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The sarcoplasmic reticulum (SR) plays the key role in cardiac function as the

major source of Ca2+ that activates cardiomyocyte contractile machinery.

Disturbances in finely-tuned SR Ca2+ release by SR Ca2+ channel ryanodine

receptor (RyR2) and SR Ca2+ reuptake by SR Ca2+-ATPase (SERCa2a) not only

impair contraction, but also contribute to cardiac arrhythmia trigger and

reentry. Besides being the main Ca2+ storage organelle, SR in

cardiomyocytes performs all the functions of endoplasmic reticulum (ER) in

other cell types including protein synthesis, folding and degradation. In recent

years ER stress has become recognized as an important contributing factor in

many cardiac pathologies, including deadly ventricular arrhythmias. This brief

reviewwill therefore focus on ER stress mechanisms in the heart and how these

changes can lead to pro-arrhythmic defects in SR Ca2+ handling machinery.
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Introduction

The sarcoplasmic reticulum (SR) is a membrane-bound structure within

cardiomyocytes, analogous to the endoplasmic reticulum (ER), with a major function

as a Ca2+ storage organelle. This function is critical for excitation-contraction coupling,

whereby release of large amounts of SR Ca2+ via ryanodine receptors (RyR2s) drives

cardiac contraction (Bers, 2002). Reuptake of this Ca2+ via the SR Ca2+ ATPase

(SERCA2a) leads to cardiac relaxation. The magnitude and frequency of SR Ca2+

release is tightly regulated by sarcolemmal electrical activity. In turn, Ca2+ released

from the SR affects sarcolemmal membrane potential by activating electrogenic Na+/Ca2+

exchanger and modulating function of several ion channels and transporters, i.e., L-type

Ca channels or small conductance Ca2+-activated K+ channels etc. (Hamilton et al., 2021)

Compromised SR Ca2+ homeostasis due to altered RyR2 and SERCA2a function has been

linked to arrhythmogenesis in many inherited and acquired cardiovascular diseases (Bers,

2002; Hamilton and Terentyev, 2018; Hamilton et al., 2021). Enhanced RyR2 activity and

spontaneous Ca2+ release promotes pro-arrhythmic disturbances in sarcolemma

membrane potential called early and delayed after-depolarizations (EADs and DADs,

respectively), contributing to the initiation of triggered activity (Landstrom et al., 2017).

Additionally, diminished SR Ca2+ release during systole due to depleted stores often
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ascribed to reduced SERCA2a activity and/or enhanced

RyR2 function reduces cardiac contractility (Zima et al.,

2014). Furthermore, abnormal intracellular Ca2+ handling in

the form of beat-to-beat variations of Ca2+ release magnitude

can contribute to arrhythmia substrate via cardiac alternans

promoting reentry (Edwards and Blatter, 2014).

Understanding molecular mechanisms governing regulation of

SR Ca2+ homeostasis is therefore paramount in order to develop

therapies to prevent arrhythmogenesis and sudden cardiac death.

In addition to its role in intracellular Ca2+ handling, the SR/

ER is the site of quality control machinery that orchestrates

synthesis, folding and degradation of new proteins (Glembotski,

2014). The oxidative environment of the organelle is critical for

protein homeostasis, and is tightly controlled by protein disulfide

isomerases (PDI) and oxidoreductase enzymes (Otsu et al., 2006;

Zito, 2013; Ramming et al., 2015; Zito, 2015). The PDIs enable

transfer of electrons by oxidoreductases such as ERO1α to

oxygen, facilitating the formation of disulfide bridges and

folding of proteins into functional, three-dimensional

structures (Ramming and Appenzeller-Herzog, 2012). This

also results in the production of ROS that can modify SR/ER

proteins, including RyR2 and SERCA2a, altering Ca2+ release and

reuptake (Chin et al., 2011).

As H2O2 is a byproduct of oxidative protein folding, the SR is

increasingly recognized as a significant source of ROS within the

cardiomyocyte, in addition to well-established sources such as

NADPH oxidase 2 or mitochondria (Bertero and Maack, 2018;

Hamilton et al., 2022). While stress of the SR/ER invokes initially

adaptive pathways to restore protein-folding capacity and

upregulate antioxidant machinery, chronic ER stress invokes

maladaptive pathways of the UPR, including excessive ROS

production and degradation of protein mRNA. Growing

evidence suggests ER stress is implicated in multiple

cardiovascular disease pathologies associated with Ca2+-

dependent arrhythmias, including hypertrophy, heart failure,

ischemia/reperfusion and diabetic cardiomyopathy

(Glembotski, 2008; Dalal et al., 2012; Kassan et al., 2012; Xu

et al., 2012; Liu et al., 2014; Wiersma et al., 2017; Freundt et al.,

2018; Liu H. et al., 2021; Liu M. et al., 2021; Sirish et al., 2022).

