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Gastrointestinal cancer may be associated with dysbiosis, which is

characterized by an alteration of the gut microbiota. Understanding the role

of gut microbiota in the development of gastrointestinal cancer is useful for

cancer prevention and gut microbiota-based therapy. However, the potential

role of dysbiosis in the onset of tumorigenesis is not fully understood. While

accumulating evidence has demonstrated the presence of dysbiosis in the

intestinal microbiota of both healthy individuals and patients with various

digestive system diseases, severe dysbiosis is often present in patients with

digestive system cancer. Importantly, specific bacteria have been isolated from

the fecal samples of these patients. Thus, the association between dysbiosis and

the development of digestive system cancer cannot be ignored. A new model

describing this relationshipmust be established. In this review, we postulate that

dysbiosis serves as the first hit for the development of digestive system cancer.

Dysbiosis-induced alterations, including inflammation, aberrant immune

response, bacteria-produced genotoxins, and cellular stress response

associated with genetic, epigenetic, and/or neoplastic changes, are second

hits that speed carcinogenesis. This review explains the mechanisms for these

four pathways and discusses gut microbiota-based therapies. The content

included in this review will shed light on gut microbiota-based strategies for

cancer prevention and therapy.
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Introduction

Dysbiosis, defined as perturbations in the quality or quantity of gut microbiota, has

recently emerged as a crucial pathophysiological factor for cancer onset and progression,

especially digestive system cancer (Ponziani et al., 2019; Sobhani et al., 2019; Yachida

et al., 2019; Huang et al., 2020; Jia et al., 2021; Yang et al., 2021; Kartal et al., 2022). Unlike
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gastric cancer and cervical cancer, which are induced by single

pathogenic agents, the pattern of gut microbiota-associated

carcinogenesis remains elusive. Helicobacter pylori

(Hatakeyama, 2014; Amieva and Peek, 2016) and human

papillomavirus (HPV) (Marx, 1986; Clifford et al., 2017) are

widely accepted as the etiologic agents of gastric cancer and

cervical cancer, respectively. Long-term infection by H. pylori is

the strongest risk factor for both intestinal and diffuse gastric

non-cardia carcinomas. In addition, H. pylori eradication is the

standard therapy for gastric cancer prevention (Yan et al., 2022).

Similarly, persistent infection with oncogenic HPV types is

strongly associated with the development of cervical cancer.

HPV vaccination is an effective method of cervical cancer

prevention (Wang et al., 2020a; Printz, 2021) to significantly

reduce morbidity andmortality due to cervical cancer. Therefore,

the causality of microorganisms demonstrated in gastric cancer

and cervical cancer leads us to consider the possible roles of gut

microbiota in digestive system cancer.

In the clinic, only a few bacterial species have been associated

with increased cancer morbidity, including Fusobacterium

nucleatum (Yu et al., 2017; Kong et al., 2021; Chen et al.,

2022). Monitoring GI microbiota is also not included in

therapeutic guidelines for digestive system cancer, although it

is recommended as the standard therapy for Clostridioides

difficile infection in adults (Johnson et al., 2021; van Prehn

et al., 2021). Despite this, a strong correlation exists between

dysbiosis and digestive system cancer carcinogenesis, as

confirmed by numerous preclinical and clinical studies.

Composition shifts of gut microbiota have been reported in

patients with colorectal cancer (CRC) (Castellarin et al., 2012;

Yachida et al., 2019; Jia et al., 2021; Yang et al., 2021) and

hepatocellular carcinoma (HCC) (Jia et al., 2021; Ray, 2021;

Schneider et al., 2022). Fecal transplantation from CRC model

mice to control mice identified cancer-related biochemical or

behavioral changes in the recipient (Wong et al., 2017; Li et al.,

2019; Chang et al., 2020). These findings lead to questions

regarding the potential role of dysbiosis on the onset of

digestive system cancer. Based on collective evidence, we

propose that dysbiosis works as the first hit on the

development of digestive system cancer. The presence of

dysbiosis (the first hit) will not guarantee carcinogenesis

unless dysbiosis-associated alterations (second hits) also occur.

This review discusses the presence of dysbiosis in digestive

system cancer and how dysbiosis-associated alterations can

potentiate carcinogenesis. Microbiota-based cancer therapies

are also described.

Normal gut microbiota

Trillions of microbes have been identified in the normal adult

digestive system tract, including facultative anaerobes (e.g.,

Lactobacilli and Enterobacteria) and strict anaerobes (e.g.,

Bacteroides and Bifidobacterium) (Lloyd-Price et al., 2016).

Firmicutes and Bacteroidetes are major phyla in a healthy gut

(>90%). Other phyla include Proteobacteria (<5%),

Actinobacteria (<2%), Verrucomicrobia, and Fusobacteria

(<1%), and others. The gut microbiota is dynamic and varies

among individuals. Furthermore, gut microbiota can be

influenced by environmental factors, diet, and medications

(Zmora et al., 2019; Lindell et al., 2022). Recent research has

demonstrated the important role gut microbiota play in several

physiological processes, including immune system development

and maturation (Rooks and Garrett, 2016; Song et al., 2020; Paik

et al., 2022), bile acid metabolism (Funabashi et al., 2020; Poland

and Flynn, 2021), energy consumption (Coelho et al., 2019;

Miyamoto et al., 2019), and neurotransmitter biosynthesis

(Yano et al., 2015; Choi et al., 2020). Therefore, dysbiosis may

contribute to various diseases, including digestive system cancer.

As aforementioned, while no single genus has been associated

with intestinal cancer, dysbiosis of gut microbiota has been

observed and may be the first hit for gastrointestinal cancer.

Thus, this dysbiosis may be a better diagnostic marker or a

potential therapeutic target.

