: 0.653 (95%CI:0.641–0.667)

(71.34% (95%CI:71.20%–71.48%) accuracy, 71.95% (95%CI:

70.42%–73.48%) sensitivity, 44.18% (95%CI:43.23%–45.13%)

specificity), Gradient Boosted Trees: 0.736 (95%CI:

0.697–0.795) (67.19% (95%CI:66.46%–68.00%) accuracy,

71.43% (95%CI:70.12%–72.75%) sensitivity, 65.29% (95%CI:

64.10%–66.48%) specificity), AdaBoost (Decision Tree): 0.895

FIGURE 2
Feature screening of sepsis-associated ARDS diagnostic model.
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(95%CI:0.834–0.936) (70.06% (95%CI:68.87%–71.28%)

accuracy, 78.11% (95%CI:74.23%–81.23%) sensitivity,

78.74% (95%CI:76.13%–81.35%) specificity), and Random

Forest: 0.763 (95%CI:0.731–0.820) (69.16% (95%CI:67.11%–

71.21%) accuracy, 74.92% (95%CI:70.85%–78.99%)

sensitivity, 69.38% (95%CI:66.82%–72.03%) specificity). The

performance comparison of the models is shown in Table 3;

Figure 3. From the performance index of the models, the AUC

value of AdaBoost (DecisionTree) is the highest, which is

higher than that of the traditional Logistic Regression model

(Z = -2.40,p = 0.013), and the sensitivity, specificity and

accuracy are higher. We selected AdaBoost (Decision Tree),

with the best performance as the final model. We performed

external verification in the MIMIC-IV cohort. A total of

11,935 septic patients were selected in the MIMIC-IV

database, of which 2,699 were sepsis-associated ARDS

patients. Since there is no APACHE IV in MIMIC-IV, we

used APSIII instead. In the verification set, 14 key predictors

were inputted into the AdaBoost (Decision Tree) model, and

the resulting AUC is the 0.804. The ROC curve in MIMIC-IV

external verification set is shown in Figure 4.

Derivation and validation of sepsis-
associated ARDS phenotypes

A total of 5,947 cases of sepsis-associated ARDS were

selected in the eICU database for subgroup clustering by the

K-means method, and repeatability was observed in the

MIMIC-IV cohort. A total of 2,699 sepsis-associated ARDS

patients were selected in the MIMIC-IV database. Regarding

the clustering model, after evaluating data availability and the

TABLE 3 Performance of the five machine learning models for predicting sepsis-associated ARDS.

Models AUC (95%CI) Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI)

Naive Bayes 0.644 (0.632–0.656) 68.89% (68.69%–69.10%) 72.67% (72.42%–72.92%) 48.75% (45.83%–51.67%)

Logistic Regression 0.653 (0.641–0.667) 71.34% (71.20%–71.48%) 71.95% (70.42%–73.48%) 44.18% (43.23%–45.13%)

Gradient Boosted Trees 0.736 (0.697–0.795) 67.19% (66.46%–68.00%) 71.43% (70.12%–72.75%) 65.29% (64.10%–66.48%)

AdaBoost (Decision Tree) 0.895 (0.834–0.936) 70.06% (68.87%–71.28%) 78.11% (74.23%–81.23%) 78.74% (76.13%–81.35%)

Random Forest 0.763 (0.731–0.820) 69.16% (67.11%–71.21%) 74.92% (70.85%–78.99%) 69.38% (66.82%–72.03%)