Here, we briefly review how chronic SR/ER stress contributes

to aberrant remodeling of intracellular SR Ca2+ handling and the

development of ventricular Ca2+-dependent cardiac arrhythmias.

The SR as themajor source of Ca2+ for
cardiomyocyte contraction

As a highly specialized form of the ER, the SR is a

membranous, intricate network of tubules and cisternae

designed to regulate Ca2+. Despite only assuming 3.5% of

cellular volume, the SR serves as the major Ca2+ storage

organelle and provides up to 60%–90% of Ca2+ that activates

contractile machinery in the cytosol (Bers, 2002). The enormous

buffering capacity of the SR is afforded by the high capacity, low-

affinity Ca2+-binding protein Calsequestrin (CASQ2) (Gyorke

et al., 2009).

During systole, large amounts of Ca2+ are released from the

SR via ryanodine receptors (RyR2), substantially increasing

cytosolic Ca2+ from 100 to 500 nM (Williams et al., 2011).

Although RyR2 is the primary SR Ca2+ release channel,

inositol 1,4,5-trisphosphate receptors (IP3R2) are also Ca2+

release channels of the SR, but their functional role in healthy

ventricular cardiomyocytes remains somewhat controversial

(Domeier et al., 2008; Kockskamper et al., 2008). During

diastole, the majority of this Ca2+ is sequestered back to the

SR by SERCA2a in an ATP-dependent process (Bers, 2002).

Pumping activity of SERCA2a is negatively regulated by

interaction with inhibitory protein phospholamban (PLB).

Inhibition mediated by PLB is relieved by the post

translational modification phosphorylation, enhancing the

affinity of SERCA2a for Ca2+ and increasing SR Ca2+ uptake.

Dynamic and reversible posttranslational modifications of

both RyR2 and SERCa2a are critical for the grading of SR Ca2+

release to respond to changes in metabolic demands (Bers, 2002;

Zima and Blatter, 2006). Many laboratories, including our own,

have established RyR2 activity is augmented by reversible redox

posttranslational modifications, increasing the sensitivity of the

channel to intra-SR (luminal) Ca2+ (Terentyev et al., 2008;

Belevych et al., 2012; Bovo et al., 2012; Cooper et al., 2013;

Hamilton et al., 2020). Disulfide bridge formation,

glutathionylation, nitrosylation and phosphorylation by

reactive oxygen species (ROS)-sensitive Serine/Threonine

kinase CaMKII have all been demonstrated to increase

channel activity (Boraso and Williams, 1994; Eager and

Dulhunty, 1998; Salama et al., 2000; Hidalgo et al., 2002;

Mattiazzi et al., 2015; Kim et al., 2017; Bovo et al., 2018;

Hegyi et al., 2021). Additionally, SERCA2a has several

cysteine residues susceptible to oxidative modification (Sharov

et al., 2006), and direct oxidation at cytosolic Cysteine 674 was

demonstrated to decrease Ca2+ pump activity in cardiomyocytes

(Lancel et al., 2009; Hobai et al., 2013). Redox-dependent

phospholamban oligomerization also relieves inhibition of

SERCA2a and this contributes to enhanced activity (Froehlich

et al., 2008; Sivakumaran et al., 2013).

It is well established that redox modifications on the cytosolic

side of the SR can modify Ca2+ channel activity. Thus it is not

surprising that the vast majority of RyR2 Cysteines identified to

have redox-sensitive potential reside in the huge, cytosolic

structure of the channel (Pessah and Feng, 2000; Aracena-

Parks et al., 2006; Nikolaienko et al., 2018). Modification of

these residues, some of which reside within binding sites of

accessory proteins Calmodulin (CaM) and FKBP, may also

interfere with protein-protein interactions on the cytosolic

side of the channel (Balshaw et al., 2001; Fauconnier et al.,

2010; Shan et al., 2010; Mattiazzi et al., 2015). For example,

redox-mediated cross-linking of RyR2 at the cytosolic
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N-terminus has been recently linked to increased dissociation of

CaM from the channel and enhanced SR Ca2+ leak (Nikolaienko

et al., 2020). Less redox-sensitive Cysteines are present in the

smaller luminal region of RyR2, and the relevance of oxidative

modification at these sites, as well as the effect of oxidative stress

on luminal protein-protein interactions, remains poorly defined.

