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Background: The endometrial thickness is a key factor for successful

implantation. Thin endometrium is associated with lower implantation rate and

pregnancy rate. Lacking of a better understanding for the cellular and molecular

mechanisms of thin endometrium,managing patients with thin endometrium still

represents a major challenge for clinicians.

Methods: In this study, we combined four single-cell RNA sequencing (scRNA-

seq) and one bulk sequencing (bulk-seq) data for thin endometrium to perform an

integrated analysis for endometrial cells in proliferating phase. Cell proportion and

differentially expressed genes (DEGs) were analyzed to determine the disease-

specific cell type and signaling pathways. The cell-cell communication among cell

types were inferred by “CellChat” to illustrate the differential intercellular

communication under normal and thin endometrium conditions. GSEA and

GSVA were applied to identify dysfunctional signals and metabolic pathways

before and after thin endometrium.

Results: Integration of scRNA-seq identified eight cell types. The proportion of

stromal cells showeda significant differencebetweennormal and thin endometrial

tissue. The DEGs in diverse cell types revealed enriched pathways in a cell-specific

manner. Aberrant cell-cell signaling transductionwas found in almost all cell types,

especially in immune cells and epithelial cells. Furthermore, dysfunctional

metabolic signaling pathways were induced in a cell-type dependent way. The

down-regulation of carbohydrate metabolism and nucleotide metabolism was

observed and the energy metabolism switch was indicated.

Conclusion: Conclusively, we discover dysfunctional signals and metabolic

pathways in thin endometrium, providing insight into mechanisms and

therapeutic strategies for the atrophic endometrium.
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Introduction

Assisted reproductive technology is useful for the infertile

women. Despite advances in assisted reproduction, the rates of

successful embryo implantation are still low. Endometrial

receptivity is a critical feature for pregnancy achievement.

Endometrial thickness is widely used to assess the state of

endometrial receptivity. While there is no consensus on a cut-

off value for “thin endometrium,” thin endometrium is reported

as <7 mm on the day of ovulation or on the day of human

chorionic gonadotrophin (HCG) injection in fresh in vitro

fertilization (IVF) cycles, or when using progesterone in

frozen-thawed embryo transfer cycles (Liu et al., 2019). The

prevalence of thin endometrium is 24–85 cases per

1,000 individuals (Kasius et al., 2014; Ribeiro et al., 2018).

Thin endometrium not only implicates lower pregnancy rate,

but also seems to be associated with adverse perinatal outcomes.

The most common causes of thin endometrium are

inflammation and iatrogenic damage. The inappropriate

endometrium repair after curettage results in disrupted blood

vessel distribution and sparse glands. What’s more, thin

endometrium can also be genetic and idiopathic. Currently, the

detailed mechanism of thin endometrium remains unclear, and the

treatments of thin endometrium are limited and controversial.

Therefore, exploring the cellular and molecular mechanisms of

thin endometrium, unraveling the function of different cell types,

and determining the dysfunctional signaling pathways are essential

for recognition of etiology and development of effective therapies.

Single-cell RNA sequencing (scRNA-seq) is a revolutionary tool

that allows scientists to analyze the cell composition in tissues,

identify the transcriptional states of multiple cell types, and depict

the sophisticated alterations between normal and disease conditions.

As a high-throughput sequencing method, scRNA-seq can provide

massive information related to cell diversity and transcriptional

signatures. In the present study, we integrated four scRNA-seq

projects and one bulk-seq project for thin endometrium to explore

the cell heterogeneity in the endometrial tissue, infer the intercellular

communication between normal and diseased conditions, and reveal

the metabolic alteration that contributed to thin endometrium

pathogenesis.

Materials and methods

scRNA-seq data acquisition

We included four projects for the scRNA-seq data analysis:

E-MTAB-10287 (Garcia-Alonso et al., 2021) and GSE111976

(Wang et al., 2020) contained the normal endometrial samples,

and PRJNA784021 (Zhang et al., 2022) and PRJNA730360 (Lv

et al., 2022) comprised of normal and thin endometrial samples.