FIGURE 3
Comparison of ROC of fivemachine learning methods for predicting sepsis-associated ARDS in eICU test set. The AUC of the fivemodels in the
eICU test cohort are as follows: Naive Bayes: 0.644, Logistic Regression: 0.653, Gradient Boosted Trees:0.736, AdaBoost (Decision Tree): 0.895, and
Random Forest: 0.763.
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rate of missing clinical variables, we adopt the worst value of

each variable selected by the prediction model, which is a total

of 8 input variables: APACHE IV, maximum HCO3,

maximum lactate, maximum creatinine, minimum albumin,

maximum glucose, maximum WBC, and age. To evaluate the

clustering result, we considered both theoretical and practical

factors including: (1) Goodness of fit (2) Adequate large

cluster size (3) Salient difference in clinical characteristics

between different phenotypes. To determine the optimal

number of cluster k, we examined the Gap statistics and

the Gapp statistics. The optimal number of clustering was

determined as 3, which was visualized using a scatter plot

(Figure 5) and centroid chart (Figure 6). We also conducted a

sensitivity analysis of the clustering strategy. We applied

consensus clustering on same data to compare the

difference in cluster assignments and phenotype clinical

characteristics. We observe a sharp decline in Delta Area of

consensus cumulative distribution function from 3 class to

4 class, indicating optimal number of clusters is likely to be 3.

Under cluster number = 3, cluster consensus for all cluster was

above 0.8 and consensus matrix suggested that goodness of fit

was high. The baseline characteristics of the three phenotypes

in the eICU derivation cohort are shown in Table 4. The three

phenotypes have different clinical characteristics, as follows.

FIGURE 4
The MIMIC-IV verification set validates the sepsis-associated ARDS ROC of the AdaBoost (Decision Tree) model, AUC = 0.804.

FIGURE 5
Scatter plot visualization of phenotype assignments by K-means in sepsis-associated ARDS. (A): Scatter plot visualization of phenotype
assignments by K-means in the eICU derivation cohort. There were three phenotypes, Clusters 0, 1, and 2, with 3669, 1554, and 724 patients
respectively. (B): Scatter plot visualization of phenotype assignments by K-means in the MIMIC-IV validation cohort. There were three phenotypes,
Clusters 0, 1, and 2, with 1857, 518, and 324 patients respectively.
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Patients in Cluster 0 have lower WBC (median:15.000 K/

mcL), lower blood glucose (median:158.000 mg/dl), lower

creatinine (median:1.200 mg/dl), lower lactic acid (median:

3.000 mmol/L), p < 0.001. The age of patients in Cluster 0 was

between Cluster1 and Cluster2, and the proportion of

comorbidities was also between Cluster1 and Cluster2.

These patients were mainly non-traumatic infections and

mainly from MICU. Patients in Cluster 1 have the highest

WBC (median:18.300 K/mcL), highest blood glucose (median:

188.000 mg/dl), highest creatinine (median:2.300 mg/dl),

highest lactic acid (median:3.900 mmol/L), p < 0.001.

Cluster 1 also had the oldest age, highest proportion of

comorbidities, mainly non-traumatic infections, and mainly

from MICU. Lastly, patients in Cluster 2 have the lowest age,

with the albumin, lactic acid, blood glucose and WBC between

Clusters 0 and 1. Cluster 2 had the lowest proportion of

comorbidities, and was dominated by traumatic infections,

which were mainly derived from SICU. We evaluated the

repeatability of phenotypes in MIMIC-IV and found that the

three phenotypes were similar to those in the eICU derivation

cohort (Table 5).

Relationship between phenotype and
clinical outcome

The three phenotypes had different clinical outcomes in

eICU cohort, as well as in the MIMIC-IV external validation

cohort. Cluster 0 had the lowest in-hospital mortality rate

(6.51% in eICU and 3.45% in MIMIC-IV), whereas

Cluster1 had the highest in-hospital mortality rate

(75.29% in eICU and 90.35% in MIMIC-IV). Clusters

0 and 1 had similar median ICU stay length (Cluster0:

eICU 2.90 days and MIMIC-IV 2.90 days; Cluster 1: eICU

2.20 days and MIMIC-IV 3.75 days). Meanwhile, Cluster

2 had a moderate in-hospital mortality rate (29.7% in eICU,

19.44% in MIMIC-IV), and the longest ICU stay (15.9 days in

eICU, 17 days in MIMIC-IV). Between the two databases,

there were significant differences in in-hospital mortality and

ICU stay days among the three phenotypes (p < 0.05)

(Tables 4, 5).