Information regarding the functional relevance of SERCA2a

luminal Cysteines is also limited, although two conserved

residues are present in the longest luminal loop that protrudes

well into the oxidizing SR environment (Marino et al., 2015).

The SR as a major site of
cardiomyocyte protein homeostasis

In the heart, hypertrophy of cardiomyocytes underlies

adaptation to both physiological and pathological stresses

(Wilkins and Molkentin, 2004), and as the site of protein

synthesis and folding, the SR plays a major role in determining

whether hypertrophy is adaptive or maladaptive. Proper protein

synthesis, folding and degradation is critical to hypertrophic growth,

and dysregulation can lead to the accumulation of toxic, misfolded

proteins detrimental to cellular function (Glembotski, 2008; Hetz

et al., 2015; Oakes and Papa, 2015). Therefore, protein homeostasis

requires a fine-tuned and elaborate protein quality control system,

with inherent plasticity to respond to growth stimuli, and pro-

survival mechanisms to prevent cell death.

As part of this quality control system, the ER stress response is

triggered when ER homeostasis—Ca2+ levels, redox status or protein-

folding capacity–is disturbed (Hetz et al., 2015). This results in an

initial accumulation of misfolded proteins within the ER, as well as

the induction of chaperone proteins including those of the heat shock

family such as glucose-regulated protein 78/binding immunoglobulin

protein (GRP78/BiP), and lectin-like chaperones, such as calreticulin

and calnexin. As excessive accumulation of proteins is detrimental to

the cell, chaperone induction serves as an adaptivemechanism to help

refold proteins, or target them for degradation.

Chaperone GRP78 is an important activator of the unfolded

protein response (UPR), complex signaling cascades that relieve

ER stress by increasing protein-folding capacity and decreasing

protein folding load (Bertolotti et al., 2000; Glembotski, 2008). The

UPR is initiated by activation of three ER-transmembrane sensors:

activating transcription factor 6α/beta (ATF6) (Yoshida et al.,

1998), inositol requiring enzyme 1 α/beta (IRE1) (Cox et al.,

1993), and PKR-like ER kinase (PERK) (Shi et al., 1998). In

conditions of efficient protein folding, luminal domains of

ATF6, IRE1, and PERK are locked in an inactive state by

interaction with ER-resident chaperone GRP78. When efficient

protein folding is disrupted and misfolded proteins begin to

accumulate, GRP78 dissociates and initiates each UPR signaling

cascade (Bertolotti et al., 2000; Shen et al., 2005; Glembotski, 2008).

The ATF6 signaling cascade has mainly adaptive functions,

decreasing the amount of proteins within the ER/SR and

increasing protein-folding capability (Glembotski, 2014).

GRP78-mediated activation and translocation of ATF6 to the

Golgi leads to cleavage of the cytosolic domain by proteases

SP1 and SP2. The cleaved, active fragment then translocates to

the nucleus, activating b-Zip transcription factors that upregulate

the expression of protein folding chaperone, as well as genes

involved in ER-associated degradation of terminally misfolded

proteins (ERAD) (Meusser et al., 2005).

Unlike ATF6, IRE1 does not re-locate to the Golgi, but

instead acts within the cytosol. Upon ER stress, dimerization

and autophosphorylation of IRE1 drives a conformational

change that activates an endoribonuclease domain within the

protein (Sidrauski and Walter, 1997; Calfon et al., 2002). This

domain excises an intron from b-Zip transcription factor X-box

binding protein 1 (XBP-1), leading to an XBP1 transcript with a

new, and active, open reading frame. XBP-1 then moves to the

nucleus and binds elements required for rotein folding and

ERAD. In a mechanism known as regulated IRE1-dependent

decay (RIDD), IRE1 activity leads to degradation of microRNAs,

ribosomal RNA and ER-localized mRNA (Bhattarai et al., 2021).

Additionally, ubiquitination of IRE1 leads to recruitment of TNF

receptor-associated factor 2 (TRAF2) and activation of the pro-

apoptotic apoptosis signal-regulating kinase/c-jun N-terminal

kinase (ASK/JNK) cascade (Hasnain et al., 2012). Together,

this helps to rebalance protein synthesis and protein folding,

enabling cell survival.