The processed matrices of E-MTAB-10287 was accessed and

downloaded from human cell atlas (www.reproductivecellatlas.

org). The counts matrices of normal samples of GSE111976 were

downloaded from the GEO database, which contained the

scRNA-seq data of two healthy donors. The raw fastq files of

PRJNA784021 and PRJNA730360 were downloaded from

European Nucleotide Archive (www.ebi.ac.uk/ena/). To unify

the endometrial samples in the same menstrual cycle, we only

included the samples in the proliferating phase from each project.

As a result, we obtained nine normal samples and seven thin

endometrium samples from four projects. The project

information was summarized in Supplementary Table S1.

scRNA-seq data processing

The 10x scRNA-seq data of PRJNA784021 and

PRJNA730360 were processed according to 10x genomics

workflow. Briefly, reads were processed using cellranger

6.0.1 pipeline with the default parameters. The Fastq files

were aligned to the human reference genome (refdata-gex-

GRCh38-2020-A) using the STAR algorithm. The output files

were then imported into the Seurat (4.0.5) R toolkit (Stuart et al.,

2019; Mimitou et al., 2021) to construct seurat objects. The seurat

objects of E-MTAB-10287 and GSE111976 were constructed

from matrix with the min. cells = 3, and min. features = 200.

Due to the different sequencing depth, we adopted a dynamic

filtration criterion by detecting outliers based on the median

absolute deviation (MAD). This method has been applied by

other groups, and works well in the quality control process of the

single-cell data (Nguyen et al., 2018; ATL et al., 2019; Lin et al.,

2021). We performed the low-quality cell filtration based on the

following criteria: 1) The cells with the number of features and

the number of counts not in the range of median ± 3 ×MADwere

removed; 2) The cells with the percentage of mitochondrial and

ribosomal genes more than median + 3 ×MADwere removed; 3)

The cells expressing hemoglobin genes were removed, and 4) The

doublets identified by DoubletFinder (version 1.0.0) (McGinnis

et al., 2019) were removed. After filtration, 66,711 single cells

were remained for further analysis.

Analysis of scRNA-seq data

The R package Harmony (0.1.0) (Korsunsky et al., 2019) was

used to integrate all samples. All the seurat objects from each project

were SCTransformed and merged into an integrated dataset. Then

the RunPCA and RunHarmony commands were used to generate

harmonized dimension reduction components using sample ID and

disease conditions as the grouping variable. We performed

clustering using the FindNeighbors and FindClusters commands

with 30 principle components at the resolutions of 0.1. The R

package singleR (1.10.0) (Tucker et al., 2020) was used to annotate

cell types automatically with the in-house built references, and cell

types were confirmed by typical marker genes.
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Detection of differentially expressed genes (DEGs) was

performed using the “findMarkers” function in the Seurat R

package with the “Wilcoxon” significance test for each cluster

or for specific cell type between disease conditions. For the DEGs

between normal and thin endometrium conditions, the threshhold

was set as p < 0.01, pct.1 and pct.2 > 0.2, and |log2FC| > 1.

Identification of DEGs in the bulk-seq data
of thin endometrium

The raw data of thin endometrium bulk-seq data were

downloaded from European Nucleotide Archive

(PRJNA673823). The reads from normal and thin

endometrium samples were processed to remove adapters by

fastp (Chen et al., 2018), map against the GRCh38.p13.genome

by hisat2 (Kim et al., 2019). And count genes by featureCounts

(Liao et al., 2014). The edgeR package (Love et al., 2014) was used

to determine the DEGs against the control condition.

Functional enrichment analysis

The R package clusterProfiler (4.0.5) (Yu et al., 2012; Wu et al.,

2021) was used to investigate the function of DEGs. Biological

significance of DEGs was inferred by GO term enrichment analysis.

All the sub-ontology biological process, cellular component, and

molecular functionwere demonstrated. The critical pathways closely

related to thin endometrium was identified by KEGG pathway

enrichment analysis. A p < 0.05 was considered significant. To

visualize the KEGG annotation across clusters between normal and

thin endometrium conditions, we adopted “compareCluster” with

the function “enrichKEGG.”