The first hit: Perturbance of gut
microbiota in digestive system cancer

Dysbiosis of gut microbiota in CRC

CRC is a heterogeneous group of cancers that mostly develop

from polyps (neoplastic precursor lesions). CRC accounted for

approximately 10% of all diagnosed cancers and cancer-related

deaths worldwide in 2020 (Sung et al., 2021). Hereditary (e.g.,

hereditary colorectal cancer syndromes and APCmutations) and

environmental risk factors (e.g., low intake of vegetables and

fruits, high body fat, and obesity) play roles in CRC development.

Male sex and increasing age are also positively associated with

CRC incidence.

Recently, microbiome profiling via 16S rRNA or shotgun

metagenomics of stool samples confirmed dysbiosis in patients

with CRC (Dai et al., 2018; Thomas et al., 2019; Coker et al.,

2022). The representation of three bacterial species is consistently

increased in patients with CRC, including F. nucleatum,

Enterotoxigenic bacteroides fragilis (ETBF), and Escherichia coli

with the pks genetic island (pks + E. coli) (Table 1). Other non-

specific genera include at least 27 genera, including

Porphyromonas, Peptostreptococcus, and Prevotella, and the

order Clostridiales (Wirbel et al., 2019). In addition, dysbiosis

also relates to certain precursor lesions in CRC, including the

adenocarcinoma (70–90%) and serrated neoplasia (10–20%)

pathways. Clinical tests have shown significant decreases in

microbial diversity, overall composition, and normalized taxon

abundance in these two precursors, especially in patients with

advanced traditional adenoma-carcinoma (Peters et al., 2016).
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Clostridia operational taxonomic units are depleted in these

patients, whereas classes Gammaproteobacteria and Bacilli,

order Enterobacteriales, and genera Streptococcus and

Actinomyces were enriched. Therefore, some intestinal bacteria

may be biomarkers for CRC. Multi-omics analysis from a CRC

cohort showed a significantly increased abundance of F.

nucleatum spp. from intramucosal carcinoma to more

advanced stages, whereas Atopobium parvulum and

Actinomyces odontolyticus were only dominant in multiple

polypoid adenomas and/or intramucosal carcinomas (Yachida

et al., 2019).

Gut microbiota is also correlated with CRC therapy. In

neoadjuvant chemoradiotherapy (nCRT) for locally advanced

rectal cancer (LARC), the gut microbiota in patients with

effective response differed significantly from those in non-

responders (Yi et al., 2021). Some butyrate-producing bacteria,

including Roseburia, Dorea, and Anaerostipes, were dominant in

responders, whereas non-responders showed increased

Coriobacteriaceae and Fusobacterium. Gut microbiota can

metabolize some of the chemotherapeutic drugs, thus regulating

the response to chemotherapy (Chattopadhyay et al., 2021).

Bacterial species, such as F. nucleatum, are also associated with

CRC recurrence (Yi et al., 2021). F. nucleatum-positive patients

after nCRT treatment showed a depletion of CD8+ T cells andmay

be at a higher risk of recurrence (Serna et al., 2020).

In contrast, some bacterial species may play anti-tumorigenic

roles in CRC. Faecalibaculum rodentium (Holdemanella biformis

in humans) reduced tumor growth in a mouse intestinal tumor

model by producing short-chain fatty acids (SCFAs) (Zagato

et al., 2020). SCFAs control protein acetylation and tumor cell

proliferation by suppressing calcineurin/NFATc3 activity.

Similarly, oral gavage of Streptococcus thermophilus

significantly prevented tumor formation in two mouse models

of intestinal tumors by activating oxidative phosphorylation and

downregulating Hippo pathway kinases (Li et al., 2021). CRC

cells co-incubated with Streptococcus thermophilus or its

conditioned medium showed decreased proliferation rate via

produced β-galactosidase in vitro. The anti-tumor effect of S.

thermophilus was also attributed to the increased abundance of

commensal bacteria such as Bifidobacterium and Lactobacillus.

Other bacterial species showing a protective effect on CRC

include Akkermansia muciniphila (Fan et al., 2021),

Clostridiales (Montalban-Arques et al., 2021), Lactobacillus

reuteri (Bell et al., 2022), and Bacillus toyonensis (Chen et al.,

2020).

Dysbiosis of gut microbiota in HCC

Liver cancer is another global health challenge that includes

hepatocellular carcinoma (HCC) and intrahepatic

cholangiocarcinoma (iCCA). HCC comprises the majority of

primary liver cancer cases (90%) and is the third leading cause of

cancer-related deaths worldwide (Sung et al., 2021). It usually

develops from a series of risk factors, such as susceptibility genes

(TERT mutation), viral risk factors (HBV and HCV infection),

TABLE 1 CRC-associated bacteria and their effects on carcinogenesis.

Bacteria Effects on carcinogenesis References

Fusobacterium nucleatum (F.
nucleatum)

Promotes CRC cell proliferation in vitro Castellarin et al. (2012); Kostic et al. (2012)

Increases tumor growth rates in patient-derived CRC xenografts in mice Bullman et al. (2017)

Increase levels of lymphocyte-attracting chemokines CCL5, CCL20, and CXCL11 Cremonesi et al. (2018)

Recruit other bacteria to form biofilms coating human CRCs Dejea et al. (2018)

Enterotoxigenic Bacteroides fragilis
(ETBF)

Promote the development of precancerous lesions (i.e., adenomas) Dejea et al. (2018)

Induce a pro-carcinogenic Th17 response by recruiting M-MDSCs Wu et al. (2009)

Induce DNA damage via promoting the inflammation and oxidative stress Irrazabal et al. (2020)

Induced the expression and secretion of CXCL1-ortholog IL-8 from epithelial cells via
activation of NF-κB

Kim et al. (2001)

Enhance tumorigenesis in preclinical CRC models Arthur et al. (2012)

Escherichia coli (E. coli) Produce the genotoxin colibactin and result in mutagenic DNA damage in colonic
epithelial cells

Cuevas-Ramos et al. (2010; Irrazabal et al.
(2020)

Induce intestinal stem cell mutations in vitro Pleguezuelos-Manzano et al. (2020)

Increase levels of lymphocyte-attracting chemokines CCL5, CCL20, and CXCL11 Cremonesi et al. (2018)

Induce DNA damage via promoting inflammation and oxidative stress Wang et al. (2015)

M-MDSCs, monocytic-like myeloid-derived suppressor cells.
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alcohol-induced liver disease (alcoholic cirrhosis), or non-

alcoholic disease (non-alcoholic fatty liver disease, NAFLD).