Therapeutic effects of different PEEP
levels in different phenotypes

We divided PEEP within 24 h after admission into high

and low PEEP levels, wherein PEEP of >10 cm H2O was

defined as a high PEEP level. In order not to bias the

results, we excluded patients with PEEP missing in this

period. The final eICU included 1,473 patient in Cluster 0,

988 in Cluster 1, and 504 in Cluster 2. Cluster 0 in MIMIC-IV

had 723 individuals, Cluster 1 had 395 individuals, and

Cluster 2 had 324 individuals. The interaction between

phenotype and early PEEP strategy was determined. In the

eICU derivation cohort, the in-hospital mortality rates of high

PEEP in Clusters 0 and 1 were higher compared to low PEEP

(p < 0.05), whereas in Cluster 2, high PEEP had lower hospital

mortality than low PEEP (p < 0.05). Similar results were

observed in the MIMIC-IV validation cohort (Figure 7).

Notably, in the eICU cohort, the mortality rates of low and

high PEEP, respectively, were 6.14% (84) and 18.87% (20) in

Cluster 0 (p < 0.05), 73.41% (657) and 92.47% (86) in Cluster 1

(p < 0.05), and 29.89% (130) and 13.04% (9) in Cluster 2 (p <
0.05). On the other hand, MIMIC-IV, the mortality rates of

low and high PEEP, respectively, were 4.2% (30) and 12.5% (1)

in Cluster 0 (p > 0.05), 89.39% (358) and 100% (37) in Cluster

1 (p < 0.05), and 21.11% (61) and 5.71% (2) in Cluster 2

(p < 0.05).

FIGURE 6
Centroid chart visualization of phenotype assignments by K-
means in sepsis-associated ARDS. The laboratory indices were
standardized, and the median laboratory indices differed between
phenotypes. (A): Centroid chart visualization of phenotype
assignments by K-means in the eICU derivation cohort. There
were three phenotypes, Clusters 0, 1, and 2, with 3669, 1554, and
724 patients respectively. (B): Centroid chart visualization of
phenotype assignments by K-means in the MIMIC-IV validation
cohort. There were three phenotypes, Clusters 0, 1, and 2, with
1857, 518, and 324 patients respectively.
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Discussion

In this study, we developed and validated five machine learning

methods using fourteen clinical variables to predict the risk of sepsis-

associated ARDS. The AdaBoost (Decision Tree) model exhibited

the best performance. We also used rapid key clinical predictors to

conduct clinical subgroup clustering for patients with sepsis-

associated ARDS. The three phenotypes had different

demographics, laboratory tests and outcomes, and these notable

responded differently to early high and low PEEP strategies. These

results were validated in an additional cohort.

To the best of our knowledge,machine learning for the prediction

and clinical subtype classification of sepsis-associated ARDS has not

yet been studied. This is the largest study to confirm the prediction

and clinical subgroup classification of sepsis-associated ARDS. In this

study, whether in the prediction model or in the subgroup clustering,

early conventional and easily accessible clinical data are used to ensure

the extensibility and clinical transformation of themodel, as well as to

assist clinicians in the early judgment of patients’ conditions.

The advantage and difference among the development models

analyzed in the study are as follow: Naive Bayes is a relatively simple

machine learning model, which originates from classical

mathematical theory and has a solid mathematical foundation and

stable classification efficiency. It has been shown to perform relatively

well in the presence of noise, missing data, and irrelevant features (Bi

et al., 2019). Logistic Regression is a generalized linear regression

analysis model, which is easy to use and explain, but it is sensitive to

the multiple collinearity of independent variables in the model.

(Edwards et al., 2021). Gradient Boosted Trees is an enhanced

integrated model of decision tree, which is flexible and performs

well for all kinds of data types (Friedman, 2002). The decision tree

model is a easy-to-use classifier model, and the results are easy to

explain and robust. Compared with other models, the preparation of

data is unnecessary, the requirements for data attributes are not strict,

TABLE 4 Clinical characteristics and outcomes of three phenotypes in the eICU derivation cohort.