Similar to IRE1, luminal dissociation of GRP78 upon ER

stress leads to activation of PERK by homodimerization and

autophosphorylation. Activated PERK phosphorylates

eukaryotic initiation factor 2α (eIF2α), transiently reducing its

efficiency as a translation initiator. This inhibits ribosomes,

degrades mRNA and stops protein synthesis, preventing

overload within the SR and aiding in resolving ER stress

(Bertolotti et al., 2000). Conversely, although PERK activation

mostly reduces translation efficiency, phosphorylation of eIF2α
leads to increased levels of activator of transcription factor 4

(ATF4). Upregulation of ATF4 increases gene expression of ER

chaperones and directs an antioxidant response, facilitating

greater protein folding capacity (Glembotski, 2008).

Although ER stress and activation of UPR is initially a pro-

survival mechanism, chronic ER stress drives a switch to a

maladaptive and terminal UPR that favors cellular apoptosis

(Han et al., 2013). For example, during prolonged ER stress,

ATF4 activates CCAAT/enhancer-binding protein homologous

protein (CHOP), which in turn inhibits the expression of anti-

apoptotic BCL-2 and leads to translocation of Bax from the

cytosol to the mitochondria, promoting cell death (Gotoh et al.,

2004). Moreover, transcriptional activation of CHOP also

induces cell death by promoting oxidation in the stressed ER,

activating the ER oxidase ERO1α (Marciniak et al., 2004) and

depleting intracellular glutathione (McCullough et al., 2001).

Although it has important physiological roles within the ER

in disulfide bond formation, ERO1α is also a significant producer
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of ROS in the form of H2O2, and excessive upregulation

promotes a hyper-oxidizing SR (Ramming et al., 2015; Zito,

2015). This in turn can drive redox modifications of SR proteins

such as ion channels involved in calcium homeostasis, linking SR

redox state with SR Ca2+ handling.

SR/ER stress and cardiac arrhythmias

It is well established that UPR is activated in various cardiac

pathologies associated with increased arrhythmic risk. For

example, in failing human and animal hearts, increased levels

of AT4, CHOP and GRP78 are reported (Hamilton et al., 2022).

We have recently demonstrated upregulation of CHOP and

downstream oxidoreductase ERO1α in hypertrophic rat

myocytes (Hamilton et al., 2022). Diabetic cardiomyopathy is

also associated with ER stress and activated UPR (Liu et al., 2014;

Liu et al., 2021), as is cancer chemotherapy-induced

cardiotoxicity (Kerkela et al., 2006).

Given the physical and functional link between SR protein

and Ca2+ homeostasis, there is an emerging view that chronic SR/

ER stress is linked to increased arrhythmic risk via perturbed

redox status within the SR, as well as downregulation of cardiac

ion channel proteins (Figure 1).

Dysregulation of redox homeostasis

Increasing evidence suggests redox changes on the luminal

side of the SR, in addition to the cytosolic side, can modulate SR

Ca2+ homeostasis in cardiomyocytes. Work of the Ron laboratory

revealed that mice with loss-of-function of luminal

oxidoreductase ERO1α were protected from pressure-overload

induced heart failure (Chin et al., 2011). As a downstream

effector of the PERK UPR branch, this enzyme is known to

be upregulated during ER stress (Zito, 2013). Importantly,

ERO1α-deficient cardiomyocytes had reduced Ca2+ transient

amplitude in comparison to controls (Chin et al., 2011),

implicating ER stress and altered SR Ca2+ release in this

protection.

We recently demonstrated a novel regulatory axis for RyR2-

ROS modulation involving ERO1α and luminal binding of

RyR2 by protein ERp44 (Hamilton et al., 2022). The PDI-like

protein ERp44 was previously reported to inhibit Ca2+ release

channel inositol triphosphate receptor type 1 (IP3R1) by direct

protein-protein interaction, and this association was redox-

dependent (Anelli et al., 2002; Higo et al., 2005; Wang et al.,

2014). Of note, ERp44 interacts with an IP3R1 region that has

sequence homology to the RyR2 second intraluminal loop, and

using a multi-pronged approach, we revealed ERp44 directly

interacts with RyR2 in this region via disulfide bond formation

(Hamilton et al., 2022). This protein-protein interaction is redox-

dependent and exerts a stabilizing influence on channel function.

Under conditions of increased ER stress such as cardiac

hypertrophy, upregulation of ERO1α removes ERp44 from the

RyR2 channel complex, contributing to spontaneous Ca2+ release

from the SR and increased risk for Ca2+-dependent arrhythmias.

Importantly, inhibition of ERO1α was able to restore intra-SR

redox potential, attenuate aberrant RyR2 activity and thus

prevent ventricular arrhythmogenesis at the whole heart level.