Accumulating evidence indicates the association of dysbiosis in

HCC development (Table 2). A recent long-term, large-scale study

identified gut microbiota instability mostly related to factors

contributing to metabolic syndrome, such as fatty liver disease

(FLD) and diabetes mellitus (Frost et al., 2021). A total increase

of facultative pathogens (e.g., Enterobacteriaceae, Escherichia, and

Shigella) was observed in patients with FLD andwasmore evident in

newly developed cases. FLD is a well-known precursor disease for

HCC. The gut microbiota also involve in NAFLD development and

progression (Borrelli et al., 2018; Lang and Schnabl, 2020; Behary

et al., 2021); thus, they are related to NAFLD-induced HCC. One

mechanism of NAFLD is closely linked to endogenous alcohol

production (autobrewery syndrome or gut fermentation

syndrome), which leads to nonalcoholic steatohepatitis (NASH).

Intestinal bacteria isolated from patients with NASH showed an

increase in Klebsiella pneumoniae strains (Yuan et al., 2019) with

varied alcohol-producing activities. The close relationship between

dysbiosis and HCC precursor diseases (e.g., FLD, cirrhosis, alcohol

dependence syndrome, and alcoholic liver cirrhosis) indicates that

the tumor-inducible role of dysbiosis is precursor-dependent. In

addition, the composition of gut microbiota varies in patients with

different types of precursors. In patients with HCC-cirrhosis, the

predominant bacteria are Clostridium and CF231 (a member of the

Paraprevotellaceae family) (Lapidot et al., 2020), compared to

Clostridiales and Bacteroidales in alcohol dependence syndrome

and alcoholic liver cirrhosis (Dubinkina et al., 2017).

Preclinical models have also reported the correlation between

dysbiosis and HCC. Generally, HCC with icterus was induced by

the consumption of soluble fibers in a series of dysbiotic mice.

However, germ-free (GF) mice (without gut microbiota) or

antibiotics-treated mice (with decreased gut microbiota) were

resistant to such diets and HCC was not stimulated (Singh et al.,

2018). Depletion of fermenting bacteria by antibiotics or

inhibiting fermentation by plant-derived β-acids prevented

HCC progression. In another study, antibiotic treatment

decreased liver tumor growth in the primary liver and liver

TABLE 2 Dysbiosis in patients with HCC and HCC-related liver diseases.

Bacteria Conditions References

Facultative pathogens ↑ (e.g., Enterobacteriaceae, Escherichia–Shigella) Metabolic liver disease (e.g., FLD) Frost et al. (2021)

Clostridium and CF231 ↑ Alphaproteobacteria ↓ HCC-cirrhosis vs. cirrhotic without HCC Lapidot et al. (2020)

Enterobacteriaceae and Streptococcus ↑ Akkermansia ↓ NAFLD-related cirrhosis with or without HCC Ponziani et al. (2019)

Bacteroides and Ruminococcaceae ↑ Bifidobacterium ↓ NAFLD-related cirrhosis and HCC

Clostridiales and Enterobacteriaceae ↑ ADS without cirrhosis Dubinkina et al. (2017)

Bacteroidales ↑ ADS with cirrhosis

Proteobacteria ↑ PD-1 non-responders Zheng et al. (2019)

Akkermansia muciniphila and Ruminococcaceae spp.↑ PD-1 responders

Phylum Early HCC vs. cirrhosis Ren et al. (2019)

Actinobacteria ↑
Verrucomicrobia ↓

Genus

Gemmiger and Parabacteroides ↑
Alistipes, Phascolarctobacterium, and Ruminococcus ↓
Klebsiella and Haemophilus ↑
Faecalibacterium, Ruminococcus, and Ruminoclostridium ↑ HBV+ HCV− HCC vs. HBV+ HCC Liu et al. (2019)

Escherichia–Shigella, Enterococcus ↓
Opportunistic pathogens ↑ (e.g., Gammaproteobacteria, Enterobacteriaceae, and

Neisseriaceae)
Primary biliary cirrhosis Lv et al. (2016)

Potential beneficial bacteria ↓ (e.g., Acidobacteria, Lachnobacterium spp., and Bacteroides
eggerthii)

Veillonella, Megasphaera, Dialister, Atopobium, and Prevotella ↑ Cirrhosis Chen et al. (2016)

Enterobacteriaceae ↑ Decompensated cirrhotic vs. compensated
cirrhotic

Enterobacteriaceae and Enterococcaceae ↑ Prior-HE Bajaj et al. (2015)

Veillonella and Streptococcus ↑ Cirrhosis Qin et al. (2014)

Clostridiales ↓

FLD, fatty liver diseases; ADS, alcohol dependence syndrome; PD-1, programmed cell death protein 1; HE, hepatic encephalopathy.
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metastasis models by recruiting CXCL16, a regulator of natural

killer T cell (NKT) accumulation (Ma et al., 2018).

Dysbiosis of gut microbiota in other
digestive system cancers

Limited evidence exists regarding dysbiosis and other

digestive system cancers, i.e., esophageal cancer, gastric cancer,

and pancreatic cancer (PC). In esophageal cancer, oral or

esophageal microbiota, instead of gut microbiota, have been

recognized as cancer-related microbial factors. Similarly, the

effect of gut microbiota on gastric cancer is negligible.

However, gut microbiota may crosstalk with H. pylori or

gastric microbiota, which are carcinogens for gastric cancer.

However, the correlation between gut microbiota and PC is a

new research area that emerged in 2017. A recent study reported

a fecal microbiota signature in pancreatic cancer (Kartal et al.,

2022). Thus, unique microbiota may be used as non-invasive

biomarkers for the early detection of pancreatic ductal

adenocarcinoma (PDAC). However, further studies are needed

to confirm this role.