Cluster0 (n = 3,669) Cluster1 (n = 1,554) Cluster2 (n = 724) p

Demographics

Age, year 67.000 (56.0.78.0) 71.000 (60.0.82.0) 61.000 (50.3.72.0) <0.001pp
Male, n (%) 1856 (50.6%) 909 (58.5%) 385 (53.2%) <0.001pp

Comorbidities

Hypertension, n (%) 2011 (54.8%) 886 (57.0%) 191 (26.8%) <0.001pp
Diabetes, n (%) 478 (13.0%) 363 (23.3%) 63 (8.7%) <0.001pp
CHF, n (%) 571 (15.6%) 347 (22.3%) 99 (13.6%) <0.001pp
COPD, n (%) 716 (19.5%) 206 (13.3%) 71 (9.8%) <0.001pp

Admission reason

Traumatic infection, n (%) 741 (20.2%) 349 (22.5%) 497 (68.7%) <0.001pp
Non-traumatic infection, n (%) 2,928 (79.8%) 1,205 (77.5%) 227 (31.3%) <0.001pp

Type of ICU

MICU, n (%) 2,598 (70.8%) 1,204 (77.5%) 76 (10.5%) <0.001pp
SICU, n (%) 139 (3.8%) 50 (3.2%) 514 (70.9%) <0.001pp
Med-Surg ICU, n (%) 932 (25.4%) 300 (19.3%) 134 (18.6%) <0.001pp

Vitals

Minimum albumin, g/dL 2.600 (2.5.3.1) 2.300 (1.9.2.6) 2.400 (1.9.2.6) 1

Maximum HCO3, mmol/L 23.300 (23.0.27.0) 21.000 (17.0.23.3) 23.300 (22.0.28.0) 1

Maximum lactate, mmol/L 3.000 (1.6.3.4) 3.900 (3.0.8.1) 3.300 (1.7.3.4) <0.001pp
Maximum creatinine, mg/dL 1.200 (0.9.1.9) 2.300 (1.6.3.7) 1.200 (0.9.2.2) <0.001pp
Maximum glucose, mg/dL 158.000 (125.0.205.0) 188.000 (137.0.265.0) 160.000 (124.0.208.0) <0.001pp
Maximum WBC,K/mcL 15.000 (10.5.19.6) 18.300 (12.7.26.8) 15.200 (10.0.20.7) <0.001pp
APACHE IV 68.000 (50.0.75.0) 99.000 (78.0.122.0) 72.000 (65.0.92.0) <0.001pp

Outcome

LOS, days 2.900 (1.6.5.1) 2.900 (1.1.5.8) 15.900 (12.8.22.1) <0.001pp
Mortality, n (%) 239 (6.51%) 1,170 (75.29%) 215 (29.70%) <0.001pp

ap < 0.05 ppp < 0.01.

If the variable is a continuous value, it is expressed as the median (interquartile range), and if the variable is a categorical value, it is expressed as a number (percentage of the total). p values

represent the results of any two comparisons between the three clusters.

HCO3: bicarbonate; WBC: white blood count; APACHE IV: acute physiology and chronic health evaluation iv; LOS: length of stay; CHF: congestive heart failure; COPD: chronic

obstructive pulmonary disease; MICU: medical ICUs; SICU: surgical ICUs; Med-Surg ICU: medical-surgical ICUs.
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and can achieve good results for large data sources in a relatively short

time (Bi et al., 2019). AdaBoost model is a kind of classifier with high

precision, which can be used to construct sub-classifiers. Adaboost

algorithm provides a framework and rarely appears overfitting

phenomenon. However, compared with other weak classifiers,

training is more time-consuming (Freund, 1995). Random Forest

is a random bagged integrated model of decision tree, which can deal

with high latitude data and performs well. The model has strong

generalization ability and fast speed, but it is easy to over-fit in some

noisy regression or classification problems (Edwards et al., 2021).