Gene set enrichment analysis for thin
endometrium bulk-seq data

We applied GSEA analysis by the clusterProfiler R package

(4.0.5) with the function “GSEA.” The pathways were selected from

the MSigDB/GSEA resource c2.cp.reactome.v7.4.entrez.gmt

(https://www.gsea-msigdb.org/gsea/msigdb/). The whole genes in

the bulk-seq data were ordered by log2FC, and subjected to GSEA

analysis. The p-value cut-off for the enriched pathways was set as 0.

05. We randomly labeled five genes in each pathway.

Analysis for intercellular communication

The cell-cell communication was inferred by the R package

CellChat (1.1.3) (Jin et al., 2021) with all the built-in database

including “secreted signaling,” “ECM-receptor,” and “Cell-Cell

Contact.” Using the normalized count and clustering

information as the input, CellChat can compare intercellular

communications for cell populations based on the known

structural composition of ligand-receptor interactions.

Single sample gene set enrichment
analysis

The R package GSVA (1.40.1) was used for differential

metabolic pathways with the method of ssGSEA. The gene sets

were obtained from published study containing metabolic gene sets

from KEGG and REACTOME database (Wu et al., 2022). The

average expression of the integrated scRNA-seq data in each cluster

was computed to compare the enrichment levels of metabolic

signatures among clusters. For the enrichment of the metabolic

signatures in each cluster under normal and thin endometrium

conditions, the score of metabolic pathways was computed for each

cell, and grouped by clusters. The R package “limma” (Ritchie et al.,

2015) was used for determining the significance between normal and

thin endometrium conditions in each cluster.

Statistical analysis

The statistical analysis was performed by GraphPad Prism 8

(GraphPad Software, San Diego, CA, United States) For normally

distributed data, the unpaired t-test and ANOVA analysis were

performed. For non-normal data, we used the non parametric

test Mann-Whitney test. p < 0.05 was considered as significant.

Results

Combination of scRNA-seq data from
normal and thin endometrial samples in
proliferating phase

We obtained processed matrices and raw sequencing data of

four studies: E-MTAB-10287 (ng), GSE111976 (nm), PRJNA784021

(faseb), and PRJNA730360 (pnas) (Figure 1A). To compare the

endometrial cells across datasets, we selected the cell data in the

proliferating phase from each project. The detailed information for

each dataset was summarized in Supplementary Table S1. After

stringent filtration (Supplementary Figure S1A), 66,711 cells were

gathered and combined by Harmony method (Supplementary

Figure S1B). The UMAP low dimensional space showed the

similar distribution in projects, samples and conditions (Figures

1B–D; Supplementary Figure S2). We used the unsupervised graph-

based clustering to find eight clusters of endometrial cells (Figure 1E)

and defined the main cell types by SingleR (Tucker et al., 2020). The

cell identities were further validated by typical cell markers

(Figure 1F; Supplementary Table S2). As a result, the final

integrated dataset was identified as stromal cells, lymphoid cells,
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epithelial cells, proliferating stromal cells, mono/macrophages,

pericytes, endothelial cells, and ciliated epithelial cells).

Cell population alteration in thin
endometrium

The cell diversity plays the functional role in the endometrial

tissue, but thin endometrium exhibited comparable cell types to

that of normal endometrial samples, so we next explored the

alteration of cell proportion in thin endometrium. As shown in

Figures 2A,B, the variation of cell compositions in samples and

projects were relatively large. We only found the significant

difference in stromal cells between normal and thin

endometrial tissues (Figure 2C). The stromal cells make up

the largest proportion of the endometrium and control tissue

proliferation, remodeling, and breakdown during the menstrual

cycle (Queckbörner et al., 2020). We further examined the

differential pathways by up- and downregulated genes in

stromal cells under normal and thin endometrium conditions.