The information above suggests that the order prevalence of

dysbiosis and various types of digestive cancer is CRC > HCC >
esophageal cancer > gastric cancer > PC, consistent with PubMed

search results. Searches for studies on “gut microbiota and CRC”

and “gut microbiota and HCC” indexed in PubMed in the last

5 years revealed 1,458 and 262 articles, respectively. These

comprise the first and second most common cancer types

among digestive system cancer. Therefore, the following

sections mainly focus on CRC and HCC.

The second hit: Dysbiosis-associated
alterations potentiate carcinogenesis
in the digestive system

To potentiate carcinogenesis in the digestive system,

dysbiosis (the first hit) usually works with other dysbiosis-

induced alterations (second hits), including inflammation,

immune response, bacteria-produced genotoxins, and cellular

stress response associated with genetic, epigenetic and/or

neoplastic changes. These alterations together with dysbiosis

serve as the sequential hits for the digestive system and speed

carcinogenesis in the intestine and liver.

Dysbiosis drives inflammation

Inflammation is an evolutionarily conserved process

involving the activation, recruitment, and action of the innate

and adaptive immune systems. Initially, inflammation is an

essential host defense against pathogens and the regulation of

tissue homeostasis (repair, regeneration, and remodeling). In

recent past decades, increased attention has been paid to the

contribution of inflammation to cancer development and

progression. In the intestine and liver, inflammation can be

induced by bacteria-derived metabolites, bile acids, and

bacterial components.

Bacteria-derived metabolites
The major inflammation-related metabolites produced by

gut microbes are trimethylamine N-oxide (TMAO) and

SCFAs. TMAO is a converted trimethylamine byproduct

from the metabolism of dietary phosphatidylcholine,

choline, and carnitine. An elevated serum TMAO level is

highly related to cancer, especially CRC. In a nested

case–control study (Guertin et al., 2017), men with higher

serum choline, the precursor of TMAO, had an approximately

three-fold higher risk of developing CRC over the ensuing

14 ± 10 years. In an obesity-associated CRC cohort, the

composition of gut microbiota confirmed by 16S rRNA

gene sequences differs from that of the CRC cohort

without obesity (Sánchez-Alcoholado et al., 2020). A higher

abundance of opportunistic pathogens was observed in the

obesity cohort with an increased TMAO and proinflammatory

cytokine IL-1. The dysbiotic bacteria included Fusobacterium,

Clostridium, Prevotella, Desulfovibrio, and Enterococcus.

SCFAs were the major products fermented by intestinal

bacteria from indigestible dietary components. Acetate,

propionate, and butyrate are three major SCFAs. The

Bacteroidetes phylum is mainly responsible for acetate and

propionate production, whereas the Firmicutes phylum

produces butyrate. Generally, SCFAs have a protective

effect on cancer. Decreased SCFA production is associated

with increased CRC risks in healthy individuals or patients

with CRC-related diseases (Ou et al., 2013). SCFAs help to

maintain intestinal integrity by suppressing histone

deacetylases (HDACs) in colonic epithelial and immune

cells, resulting in decreased pro-inflammatory cytokine

release (Chang et al., 2014) and increased apoptosis in CRC

cells (Buda et al., 2003). Several preclinical studies have

confirmed the anti-tumor role of SCFAs in CRC and HCC

(Sheng et al., 2017; Tian et al., 2018). The oral gavage of

acetate, butyrate, and propionate in a colitis-associated CRC

mouse model significantly decreased tumor size. This

protective effect depended on the suppression of pro-

inflammatory cytokines, including IL-6, TNF-α, and IL-17.

Analysis of the disease activity index further confirmed

decreased CRC activity in the group administered SCFAs.

Similarly, the administration of mixed SCFAs to HBx (an

HBV-encoded oncoprotein) transgenic mice prevented HCC

development. The model mice with SCFAs showed fewer

tumor nodules and increased expression of disabled

homolog 2 (DAB2), a tumor suppressor (McBrearty et al.,

2021).
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Bile acids
Bile acids (BAs), especially secondary BAs, are another gut

microbiota-produced product associated with CRC and HCC.

Generally, primary BAs are synthesized in the liver from

cholesterol. BAs are then secreted into the intestinal lumen to

undergo further biotransformation by gut microbiota. In the

intestine, BAs are unconjugated by intestinal bacteria-produced

bile salt hydrolase (BSH) and biotransformed into secondary BAs

via bacteria-mediated 7α-dehydroxylation or epimerization.

Therefore, the gut microbiota is directly involved in BA

biosynthesis and dysbiosis-related alterations in BA

composition are related to intestinal and hepatic

inflammation. CRC and HCC cohorts both showed close

relationships between circulating BAs and carcinogenesis. In

one CRC cohort (569 CRC cases and 569 matched controls)

(Kühn et al., 2020), a higher CRC risk was associated with

increased serum levels of conjugated BA metabolites,

including glycocholic acid (GCA), taurochenodeoxycholic acid

(TCDCA), taurocholic acid (TCA), glycohyocholic acid

(GHCA), glycochenodeoxycholic acid (GCDCA),

glycodeoxycholic acid (GDCA), and taurodeoxycholic acid

(TDCA). In an HCC cohort (233 pairs of HCC cases and

controls), a positive correlation was observed between HCC

and overall serum BAs and taurine- or choline-conjugated

BAs (Stepien et al., 2021). Increased deoxycholic acid (DCA)

has a deleterious effect on intestinal cancer cells by promoting the

production of pro-inflammatory cytokines (Liu et al., 2018).

Moreover, oral gavage of DCA in a mouse model of intestinal

tumors resulted in significant increases in adenoma number and

size. Elevated levels of pro-inflammatory cytokines (e.g., IL-1β,
IL-6, and TNF-α) andNLRP3 inflammasome-associated proteins

(e.g., NOD-like receptor family) were also observed in the DCA-

treated group.