Most of the factors involved in previous studies on the

diagnosis of sepsis-associated ARDS were inflammatory

factors, lung surface proteins or genes, etc. (Wang et al., 2008;

Fremont et al., 2010; Ware et al., 2013; Reilly et al., 2018). In our

study, clinical indicators within 24 h after admission were used

(i.e., APACHE IV/APSIII, maximum HCO3, minimum HCO3,

maximum lactate, minimum lactate, maximum creatinine,

minimum creatinine, maximum albumin, minimum albumin,

maximum glucose, minimum glucose, maximum WBC,

minimum WBC, and age) combined with the machine

learning model to obtain an accurate prediction of sepsis-

associated ARDS. Studies have found that elevated serum

lactate levels and clinical prediction scores were independently

associated with the development of ARDS in severe sepsis

(Mikkelsen et al., 2013). These two indicators were not only

related to the development of ARDS, but also with the prognosis

of ARDS patients. A recent Chinese study explored the

independent risk factors of community-acquired pneumonia

(CAP) complicated with ARDS (Mo et al., 2022), and used an

artificial neural network model to predict ARDS in CAP patients.

Some of the important predictors in their study were similar with

ours, such as age, albumin, creatinine, and blood glucose, and

they pointed out that these indicators may be risk factors for

ARDS in patients with CAP. In clinical practice, elderly sepsis

TABLE 5 Clinical characteristics and outcomes of three phenotypes in the MIMIC-IV derivation cohort.

Cluster0 (n = 1857) Cluster1 (n = 518) Cluster2 (n = 324) p

Demographics

Age, year 63.000 (53.0.74.0) 67.000 (57.0.78.3) 59.000 (49.3.70.0) <0.001pp
Male, n (%) 970 (52.2%) 320 (61.7%) 170 (52.4%) <0.001pp

Comorbidities

Hypertension, n (%) 971 (52.2%) 351 (67.8%) 86 (26.5%) <0.001pp
Diabetes, n (%) 559 (30.1%) 179 (34.5%) 48 (14.8%) <0.001pp
CHF, n (%) 340 (18.3%) 125 (24.2%) 56 (17.2%) <0.001pp
COPD, n (%) 405 (21.8%) 123 (23.9%) 57 (17.6%) <0.001pp

Admission reason

Traumatic infection, n (%) 459 (24.7%) 98 (18.9%) 195 (60.2%) <0.001pp
Non-traumatic infection, n (%) 1,398 (75.3%) 420 (81.1%) 129 (39.8%) <0.001pp

Type of ICU

MICU, n (%) 1,404 (75.6%) 378 (73.1%) 41 (12.6%) <0.001pp
SICU, n (%) 165 (8.9%) 52 (10.0%) 220 (68.1%) <0.001pp
Med-Surg ICU, n (%) 288 (15.5%) 88 (16.9%) 63 (19.3%) <0.001pp

Vitals

Minimum albumin, g/dL 2.900 (2.9.3.1) 2.900 (2.2.2.9) 2.900 (2.7.2.9) 1

Maximum HCO3, mmol/L 25.000 (22.0.28.0) 21.000 (18.0.25.0) 23.000 (20.0.27.0) <0.001pp
Maximum lactate, mmol/L 3.200 (1.5.3.2) 3.650 (2.5.7.3) 2.650 (1.7.3.7) <0.001pp
Maximum creatinine, mg/dL 1.200 (0.8.2.1) 2.100 (1.3.3.2) 1.800 (1.0.3.6) <0.001pp
Maximum glucose, mg/dL 145.000 (115.0.198.5) 171.000 (126.0.234.0) 156.500 (129.0.205.8) <0.001pp
Maximum WBC,K/mcL 11.700 (8.1.16.3) 17.400 (10.8.25.9) 15.150 (9.5.22.6) <0.001pp
APSIII 48.000 (38.0.61.0) 87.000 (68.0.109.0) 88.000 (73.0.107.0) <0.001pp

Outcome

LOS, days 2.200 (1.3.4.1) 3.750 (1.7.7.7) 17.000 (13.1.24.1) <0.001pp
Mortality, n (%) 64 (3.45%) 468 (90.35%) 63 (19.44%) <0.001pp

ap < 0.05 ppp < 0.01.