The GO and KEGG analysis revealed the cell-type specific

regulation for the up- and downregulated genes in stromal

FIGURE 1
Integration of scRNA-seq projects for human normal endometrial tissue and thin endometrial tissue. (A)Workflow of scRNA-seq and bulk-seq
data processing and analyzing for thin endometrial tissue. UMAP visualization showing the integrated effects of 66,711 cells in projects (B), samples
(C), and conditions. (D). (E) UMAP of cells demonstrating 8 major cell types. Str, stromal cell; Lymph, lymphoid cells; Epi, epithelial cells; pStr,
proliferating stromal cells; Mono/macro, mono/macrophages; Peri, pericytes; Endo, endothelial cells; and Cili_Epi, ciliated epithelial cells. (F)
Violin plot showing the expression level of the marker genes in each cell type.
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cells. For instance, the increased gene expression in stromal cells

was associated with the biological functions in extracellular

matrix organization, response to endoplasmic reticulum stress,

and neutrophil activation, and with the pathways in apoptosis,

cellular senescence, and estrogen signaling pathway (Figure 2D).

By contrast, the decreased genes were involved in the function of

regulation of mRNA metabolic process, female pregnancy, and

regulation of stem cell differentiation. These genes were linked to

oxidative phosphorylation, protein export, and antigen

processing and presentation (Figure 2E). These results imply

that the decreased cell proportion of stromal cell are important in

the progress of thin endometrium.

Cell-specific alterations of signaling
pathways in thin endometrium

We next analyzed the gene expression under normal and thin

endometrium conditions to reveal the function of DEGs in each

cluster. A total of 4,306 DEGs were found (Supplementary Table

FIGURE 2
Differential cell population in thin endometrial tissue. (A) The cell type composition for each sample. (B) The sample profiles in individual
projects. (C) The proportions of cell types in normal and thin endometrial tissues. *p < 0.05. The functional annotation for the upregulated (D) and
downregulated (E) DEGs in stromal cells.
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S3), and illustrated with the top5 DEGs (upregulated and

downregulated) labeled in each cluster (Figure 3A). We looked

for over- or under- represented KEGG gene sets in our DEG list.

Our results revealed the common and unique signaling pathways

across clusters (Figure 3B). The oxidative phosphorylation was

involved in almost all clusters. Generally, most genes in the

oxidative phosphorylation pathway were downregulated under

the thin endometrial condition (Supplementary Figure S3),

suggesting an impaired energy metabolism in thin

endometrium. The tight junction and splicesome were also

demonstrated in almost all clusters. In contrast to the universal

pathways, the natural killer cell mediated cytotoxicity, T cell

receptor signaling pathway, and Fc gamma R-mediated

cytotoxicity occurred in lymphoid cells; the Ferroptosis, FoxO,

and MAPK signaling pathway played specially a role in epithelial

cells; and Relaxin and Rap1 signaling pathways were only in

endothelial cells. These altered signaling pathways indicate cell-

type specific response in thin endometrium.

FIGURE 3
The analysis for DEGs in clusters and under thin endometrium condition. (A)Dot plot showing the up- and downregulated genes across all eight
clusters in thin endometrial tissue. The DEGs were colored by clusters and labeled by the top5 up- and downregulated DEGs in each cluster. (B)
KEGG enrichment of upregulated and downregulated DEGs across clusters. Violin plot showing the expression level of genes in enriched KEGG
pathways: cell cycle (C), MAPK signaling pathway (D), and cGMP- PKG signaling pathway (E).
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We further examined the expression of the signaling genes

at the single cell level. As shown in Figure 3C, the cell cycle was

significant in proliferating stromal cells, and the pathway

genes, CDKN2C, PCNA, CDC20, and BUB3 were

significantly decreased in proliferating stromal cells.

Similarly, the genes, MET, EPHA2, FLNB, and

MAP2K3 were downregulated in epithelial cells, and the

genes, CACNA1D, GUCY1A2, and NFATC2 were elevated

in pericytes, consistent with the findings in MAPK and cGMP-

PKG signaling pathways among clusters (Figures 3D, E).

These results demonstrated the disease-induced and cell-

specific pathway alterations in thin endometrium.