The gut microbiota also regulates BA metabolism through

the nuclear farnesoid X receptor (FXR) (Jia et al., 2018; Sun et al.,

2021) (Figure 1). FXR is a crucial BA receptor (the other is

membrane G protein-coupled receptor 5, TGR5) and is closely

related to CRC and HCC. Unconjugated BAs (e.g.,

chenodeoxycholic acid, CDCA; deoxycholic acid, DCA;

lithocholic acid, LCA; and cholic acid, CA) are bacteria-

produced high-affinity agonists of FXR. The rank order for

the ability of BAs to activate FXR is CDCA > DCA > LCA >
CA. FXR levels are closely correlated with CRC and HCC. Several

FXR disruption studies have confirmed the role of FXR in the

initiation of colon or hepatocellular carcinogenesis. In a CRC

mouse model, whole-body FXR depletion resulted in increased

FIGURE 1
Gut microbiota-involved biosynthesis and metabolism of bile acids. Gut microbiota play roles in BA biosynthesis and metabolism. Primary BAs
are synthesized in hepatocytes from cholesterol via classical or alternative pathways. They are further conjugated with taurine (in mice) or glycine (in
humans) and transformed into conjugated BAs (e.g., TCA, GCA, TCDCA, and GCDCA). The conjugated primary BAs are secreted from the liver into
the bile and subsequently into the intestinal lumen, where they are unconjugated by bacteria-produced BSH. The unconjugated primary BAs are
biotransformed into secondary BAs (e.g., DCA, UDCA, and LCA) via 7α-dehydroxylation or epimerization. The gut microbiota also mediates the
enterohepatic circulation of BAs via FXR. FXR is activated by unconjugated BAs (e.g., CDCA, DCA, LCA, and CA) and regulates BA synthesis via
molecules in the liver and intestine. In the liver, FXR suppresses the expression of CYP7A1 (the rate-limiting enzyme for the classical pathway of BA
synthesis) by activating SHP. SHP further binds to LRH1. In the intestine, FXR suppresses CYP7A1 expression by upregulating FGF15 (FGF19 in humans)
expression. FGF15 further binds to the FGFR4/β-klotho complex and induces JNK1/2 and ERK1/2 signaling. BAs, bile acids; TCA, taurocholic acid;
GCA, glycocholic acid; TCDCA, taurochenodeoxycholic acid; GCDCA, glycochenodeoxycholic acid; BSH, bile salt hydrolase; DCA, deoxycholic
acid; UDCA, ursodeoxycholic acid; LCA, lithocholic acid; FXR, farnesoid X receptor; SHP, small heterodimer partner; LRH1, liver receptor homolog 1;
FGF15, fibroblast growth factor 15; FGFR4, FGF receptor 4.
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expression of inflammation-related genes, lymphoid nodule

numbers, and intestinal crypt heights, as well as fewer

differentiated goblet cells. These morphological and genetic

changes reveal an increased susceptibility for CRC in the

mouse model (Modica et al., 2008). Similarly, Fxr-null mice

spontaneously developed hepatocellular adenomas and

carcinomas with increased circulating and hepatic BA levels,

pro-inflammatory cytokines, and myelocytomatosis oncogene

(Yang et al., 2007). In contrast, overexpression of FXR by

adenovirus injection inhibited xenograft growth in nude mice.

Colon cancer cells co-cultured with FXR agonists showed

suppressed cell proliferation (Peng et al., 2012).

Themechanism of FXR-regulated intestinal carcinogenesis has

not been clearly defined but may involve interactions with matrix

metallopeptidase 7 (MMP7) (Peng et al., 2019) or innate

immunity-related molecules (Vavassori et al., 2009). The

mechanism of FXR in HCC initiation depends on the FGF15/

19–FGFR4–β-klotho axis. Abnormal activation of this axis directly

stimulates the epithelial–mesenchymal transition of HCC cells,

resulting in invasion and metastasis in an HCC mouse model (He

et al., 2015). In particular, increased hepatocellular FGF19 levels

were positively correlated with cirrhosis in patients with HCC,

whereas depletion of FGF15 inhibited hepatocellular proliferation

via tumor suppressors such as Ndrg2 (Deuschle et al., 2012) and

miR-122 (He et al., 2015).

Bacterial components
Inflammation also can be induced by bacterial components,

especially lipopolysaccharide (LPS). LPS is a cell wall component

of Gram-negative bacteria that induces inflammation through

interactions with pattern recognition receptors (PRRs). PRRs are

expressed on the surface of most innate immune response-related

cells. Toll-like receptors 4 (TLR4) are PRRs that recognize LPS

and activate NF-κB through myeloid differentiation factor 88

(MyD88)-dependent orMyD88 adaptor-like (MAL) pathways. A

cross-region cohort study analyzing 526 metagenomic fecal

samples from CRC patients and healthy controls identified

several LPS-related signaling pathways (Dai et al., 2018).

Seven dominant bacterial species may contribute to those

pathways, including Bacteroides fragilis, F. nucleatum,

Porphyromonas asaccharolytica, Parvimonas micra, Prevotella

intermedia, Alistipes finegoldii, and Thermanaerovibrio

acidaminovorans. Similarly, in a case–control study with

139 HCC patients and matched controls, levels of serum anti-

LPS antibody and anti-flagellin Ig A and IgG were significantly

higher in the HCC group (Fedirko et al., 2017). This tendency

was positively correlated with an increased risk of HCC.

Dysbiosis alters the immune response

The immune system helps identify and destroy nascent

tumor cells and plays an important role in cancer defense.

Dysfunction of the innate or adaptive immune systems

induced by the bacteria-derived metabolites and bacterial

components promotes carcinogenesis in the intestine and liver.