If the variable is a continuous value, it is expressed as the median (interquartile range), and if the variable is a categorical value, it is expressed as a number (percentage of the total). p values

represent the results of any two comparisons between the three clusters.

HCO3: bicarbonate; WBC: white blood count; APSIII: acute physiology score iii; LOS: length of stay; CHF: congestive heart failure; COPD: chronic obstructive pulmonary disease; MICU:

medical ICUs; SICU: surgical ICUs; Med-Surg ICU: medical-surgical ICUs.
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patients with severe infection, poor nutrition, abnormal renal

function, and poor blood glucose control are prone to

complications and increasing the risk of ARDS. WBCs are

considered the most important effector cells involved in acute

inflammation during the pathogenesis of ARDS, with increased

WBC heralding the occurrence of ARDS. Abnormal HCO3

represents acid-base imbalance, which is seen alongside

electrolyte disturbances in the development of ARDS. In

conclusion, we believe that several key predictors in this study

combined with machine learning models can provide more

accurate predictions for the diagnosis of sepsis-associated

ARDS patients. Clinical subgroup clustering of sepsis-

associated ARDS patients using these key predictors yielded

three phenotypes with different clinical characteristics and

outcomes.

In 2014, Calfee et al. (2014) divided ARDS patients into two

biological phenotypes: hyperinflammatory and

hypoinflammatory types. Repeatability verification was

conducted in the SAILS cohort (statins for acutely injured

lungs from sepsis) in 2018, with approximately 40% of the

patients classified as hyperinflammatory phenotypes (Sinha

et al., 2018). The team then conducted a series of related

studies (Sinha et al., 2020a; Sinha et al., 2020b; Sinha et al.,

2022) to validate other ARDS cohorts, continuously simplify the

model, and used clinical data to classify biological phenotypes as

much as possible. However, the determination of biological

phenotype is inseparable from the definition of plasma

biomarkers, and thus this is difficult to determine at bedside.

In 2021, Liu et al. (2021) used fast and easily available clinical

indicators to classify ARDS patients into three clinical

phenotypes. These subtypes were not defined by plasma

biomarkers and were thus more convenient for rapid clinical

application. Type I in their study is similar to Cluster 0 in our

study, which included patients with fewer laboratory

abnormalities and lowest hospital mortality. Type II is similar

to Cluster 2 in our study, which included patients with a more

complex condition and moderate mortality. Type III is similar to

Cluster 1 in our study, which is closely related to renal

insufficiency and acidosis, and had the highest mortality.

However, our study is based on subgroup clustering in sepsis-

associated ARDS patients, which is more detailed, has less

confounding factors, and can explore different clinical

characteristics of patients in relatively similar diseases.

Alveolar recruitability varies among patients with different

severities of ARDS. In patients with mild ARDS, lung tissue

recruitability is low, whereas this is high among patients with

moderate to severe ARDS (Gattinoni et al., 2006). In our sepsis-

associated ARDS patient classification, Cluster 0 patients were

FIGURE 7
Comparison of in-hospital mortality across phenotypes at high versus low PEEP levels in the eICU derived cohort and MIMIC-IV validated
cohort. (A): Cluster 0 (eICU): high PEEP had a higher mortality rate than low PEEP (18.87% vs. 6.14%, p < 0.05). (B): Cluster 1 (eICU): high PEEP had a
highermortality rate than low PEEP (92.47% vs. 73.41%, p < 0.05). (C): Cluster 2 (eICU) : high PEEP had a lowermortality rate than low PEEP (13.04% vs.
29.89%, p < 0.05). (D): Cluster 0 (MIMIC-IV): high PEEP had a higher mortality rate than low PEEP (12.50% vs. 4.20%, p > 0.05). (E): Cluster 1
(MIMIC-IV): high PEEP had a higher mortality rate than low PEEP (100.00% vs. 89.39%, p < 0.05). (F): Cluster 2(MIMIC-IV): high PEEP had a lower
mortality rate than low PEEP (5.71% vs. 21.22%, p < 0.05).
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the least ill and had poor lung recruitability, which is equivalent