Bulk-seq revealed the differential
pathways in thin endometrium

In addition to scRNA-seq data, we introduced a bulk-seq

(GSE160633) data to uncover common signals affected in thin

endometrium. We used edgeR to identify the up- and

downregulated DEGs in the data (Supplementary Table S4),

and performed GSEA analysis to determine the putative

functional alteration in thin endometrium. Our data revealed

up-regulation of pathway associated with cell extrcellular matrix

interaction and down-regulation of TP53 regulation

transcription of cell cycle genes and interleukin 10 signals

(Figures 4A–C). We further checked the expression of the

pathway-associated genes at the single cell level. In the cell

extracellular matrix interactions, the expression of FLNA and

ITGB1 was significantly elevated in lymphoid cells, pericytes,

endothelial cells, and ciliated epithelial cells. By contrast, the

decreased expression of TP53, and CNOT1 in TP53 signals

occurred in stromal cells, epithelial cells and proliferating

stromal cells. Interestingly the reduction of CXCL2 and

CXCL8 expression was mainly attributed to ciliated epithelial

cells. These results suggest the abnormal pathways in the

development of thin endometrium.

Dysfunctional cell-cell communication in
thin endometrium

Cell-cell communication is pivotal for regulating individual

cell processes and intercellular relationships. We adopted

“CellChat” to infer the communication network by integrating

paired ligand-receptor genes. We found that while the global

FIGURE 4
Bulk-seq revealed the enriched pathways in thin endometrium. GSEA analysis showing the pathways enriched in the top (A) and bottom (B,C) of
the ranked list, with the corresponding up- or downregulated genes. Left, combo chart showing the running enrichment score and ranked list metric
for the ordered fold change gene list with 5 pathway genes labeled; right, the expression level of the representative genes in each cluster.
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number of interactions was reduced, the strength of interactions

was increased (Supplementary Figure S4A). Each cluster had

differential signals in incoming and outgoing patterns under

normal and thin endometrial conditions (Figures 5A,B). Overall,

the number and strength of interactions in stromal cells,

proliferating stromal cells and mono/macrophages were both

decreased, and the interactive numbers and strength of lymphoid

cells, and endothelial cells were both increased (Supplementary

Figure S4B,C). Strikingly, the pathways involved in immune and

inflammatory responses were enhanced. As shown in Figures

5C,D, the CD45 and complement signaling pathway networks

were boosted, and the genes in these signaling pathways were

upregulated accordingly. The signals in ciliated epithelial cells

were severely impaired (Figures 5A,B). This was prominent in the

CDH1 and CDH signaling pathway networks and corresponding

gene expression (Figures 5E,F).

FIGURE 5
Dysfunctional cell-cell communication in thin endometrium. Heatmap depicting differential incoming (A) and outgoing (B) signaling patterns in
each cluster. Representative networks for enhanced (C,D) and reduced (E,F) signaling pathways. Left, circle plot showing the signals in cell-cell
interactions between normal and thin endometrium; right, the expression level of ligand-receptor genes in individual signals. (G) Bar graph
demonstrating the relative information flow of each signaling pathway between normal and thin endometrial tissues.
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We further explored the overall information flow of each

signaling pathway to dissect the alteration of signaling pathways

in thin endometrium (Figure 5G). The information flow was

defined by the sum of communication probability among all pairs

of cell groups in the inferred network (Jin et al., 2021). The

signaling pathways, including TWEAK, PERIOSTIN, ADGRE5,

CD6, ALCAM, and CNTN, which occurred in normal

endometrial tissue, were shut off in thin endometrium,

whereas PTPRM, VCAM, ANGPTL, and SELE, which were

not activated in normal endometrial tissue, were turn on in

thin endometrium. A few signals such as NPR2, VTN, CD48,

GRN, BAFF, CSF, ACTIVIN, CD80, MPZ, and TRAIL were

sustainable activated. And HGF, LIGHT, SEMA4, CADM, BMP,

VISFATIN, IL6, and VEGF were dynamically changed. These

results manifest that the cell-cell interaction network was

disturbed in thin endometrium.

Dysfunction of metabolic pathways in thin
endometrium

Periodic regulation of cell metabolism are essential for the

maintenance of normal uterine function and fertility. It may also

contribute to the development of endometrial disorders.