FIGURE 1
Schematic depicting how ER stress and the UPR can exacerbate SR Ca2+ mishandling via in cardiovascular disease and contribute to Ca2+-
dependent ventricular arrhythmogenesis. Diminished SR Ca2+ content due to decreased SERCA2a activity and/or increased RyR2 activity evokes ER
stress and UPR that promotes ROS production mRNA and protein degradation and impair protein-protein interactions in Ca2+-handling complexes.
This results in decreased repolarization reserve and slowing conduction due to reduction in K+ and Na+ ion channels in the plasmalemma.
Additionally, further enhancement of RyR2 activity and reduction in SERCA2a activity promotes generation of pro-arrhythmic spontaneous SR Ca2+

waves. Image created with Biorender.com.
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We also demonstrated that application of reducing agent

dithiothreitol could not reverse the ER stress-associated

dissociation of ERp44 from RyR2. Reducing agents typically

improve intracellular Ca2+ handling, but offer only partial

recovery (Terentyev et al., 2008). This may be explained by

their mechanism of action, preventing stabilizing disulfide

bridge formation between SR Ca2+ handling proteins such as

RyR2 and ER stress components such as ERp44. Our study

therefore highlighted the importance of understanding luminal

protein-protein interactions involved in SR Ca2+ release, to better

inform therapeutic approaches when treating Ca2+-dependent

arrhythmias.

Protein homeostasis needs to be tightly regulated, and

requires several systems to prevent excessive ROS

accumulation from oxidative protein folding by enzymes such

as ERO1α. The SR/ER localized Peroxiredoxin (PRDX4) reduces

cellular redox stress by using H2O2 generated by ERO1α to

generate disulfide bridges (Zito, 2013). This serves to protect

the cell from accumulation of misfolded proteins. A recent report

posits downregulation of SR-specific Peroxiredoxin-4 (PRDX4)

increases oxidative stress in cardiac fibroblasts and contributes to

heart failure (Ibarrola et al., 2018). Additionally,

PRDX4 knockdown accelerated pressure-overload induced

cardiac hypertrophy in mice (Zhang et al., 2021), linking a

disease-associated imbalance of H2O2 –producing

and–detoxifying systems with cardiac dysfunction.

Although the functional relevance of cytosolic Cysteine

674 oxidation in SERCA2a is well established (Lancel et al.,

2009), less is known about redox regulation of luminal residues of

SERCA2a in cardiomyocytes. All SERCA isoforms contain a

conserved pair of Cysteines in the fourth luminal loop, which

form a disulfide bridge (Daiho et al., 2001). The Zito laboratory

have previously demonstrated that selenoprotein N (SEPN1), an

SR/ER resident protein with redox function, enhances

SERCA2 activity (2a and 2b) in skeletal muscle by reducing

the two luminal Cysteines that are hyperoxidized by ERO1α-
generated H2O2 (Marino et al., 2015). Although not yet tested in

native cardiomyocytes, authors also confirmed that

SEPN1 covalently associates with SERCA2a expressed in

HEK293 cells through the equivalent residues, Cysteine-875

and Cysteine-C887 (Marino et al., 2015). Later studies

revealed that the EF-hand domain in SEPN1 is sensitive to

changes in luminal Ca2+ concentration, with low levels driving

a conformational change which activates the protein as a

reductase. This consequently regulates the redox status of

SERCA2, thus serving as a feedback mechanism to replenish

luminal Ca2+ stores (Chernorudskiy et al., 2020).

Work of the Kranias laboratory revealed a link between

oxidative stress and degradation of SERCA2a in ischemia-

reperfusion injury (Lam et al., 2013; Bidwell et al., 2018). In

diseased cardiomyocytes, they demonstrated decreased HS-1-

associated protein X-1 (HAX-1), a protein involved in apoptosis.

Through interaction with protein chaperone Hsp90, HAX-1

inhibits IRE1 signaling at the SR/ER. Ablation of HAX-1 in

adult mice hearts resulted in SERCA2a degradation, while HAX-

1 overexpression restored SERCA2a levels and improved

contractility. Authors demonstrated underlying mechanisms

for this included increases in SERCA2a oxidation and reactive

oxygen production at the ER/SR, through direct interaction of

HAX-1 with NOX4.