Evidence of gut microbiota in regulating
immune response in CRC or HCC

GFmice without bacteria showed immature immune systems

with poor gut-associated lymphoid tissue, lower levels of tissue-

resident macrophages, smaller spleens, and decreased serum

immunoglobulin levels. This incomplete immune system can

be corrected by introducing intestinal bacteria, bacterial

metabolites (e.g., SCFAs), or bacterial components (e.g.,

polysaccharide A, PSA) (Allen-Vercoe et al., 2011; Malik

et al., 2018). Gut microbiota depletion by antibiotics alleviated

the tumor burden in mice with CRC. However, this protective

effect was not observed in mice with immune gene knockouts

(Tao et al., 2007), indicating it depends on an intact immune

system. In addition, exposure to gut microbiota stimulated the

expression of CRC-associated chemokine genes (e.g., CCL5,

CXCL9, CXCL10, CXCL1, and CCL20) (Cremonesi et al.,

2018). Increased levels of CRC infiltrating-related chemokines

helped inhibit CRC development by recruiting tumor-infiltrating

lymphocytes (TILs). Therefore, patients with specific chemokine-

expressing bacteria show improved survival rates. Similarly,

treatment with Akkermansia muciniphila or Amuc_1100 (an

outer membrane protein produced by Akkermansia

muciniphila) improved colitis in mice with CRC by reducing

levels of infiltrating macrophages and CD8+ cytotoxic T

lymphocytes in the colon (Wang et al., 2020b).

Bacterial metabolite-based intestinal immune
system

The gut microbiota influences the normal functions of innate

and adaptive immune response through its metabolites,

including SCFAs, aryl hydrocarbon receptor (AhR) ligands,

and polyamines.

SCFAs affect nearly every process of the intestinal immune

response. Thus, they play important roles in maintaining the

intestinal immune system (Figure 2). First, SCFAs serve as

signaling molecules in the innate immune system by

inhibiting HDACs (Rooks and Garrett, 2016). This inhibitory

effect is NF-κB-dependent (Kendrick et al., 2010). HDAC

suppression also facilitates the inhibitory activity of FOXP3+

regulatory T (Treg) cells (Tao et al., 2007). Signaling molecule

GPCRs, including GPR43, GPR41, and GPR109A, are also

involved in the SCFA-mediated immune response. Third,

SCFAs help maintain intestinal barrier integrity. The

commensal bacteria in the lumen (bacterial barrier),

immunoglobin A (IgA) secreted by intestinal immune cells

(immunological barrier), and the mucus layer and epithelial

elements (physical barrier) help maintain intestinal integrity

and reduce intestinal permeability. This protection wall

efficiently prevents lumen colonization by pathogens and the
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translocation of bacteria or their products and components, such

as LPS. Increased gut permeability or the so-called leaky gut is

closely related to the onset of CRC and HCC. Exposure to LPS in

the liver activates Kupffer cells via binding to TLR4, resulting in

increased TNF-α, IL-6, and IL-8 levels. The increased production
of proinflammatory cytokines and chemokines leads to HCC, as

discussed previously and elsewhere (Yu et al., 2010; Dapito et al.,

2012; Sanduzzi Zamparelli et al., 2017). Similarly, increased

barrier function is helpful for CRC treatment (Bhutiani et al.,

2018). Exposure to SCFAs increased the expression of mucin

genes in epithelial goblet cells and strengthened the

immunological barrier via mucosal immunity (Willemsen

et al., 2003; Gaudier et al., 2004). SCFAs also modulate the

permeability of tight junctions in intestinal epithelial cells, which

is an important element in the physical barrier. A compact tight

junction inhibits the translocation of enteropathogenic toxins.

Colonization with SCFAs-producing bacteria relieved mice from

infection by E. coli (Fukuda et al., 2011).

Aryl hydrocarbon receptor (AHR) is expressed by immune

cells, epithelial cells, and some tumor cells. It is a member of the

periodic circadian protein (PER)-AHR nuclear translocator

(ARNT)-single-minded protein (SIM) superfamily of

transcription factors. AHR is activated by both endogenous

(e.g., kynurenine, a tryptophan derivative) and exogenous

factors (e.g., diindolylmethane and indolocarbazole derived

from the diet) (McIntosh et al., 2010). These factors are

known as AHR ligands. The binding of AHR to microbial

metabolites, such as the indole derivatives of tryptophan

(Cervantes-Barragan et al., 2017; Carambia and Schuran,

2021), plays an essential role in the regulation of innate and

adaptive immune responses. Deficiency of AHR or AHR ligands

in mice led to increased Bacteroides spp., decreased antimicrobial

peptide (AMP) production, and reduction of intestinal

intraepithelial lymphocytes (IELs) and turnover of intestinal

epithelial cells (IECs) (Li et al., 2011). Injection of wild-type

IELs to Ahr−/− mice with a maintained IEC barrier function and

FIGURE 2
Microbiota-derived SCFAs and intestinal immunity. SCFAs, such as acetate, butyrate, and propionate, are produced by intestinal bacteria via the
fermentation of undigested dietary fibers. SCFAs affect the host immune system through the following pathways: increased epithelial barrier
function; increased B cell-based sIgA secretion; activation of inflammasomes and induced production of IL-18; enhanced goblet cell-based mucus
production; binding to epithelial surface GPCRs (e.g., GPR41, GPR43, and GPR109A) to reduce expression of T-cell-activating molecules on
antigen-presenting cells (e.g., dendritic cells) and increased levels of FOXP3 and anti-inflammatory cytokines (e.g., TGF-β and IL-10) in Treg cells; and
inhibition of HDAC activity, followed by NF-κB inhibition. sIgA, secretory IgA; GPCRs, G protein-coupled receptors; FOXP3, forkhead box P3; Treg
cells, regulatory T cells; HDACs, histone deacetylases.
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normalized bacterial composition. In wild-type mice, deficiency

of AHR ligands resulted in increased severity of dextran sodium

sulfate-induced colonic inflammation. The inflammation was

improved when the mice were administered AHR ligand-

containing diets. Together, these studies provided solid

evidence for the AHR-mediated immune response. In general,

indoleamine 2,3-dioxygenase 1–tryptophan and 2,3-dioxygenase

2–kynurenine–AHR (IDO1/TDO2–KYN–AHR) are important

axes in AHR-involved immune regulation. IDO1 and TDO2 are

two intracellular heme-containing metalloproteins that convert

tryptophan into a series of biologically active molecules, such as

KYN and several indole-containing substrates (e.g.,

neurotransmitter melatonin). The KYN pathway is the major

route of tryptophan intake. KYN and its metabolic product

kynurenic acid are endogenous AHR ligands (Gaitanis et al.,

2008; Lamas et al., 2016). KYN-activated AHR is an important

regulator of both innate and adaptive immune cells. Its activation

can lead to the generation of immune-tolerant dendritic cells

(DCs) and Treg cells, resulting in a host-friendly tumor

microenvironment (TME). This action is essential for the

eradication of cancer cells (Cervantes-Barragan and Colonna,

2018; Cheong and Sun, 2018).