Evidence has showed that a few of enzymes and their

substrates can be detected in endometrial tissues (Gibson

FIGURE 6
Themetabolic alteration in individual cell types under thin endometrium condition. (A)Heatmap showing the differential metabolic pathways in
each cell type. (B) Bar plot showing the dramatically changedmetabolic pathways with the metabolic gene sets from the KEGG database in epithelial
cells, ciliated epithelial cells, and endothelial cells. Violin plot showing the representativemetabolic pathways in energymetabolism (C), carbohydrate
metabolism (D), nucleotide metabolism (E), and amino acid metabolism (F).
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et al., 2020). Therefore, we attempted to find the metabolic

abnormality in the thin endometrial tissue. We investigated

the metabolic state of each cluster by calculating the score of

metabolism-associated pathways in each cluster. Generally,

epithelial cells are the most dynamic cell type, and on the

contrary, the ciliated epithelial cells was the most inert cell

type (Figure 6A). We further explored the differential

metabolic pathways in all clusters between normal and thin

endometrial tissue (Supplementary Table S5). In epithelial

cells, the lipid metabolism, including fatty acid degradation,

fatty acid biosynthesis and glycerolipid metabolism was

increased, and purine and pyrimidine metabolism were

reduced. In ciliated epithelial cells, while a series of metabolic

pathways including thiamine metabolism, tyrosine and

tryptophan metabolism were elevated, only a few pathways

such as sphingolipid metabolism and pentose and glucuronate

interconversions were declined. Astonishingly, only in

endothelial cells, most of the metabolic pathways were

reduced (Figure 6B).

We next examined the state of metabolic pathways in each

cluster in energy metabolism, carbohydrate metabolism,

nucleotide metabolism, and amino acid metabolism. Some

interesting results were found. The increased nitrogen

metabolism was paralleled with the decreased oxidative

phosphorylation (Figure 6C). The decline of pyruvate

metabolism and citrate cycle were most prominent in stromal

cells, mono/macrophages and pericytes (Figure 6D). The

metabolic pattern of nucleotide metabolism was similar to

that of carbohydrate metabolism (Figure 6E). The alteration of

amino acid metabolism depended on the type of amino acids. As

shown in Figure 6F, while the arginine and proline metabolism

was decreased, the alanine, aspartate and glutamate metabolism

was increased in the thin endometrial tissue. These data indicate

the dramatic alteration of metabolic signaling in thin

endometrium.

Discussion

Endometrial thickness increases during the proliferating

phase. The endometrium undergoes more than simple

estrogen responsive growth in this period (Queckbörner et al.,

2020). In this study, we used the high-throughput transcriptome

sequencing data to uncover the dysfunctional signaling pathways

and abnormal metabolic states between normal and thin

endometrium. We collected over 60,000 single cells from

16 samples in the proliferating phase. After stringent quality

control, all cells were identified as eight major cell types.

Although disease-specific cell population was not observed,

the cell proportion of stromal cells was significantly elevated

in thin endometrial tissue. The stromal cells comprise the largest

proportion of the endometrium. The increased ratio of stromal

cells may indicate the adaptive response for thin endometrium.

The upregulated gene expression was associated with

extracellular matrix production, and neutrophil activation, and

the downregulated gene expression was linked to aging and

energy metabolism.

In this study, we explored the cell-cell communication

network in thin endometrium with “CellChat.” As expected,

the number and strength of interactions in stromal cells and

proliferating stromal cells were attenuated. Notably,

macrophages also exhibited declined interaction numbers and

strength. Macrophages comprise 1%–2% of endometrial cells in

the proliferating phase. Their numbers increased during menses

(Brown et al., 2022). Macrophages are key effector cells in

clearing cell debris and apoptotic cells during endometrial

shedding. The impairment of cell talk in macrophages may

hinder endometrial regeneration, and influence innate and

humoural immunity. We also observed the severe destruction

of cell-cell communication in ciliated epithelial cells. Ciliated

epithelial cells are the epithelial cells with numerous motile cilia.

The proportion of these cells is dynamically regulated during the

menstrual cycle. Their main function is to actively carry the

mucus along the mucous membrane. The damage of cell

interactions for ciliated epithelial cells may compromise the

function of endometrial protection.