Aberrant lipid synthesis also appears to disrupt SR/ER

homeostasis, and upregulation of UPR has been associated

with metabolic syndrome (Smith et al., 2022). Heart failure

with preserved ejection fraction (HFpEF) is a multifactorial

disease, initiated by a variety of factors including hypertension

and obesity, and characterized by preserved systolic function,

reduced ability to relax and importantly, oxidative stress (Roh

et al., 2022; Smith et al., 2022). Defective Ca2+ handling, including

altered activity of RyR2 and SERCA2a, have been reported as

contributing to diastolic dysfunction in multiple models of

HFpEF (Reil et al., 2013; Kilfoil et al., 2020; Miranda-Silva

et al., 2020). Gaining traction in recent HFpEF research is a

“two-hit” mouse model fed high fat diet in combination with

nitric oxide synthase inhibitor, which recapitulates some of the

concomitant metabolic and hypertensive phenotype of the

human disease (Schiattarella et al., 2019). Interestingly,

Schiattarella et al. (2019) found that in hearts from both mice

and humans with HFpEF, expression of the spliced and active

form of XBP1 was reduced, attributable to increased

S-nitrosylation of IRE1. Authors also demonstrated that

downregulation of XBP1 in this model drives downstream

lipid accumulation, and cardiomyocyte-specific overexpression

was able to ameliorate the HFpEF phenotype (Schiattarella et al.,

2019). It appears that downregulation of the IRE1/XBP pathway

of UPR is unique to the pathogenesis of HFpEF, in comparison to

other cardiovascular diseases. Additionally, reduced levels of SR/

ER glutathione peroxidase 4 were reported in this two-hit mouse

model (Kitakata et al., 2021). These findings reveal crosstalk of

signaling pathways between UPR and metabolism as well as

perturbed SR redox in HFpEF, with potential implications for the

function of SR Ca2+ handling proteins and arrhythmogenesis.

In addition to oxidative modifications, RyR2 and SERCA2a

are susceptible to reversible phosphorylation, serving as a central

mechanism to grade Ca2+ release from the SR (Terentyev and

Hamilton, 2016). The serine-threonine protein phosphatase

calcineurin (PP2B), a focal regulator of cardiac hypertrophy in

cardiovascular disease (Wilkins and Molkentin, 2004), is also

established as a modulator of RyR2 and SERCA2a function

(Bandyopadhyay et al., 2000; Münch et al., 2002). The UPR

was linked to activity of calcineurin by the finding that

calcineurin inhibitor RCAN1 was inducible by the ATF6 gene

(Liu et al., 2014). By reducing calcineurin-mediated

dephosphorylation of NFAT, ATF6-mediated activation of

RCAN1 contributes to reducing protein load and serves as a

mechanism to regulate the extent of cardiac hypertrophy.

However, increased inhibition of calcineurin by RCAN1 or
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other inhibitors in cardiac pathologies can be detrimental to SR

Ca2+ homeostasis, given that maximum phosphorylation or

incomplete dephosphorylation of RyR2 can result in increased

channel activity (Hiemstra et al., 2014; Liu et al., 2014; Terentyev

and Hamilton, 2016).

Dysregulation of protein homeostasis

The UPR is reported to regulate the expression levels of many

ion channels involved in excitation-contraction coupling

including SR Ca2+ handling proteins (Liu et al., 2022), linking

ER stress to increased arrhythmic risk. Knockdown of calnexin,

an ER quality control chaperone, led to increased ER stress and

apoptosis induced by caspase-3 and -9, in parallel with increased

expression of LTCC and reduced expression of SERCA2a

(Bousette et al., 2014). Reduced expression of SERCA2a was

also observed in mice with cardiac ablation of HAX-1, where this

maneuver elicited increased luminal ROS production and

oxidation of SERCA2a, driving its proteolysis and degradation

(Lam et al., 2013; Bidwell et al., 2018).

A body of work from the Dudley laboratory has

demonstrated that under ER stress, the PERK branch of the

UPR contributes to the downregulation of other cardiac ion

channels in a variety of settings, including human heart failure

and in human induced pluripotent stem cell–derived

cardiomyocytes (hiPSC-CMs) treated with UPR activator

tunicamycin (Liu and Dudley, 2014; Liu et al., 2021). The

group showed reductions in Nav1.5, Kv4.3, and Kv1.5 in

human heart failure were PERK-dependent, suggestive that

ion channel downregulation is induced by ER stress and

contributes to cardiac arrhythmogenesis (Liu et al., 2021). The

UPR was shown to be activated in mice with myocardial infarct,

in parallel with downregulation at the mRNA and protein level of

Nav1.5, Cav1.2, Kv4.3, Kir2.3 and Kv1.5 ion channels, and

increased arrhythmic risk. Importantly, inhibition of PERK in

mice prevented downregulation of these channels, attenuated

aberrant electrical remodeling, reduced ventricular arrhythmia

inducibility and improved survival after myocardial infarct.

Therefore, it is evident that the UPR can contribute to

proarrhythmic cardiac remodeling. This is suggestive that

targeting ER stress components in cardiovascular disease can

serve as an anti-arrhythmic strategy, improving both SR redox

and protein folding homeostasis and improving intracellular

Ca2+ handling.