to the hypoinflammatory phenotype classification of ARDS by

Calfee et al. (2014) in 2014; mortality is lower with low PEEP. In

type I ARDS according to the classification of Liu et al. (2021),

low PEEP had a lower 60-day mortality rate than high PEEP,

which may be because the use of lower PEEP in these patients is

sufficient to maintain alveolar inflation and increase functional

residual capacity. On the other hand, the patients of Cluster 1 and

Cluster 2 have more severe illness, which is equivalent to

hyperinflammatory ARDS patients, with a higher mortality

rate than Cluster 0. From our classification, these patients can

be further subdivided into Clusters 1 and 2. A study in 2017

(Writing Group for the Alveolar Recruitment for Acute

Respiratory Distress Syndrome Trial ART Investigators

Laranjeira et al., 2017) also pointed out that the use of high

PEEP and lung recruitment in patients with moderate to severe

ARDS was associated with improved oxygenation but increased

mortality. This may be caused by a misclassification of lung

morphology in ARDS patients. Therefore, a more specific

classification is necessary for moderate to severe ARDS

patients. We further classified patients with moderate to

severe ARDS into Clusters 1 and 2. Compared to Cluster 0,

the overall condition of Cluster 2 is more severe, with higher lung

recruitability and younger age, and it is more beneficial to use

high PEEP. Cluster 2 patients are mainly from trauma patients,

and the clinical benefit is greater when using higher PEEP. From

our clinical experience, patients with ARDS from traumatic

sources do clinically prefer to use high PEEP compared with

other ARDS patients, because these patients have better lung

recruitment ability (Burns et al., 2001; Schreiter et al., 2004). For

ARDS patients with high alveolar recruitability, a higher PEEP

can be selected, which can not only reduce the shear force formed

by the periodic collapse of the alveoli, but also avoid ventilator-

associated lung injury caused by excessive transpulmonary

pressure (Caironi et al., 2010). Cluster 1 is the most severely

ill, with an extremely high mortality rate; these patients may not

be able to tolerate high PEEP. At this time, the side effects caused

by high PEEP outweigh the benefits. Therefore, from our

classification of sepsis-associated ARDS patients, lower PEEP

is more favorable in Clusters 0 and 1, whereas higher PEEP is

better in Cluster 2. In the next step, we will also consider

transforming this research into software and other clinical

tools to integrate the identification and clustering of sepsis-

associated ARDS patients to assist doctors in diagnosis and

treatment.

Our study has some limitations. First, many laboratory

parameters were removed before model construction due to

missing data in over 50% (e.g., pondus hydrogenii, partial

pressure of oxygen, and partial pressure of carbon dioxide).

Second, the eICU and MIMIC-IV indices of the two databases

cannot be completely consistent, thus the APACHE IV and

APSIII were interchanged when establishing prediction

models and subgroup clustering. Third, missing data was

common for some features in the eICU and MIMIC-IV

datasets, and thus we performed multiple imputations before

statistical analysis. The missing data could result in some bias in

our results. Fourth, machine learning cannot avoid the “black

box” problem, and it is still a relatively new concept in the field of

medicine. Therefore, it is necessary to pilot a prospective

implementation study based on system tools in the intensive

care environment.

Conclusion

The use of machine learning in the early diagnosis and

classification of sepsis-associated ARDS with easily accessible

clinical indicators may assist clinicians in making early diagnosis

of the disease, as well as further specify ARDS as a heterogeneous

disease, promote individualized and precise treatment, and

facilitate clinical transformation and application.
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