Polyamines such as spermidine, spermine, and putrescine

are polycationic molecules produced by almost all living cells,

including bacteria. The human intestinal lumen contains high

levels of polyamines, which are derived from the diet and

metabolism by the host and bacteria. Gut bacteria can use

amino acid decarboxylase to produce polyamines that differ

from the mammalian versions (using the arginase 1 and

ornithine decarboxylase). Polyamines can affect the

virulence of bacterial pathogens and also strengthen the

integrity of the IEC barrier. Polyamines can induce the

production of intercellular junction proteins (Rao et al.,

2020), including zonula occludens 1 (ZO1), occludin, and

E-cadherin, which are vital for maintaining intestinal

permeability and enhancing epithelial barrier function.

Moreover, polyamine metabolism plays an important role

in regulating both innate and adaptive immune responses.

Spermine can suppress the classic (M1) macrophage activation

by inhibiting the expression of ornithine decarboxylase and

the synthesis of pro-inflammatory cytokines (Kaczmarek et al.,

1992; Zhang et al., 2000). The administration of

Bifidobacterium animalis subsp. lactis LKM512 with an

arginine-containing diet led to decreased levels of colonic

TNF and IL-6 (Kibe et al., 2014). Pups supplied with

polyamine showed elevated maturation of lamina propria

CD4+ T cells and intraepithelial CD8+ T cells, accompanied

by an earlier appearance of splenic B cells (Pérez-Cano et al.,

2010). Higher polyamine concentrations are generally

associated with carcinogenesis (Casero et al., 2018). Patients

with cancer have increased polyamine levels in their blood and

urine compared to healthy individuals (Kassi and Kaltsas,

2022). The dysregulation of polyamine metabolism by the

host or gut microbiota may contribute to CRC (Yang et al.,

2019). Furthermore, polyamines can suppress anti-tumor

immune responses. Polyamine depletion via inhibition of

ornithine decarboxylase activity attenuated tumor growth in

a T-cell-dependent manner (Hayes et al., 2014), supporting

the hypothesis that reducing intra-tumor polyamines may

reverse immunosuppression in the TME.

Bacterial components-based immune response
The gut microbiota also modulates the immune response

through bacterial components, including formyl peptides,

PSA, and peptidoglycan. Formyl peptides are conserved

N-formyl peptide motifs secreted by bacteria including

Staphylococcus aureus. High concentrations of formyl

peptides activate formyl peptide receptor 2 (FPR2) (Bloes

et al., 2015) and induce neutrophil diapedesis at infection

sites. PSA is a well-known polysaccharide produced by ETBF.

It works with TLRs on DCs and is presented to T cells by

CD11c+ DCs. The anti-inflammation effect of PSA depends on

IL-10-producing CD4+ T cells and IL-10-producing CD25+

FOXP3+ Treg cells (Round and Mazmanian, 2010).

Peptidoglycan has a harmful effect on nucleotide-binding

oligomerization domain-containing protein 1 (NOD1).

NOD1 signaling is related to the innate immune system,

which increases the number of ileal γδ T cells and

stimulates the release of pro-inflammatory cytokine IL-17A

(Hergott et al., 2016).

Dysbiosis-induced DNA damage via
genotoxins

Gut microbiota-produced genotoxins also work as second

hits that accelerate CRC and HCC carcinogenesis. Cytolethal

distending toxin (CDT) and colibactin are two genotoxins that

induce DNA double-strand breaks. CDT and CDTB (its active

subunit) are mainly produced by Campylobacter jejuni. CDT

can lead to genetic instability by inducing replicative stress in

several human cells (e.g., HeLa, U2OS, and RKO) and human

colorectal organoids (Tremblay et al., 2021). This replicative

stress leads to chromosomic aberrations by slowing DNA

replication and expressing fragile sites. In addition, mice

treated with a CDTB mutant Campylobacter jejuni (C.

jejuni) showed less DNA damage and a lower risk of CRC

(He et al., 2019). Interestingly, this CDT-mediated

carcinogenesis was autophagy-dependent (Seiwert et al.,

2017), indicating that gut microbiota-produced genotoxins

may interact with the cancer-related cellular stress

response. Similarly, E. coli-produced colibactin induced

CRC in both mice and humans. A recent study identified a

DNA-damage signature in bacteria-infected human colorectal

cells (Dziubańska-Kusibab et al., 2020), which suggested the

etiological role of colibactin in CRC.
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Dysbiosis induces cellular stress response
associated with genetic, epigenetic, and/
or neoplastic changes

Dysbiosis induces genetic and epigenetic
alterations

Human intestinal organoids exposed to pks + E. coli show

distinct mutational signatures, including increased numbers of

single base substitutions (SBSs) and induced insertion–deletion

(ID) (e.g., single T deletions at T homopolymers) (Cremonesi

et al., 2018). These characteristic mutations have also been

observed in human cancer genomes, especially in patients

with CRC. Studies have proposed the underlying mechanisms

for dysbiosis-involved carcinogenesis, i.e., the effects on gene

mutation. A study onmutant p53 further discussed the role of gut

microbiota on gene mutation (Kadosh et al., 2020). In general,

somatic mutations in p53 inactivate its tumor-suppressor

function and confer oncogenic gain-of-function. Model mice

with mutant p53 showed contrasting effects in different intestinal

segments. An oncogenic effect was observed in the distal gut

(colon and ileum) through activated WNT signaling, whereas a

tumor-suppressive effect was observed in the proximal gut and

tumor organoids. The administration of an antibiotic cocktail

reversed the oncogenic effect of mutant p53 in the distal part,

with shorter crypts, better-organized villi, and decreased WNT

signaling. These data suggested that microbiota in the distal part

are crucial for the oncogenic effect of mutant p53. Gut microbiota

help switch mutant p53 from tumor-suppressive to oncogenic.