Discussion

The SR/ER protein homeostasis system is a convergence

point for signaling pathways. As the SR/ER processes a vast

array of proteins, dysregulated UPR and thus redox and protein

homeostasis may affect proteins involved in Ca2+-dependent

arrhythmogenesis, and uncovering these molecular

mechanisms is critical for designing new therapeutic approaches.

Targeting ER stress in the heart has shown promise in

treating cardiovascular disease (Liu and Dudley, 2014; 2018).

Chemical chaperones such as TUDCA and 4-PBA suppress ER

stress and offer cardiac protection, attenuating intracellular Ca2+

mishandling in hypertrophic rat myocytes and alleviating

obesity-induced myocardial contractile dysfunction (Ceylan-

Isik et al., 2011; Hamilton et al., 2022). PERK inhibition with

GSK260614, atorvastatin and apelin-13 was shown to prevent

ventricular arrhythmia and reduce apoptosis inMI and ischemia/

reperfusion mouse models (Song et al., 2011; Tao et al., 2011).

Despite promising results, targeting ER stress as a druggable

node in cardiovascular disease is complex, given the fine balance

between mild activation of UPR fostering protection vs. chronic

activation driving cellular damage. Targeting the correct, harmful

UPR branch in the specific disease setting is critical while other

arms are activated to suppress detrimental SR protein loading

(Toko et al., 2010; Liu et al., 2022; Wang et al., 2022). For

example, activation of the ATF6α branch of UPR is considered an

adaptive responder to SR/ER stress and offers protective effects in

many cardiac disease settings (Glembotski et al., 2020). Ex vivo

hearts from transgenic mice with ATF6α activation were

protected from damage induced by ischemia reperfusion

(Martindale et al., 2006). At the cellular level, overexpression

of ATF6α attenuated ROS generation and protected against

apoptosis induced by ischemia/reperfusion (Jin et al., 2017).

Small molecule therapies to activate ATF6α in the context of

cardiac disease are beginning to be explored in mice with

evidence of improved contractile function after ischemia

reperfusion injury (Blackwood et al., 2019), but this has yet to

be extended to other larger animal models or other cardiac

pathologies. Furthermore, IRE1α overexpression preserved

cardiac function and reduced the inflammatory response to

pressure overload in mice (Steiger et al., 2018), suggestive that

transient ER stress signaling of the IRE1α branch can confer

protective effects to the heart.

Conversely, inhibition of the PERK UPR branch has

demonstrated cardioprotective effects in multiple animal

models of cardiac disease, including myocardial infarct and

ischemia reperfusion injury (Tao et al., 2011; Gao et al., 2013;

Liu et al., 2021). Additionally, inhibiting downstream effectors of

the PERK branch has also proved to be cardioprotective (Chin

et al., 2011; Liu et al., 2013; Hamilton et al., 2022). It has been

shown that drug-mediated inhibition of CHOP can attenuate

ventricular remodeling after myocardial infarct in rats by

reducing apoptosis (Liu et al., 2013). We have recently

demonstrated the antiarrhythmic effects of inhibiting ERO1α,
an oxidoreductase downstream of PERK and CHOP in a model

of cardiac hypertrophy (Hamilton et al., 2022). However, when

targeting any ER stress/UPR branch component, global

inhibition in vivo is likely to have detrimental side effects,

given the physiological role of ER stress in cell types and
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organs across the body. Genetic inhibition of PERK and downstream

effectors may offer advantages over pharmacological approaches, as

off-target effects in organs other than the heart can be avoided. The

effects of chronic cardiac-specific inhibition of UPR components

needs to be thoroughly explored and studied in larger animal models

of cardiovascular disease.

The complexity of ER stress as a therapeutic approach is

also underscored by our limited understanding of redox-

dependent protein-protein interactions within the SR. While

reducing agents and antioxidants reduce proarrhythmic

spontaneous SR Ca2+ release and partially restore SR Ca2+

content in isolated cardiomyocytes (Mochizuki et al., 2007;

Terentyev et al., 2008; Belevych et al., 2012; Kim et al., 2017),

this has never translated to the clinic, with no improvement in

propensity for arrhythmias or other outcomes for heart failure

patients (Sawyer, 2011; van der Pol, 2019; Szyller et al., 2022).