By contrast, the signaling pathways related to lymphoid

cells were prominently enhanced. The ligand-receptor pair

genes in CD45 and complement signals were upregulated. A

conspicuous number of immune cells are located in the human

endometrium. Mainly they are NK cells, which phenotype are

distinctive from peripheral cytotoxic NK cells and

macrophages. In addition, a few B cells and CD8+ T cells

are aggregated in the endometrial tissue. Evidence has shown

that endometrial NK cells have a dedicated tissue-specific

phenotype (Feyaerts et al., 2018), in the proliferating phase,

only a few NK cells exist in the endometrial tissue, and they

continue to increase until menstruation (Agostinis et al., 2019;

Wang et al., 2021). The mis-activation of immune cells and

disorder of cell dialogue to other cell types may contribute to

the pathology to thin endometrium.

Metabolic heterogeneities actively participate to therapeutic

failure (Kim and DeBerardinis, 2019; Zeisel, 2020), so we

attempted to uncover the metabolic complexity and flexibility

in thin endometrium. In the endometrial tissue, various cell types

exhibit differential metabolic states (Figure 6A). Intriguingly, the

epithelial cell and the ciliated epithelial cell showed completely

different metabolic states. The epithelial cell maintained a high

level of metabolism, whereas the ciliated epithelial cell remained

inert. The similar pattern was found on lymphoid cells and

macrophages. While lymphoid cells kept a low level of

metabolic state, macrophages were active in most of observed

metabolic pathways. Strikingly, the proliferating stromal cells

were dynamic in nucleotide metabolism, one carbonmetabolism,

TCA cycle, and oxidative phosphorylation, representing an

actively proliferating state.
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Endometrial cells experienced tremendous changed in thin

endometrium. The energy metabolism was switched from

oxidative phosphorylation to nitrogen metabolism. The

carbohydrate metabolism, and nucleotide metabolism were

generally downregulated. The metabolism for fat and amino

acid was cell-type dependent and pathway dependent. For

example, Stromal cells and macrophages were active in most

of lipid metabolism such as fatty acid biosynthesis, steroid

hormone biosynthesis, and linoleic acid metabolism

(Supplementary Figure S5). These metabolic processes may be

potential targets to regulate disease progression.

The insufficient cell proliferation and dysfunctional cells are

the distinguished features for thin endometrium. The specific

gene signatures found in this study can be applied to the

prognosis of thin endometrium, especially for the patients

with the threshold thickness of endometrium. For example,

given the fact that the proportion of stromal cells is increased

and the collagen is overloaded, the genes COL1A1, COL3A1, and

COL5A2, can be potential biomarkers for evaluation of severity

of thin endometrium. Owing to the activation of immune system

and enhancement of lymphoid cell-associated signaling

pathways, the expression of CXCR4, and CTSD can be

examined for the risk of thin endometrium. Moreover,

increased cellular senescence and collagen overdeposition, and

NK cell overactivation revealed from this study may give clues for

treatment of thin endometrium targeting delaying cell ageing,

clearing matrix collagen and inhibiting immune over-excition.

Our study still has several limitations. A potential limitation is

the small sample size in one phase of menstrual cycle. More samples

at various phase of menstrual cycle will provide more valuable

evidence and identify more special traits in thin endometrial

patients. Another limitation is the verification of differentially

expressed genes. While the genes in cell-cell signaling

transduction and metabolic signaling pathways were examined at

the transcriptional level, they have not been validated at the protein

level. Further studies addressing the molecular and functional basis

of thin endometrium in relevant animalmodels and cell experiments

is necessary. Multi-omics data, including proteomics and

metabolomics may add more information for understanding the

mechanism of thin endometrium.

Conclusion

Collectively, we combined the scRNA-seq and bulk-seq data,

performed a comprehensive analysis for the thin endometrium. Our

study dispicted the cellular diversity in endometrial tissues, and

identified the dysfunction of intercellular signaling transduction and

the impairment of metabolic signaling pathways in thin endometrial

tissues. These pathways are potential diagnostic and therapeutic

targets for thin endometrium treatment.
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