Reduction of reactive cysteines on both the cytosolic and

luminal side of RyR2 does not completely stabilize the

channel complex, and does not allow for interactions with

proteins such as ERp44 that depend on disulfide bridge

formation (Hamilton et al., 2022). It is also likely SERCA2a

interacts with luminal proteins of the ER stress system, as is

observed with other pump isoforms in different cell types (Li

and Camacho, 2004; Marino et al., 2015).

There is a paucity of information regarding the effects of the

UPR on the Ca2+ buffering capacity of the SR/ER. A direct

interaction between Calsequestrin, a major SR Ca2+ buffer,

and IRE1α pooled at the junctional SR has been demonstrated

in cardiomyocytes (Wang et al., 2019). There is also evidence that

in heart failure, a condition accompanied by impaired ability of

SR to retain Ca2+ (Zima et al., 2014) and ER stress (Hamilton

et al., 2022), Calsequestrin processing and trafficking can be

impaired (Jacob et al., 2013). However, the effects of this

interaction on Ca2+ buffering and thus activity of RyR2 and

cardiac arrhythmias are yet to be elucidated. On the other hand, it

is well established that impaired ability to retain Ca2+ in the SR is

a key contributor to ER stress highlighted in SERCA2a KO mice

(Liu et al., 2011), pressure-overload induced hypertrophy (Nie

et al., 2019), and ischemia-reperfusion studies (Valverde et al.,

2010; Cai et al., 2012). Importantly, reduction in SR Ca2+ leakage

not only improves cardiac function in ischemia/reperfusion

challenged hearts (Bovo et al., 2018; Mariangelo et al., 2022),

but is capable to reduce ER stress as well (Mariangelo et al., 2022).

Of note, ER stress inhibition in aged or ischemia-reperfusion

challenged hearts improves mitochondrial function (Chen et al.,

2017; Chen et al. 2020; Chen et al. 2021). The works from

multiple groups including our own established a direct

connection between the pro-arrhythmic increase in

RyR2 activity and accelerated ROS production by

mitochondria (Belevych et al., 2011; Cooper et al., 2013;

Joseph et al., 2016; Bovo et al., 2018; Hamilton et al., 2018;

Hamilton et al., 2020; Hamilton et al., 2021; Liu H et al., 2021),

FIGURE 2
Schematic summarizing ER stress-associated modulation of RyR2 and SERCA2a occurring in diseased ventricular cardiomyocytes that
contributes to arrhythmogenesis. Activation of ER stress and the UPR increases ERO1α expression/activity, promoting generation of ROS. ERO1α
dissociates ERp44 from the RyR2 complex, increasing channel activity. Additionally, intra-SR oxidative stress promotes RyR2 oxidation at cytosolic
face of the channel, exacerbating its hyperactivity. Putative oxidation of two intraluminal SERCA2a cysteines and Cysteine 674 at cytosolic face
decreases the activity of transporter. SEPN1 serves as a redox sensor of SERCA2a, with low levels of luminal Ca2+ activating the protein as a reductase,
and mitigating increased oxidation levels. Downregulation of HAX-1 in diseased hearts leads to less inhibition of the UPR by the protein, driving
downstream SERCA2a oxidation and protein degradation. Image created with Biorender.com.
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thereby linking ER stress with an increase in arrhythmic

potential.

It does appear that directly targeting ER stress via genetic

approaches, as opposed to untargeted cell-wide pharmacological

approaches, is a more promising approach to attenuate Ca2+-

dependent ventricular arrhythmias. Reducing CHOP activity was

shown to attenuate effects of pressure overload in TAC mouse

models (Fu et al., 2010). Inhibition of PERK decreases ventricular

arrhythmias and improves cardiac function in MI mouse models

(Liu et al., 2018; Liu et al., 2021). Of note, PERK is upstream of

ERO1α in the UPR. We have demonstrated that both

pharmacological and genetic approaches to reduce ERO1α
activity, which is upregulated in cardiovascular disease,

reduces spontaneous SR Ca2+ release and arrhythmic risk

without perturbing the fine-tuned redox balance of the SR

(Hamilton et al., 2022).

To conclude, ER stress and the UPR can exacerbate SR Ca2+

mishandling via RyR2 and SERCA2a (Figure 2) in cardiovascular

disease and contribute to Ca2+-dependent arrhythmogenesis,

through dysregulated SR oxidative status, perturbed luminal

protein-protein interactions and protein homeostasis

(Figure 1). Given the burden of Ca2+-dependent cardiac

arrhythmias and sudden cardiac death, uncovering novel axes

of intraluminal interactions between SR/ER stress proteins and

SR Ca2+ handling proteins, whether direct or indirect through

redox modification, may reveal new therapeutic approaches for

Ca2+-dependent arrhythmias.
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