Gut microbiota also can change the function of long non-coding

RNA (lncRNA). F. nucleatum, the predominant bacteria in

patients with CRC, stimulates glucose metabolism in CRC

cells by activating the transcription of lncRNA enolase 1-

intronic transcript 1 (ENO1-IT1) (Hong et al., 2021). This

increased transcription further regulates the activation of

KAT7 histone acetyltransferase, consequently altering the

CRC biological function.

The gut microbiota is also associated with epigenetic events

such as DNA methylation (Sobhani et al., 2020). DNA

methylation is a crucial process in carcinogenesis. Exposure to

gut microbiota induces methylome and transcriptome changes in

intestinal epithelial cells and is beneficial for mild host

inflammation within the mucosa. Thus, dysbiotic microbiota

drives aberrant epigenetic events, leading to CRC or HCC.

DNMT1, DNMT3B, and EZH2 histone (H3K27)

methyltransferases are upregulated in microsatellite instability

tumors in CRC (Joensuu et al., 2015).

Dysbiosis modulates cancer-related cellular
stress responses

Autophagy (Onorati et al., 2018; Li et al., 2020) and oxidative

stress (Greenwood and Witney, 2021; Kuo et al., 2022) are cancer-

related cellular stress responses. Autophagy refers to a series of

mechanisms that transport superfluous or potentially dangerous

cytoplasmic entities to the lysosome for degradation. The inhibition

of autophagy sensitizes cells to regulated cell death. Evidence

supporting the involvement of gut microbiota in autophagy is as

follows: first, several bacteria-produced proteins are mediated by

autophagy receptors such as SQSTM1/p62 and CALCOCO2/

NDP52 (Sudhakar et al., 2019). Second, autophagy-mediated

inhibition of type I interferon is gut microbiota-dependent

(Martin et al., 2018). Third, the administration of gut

microbiota-produced metabolites (butyrate) increases the

expression of LC3 (a marker for autophagy) and the formation

of autolysosomes in human colorectal cells (Luo et al., 2019). Recent

studies showed that exposure to pathogen-associated molecular

patterns (PAMPs) in dysbiosis activated hepatic NOD2, a general

intracellular PRR, via bacterial muramyl dipeptide (MDP). The

NOD2 activation was receptor-interacting protein 2 (RIP2)-

dependent and upregulated NF-κB, JAK2/STAT3, and MAPK

signaling in hepatocytes to promote a carcinogenesis-related pro-

inflammatory response in the liver. Moreover, RIP2-dependent

NOD2 activation induced a novel nuclear autophagy pathway.

After transport to the nucleus, NOD2 binds to lamin A/C, a

component of nuclear laminae, resulting in its protein

degradation, ultimately leading to impaired DNA damage repair

and increased genomic instability (Zhou et al., 2021). Oxidative

stress is another gut microbiota-associated cellular stress response.

Microbiota-produced metabolites such as butyrate can induce the

production of reactive oxygen species (ROS) in HCC cells (Pant

et al., 2017a; Pant et al., 2017b). The gut microbiota also produces

endogenous ethanol, which is metabolized into acetaldehyde and

acetate. Ethanol and its derivates induce ROS formation (Zhu et al.,

2018; Sha’fie et al., 2020) by hepatic stellate cells (HSCs) and Kupffer

cells, resulting in increased TLR4 expression (Hubbard et al., 2015).

The resulting production of inflammatory cytokines leads to liver

injury, including HCC.

Gutmicrobiota-based therapy in CRC
and HCC

As discussed earlier, dysbiosis is the first hit for the digestive

system. Therefore, reshaping the composition of commensal

bacteria is an important method for cancer prevention and

anti-tumor therapy in the digestive system, especially in CRC

and HCC.

The role of gutmicrobiota in the treatment
of CRC and HCC

Most data on gutmicrobiota-based therapy has been reported in

CRC, whereas data in HCC are limited. The gut microbiota was

associated with the recruitment of T follicular helper cells (TFH) in

both mouse models and patients with CRC (Roberti et al., 2020).

TFH cells are subtypes of tumor-infiltrating lymphocyte (TIL), the
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presence of which indicates a better prognosis. Increased family

Fusobacteriaceae and decreased family Erysipelotrichaceae have

been reported in patients with CRC. Increased Fusobacteriaceae

harms TIL recruitment, thereby promoting colonic tumorigenesis.

In contrast, some bacteria show beneficial effects on cancer therapy.

In CRC-related immunotherapy, patients with efficient responses

showed increased Bifidobacterium (Sivan et al., 2015; Matson et al.,

2018) and Faecalibacterium (Gopalakrishnan et al., 2018). In

addition, a lower risk of relapse is associated with decreased F.

nucleatum in patients receiving post-neoadjuvant

chemoradiotherapy (nCRT) (Serna et al., 2020). Similarly, mice

gavage with Bifidobacterium showed an efficient response to anti-

CD47-based immunotherapy (Shi et al., 2020). Ileac residence of

Bacteroides fragilis and Erysipelotrichaceae was associated with an

immunosurveillance-based protective effect in a mouse model of

CRC (Roberti et al., 2020).

Gut microbiota-based therapeutic
approaches in CRC and HCC

The first approach involves the supplementation of

indigestible fermentable dietary fibers (i.e., prebiotics) or living

microorganisms (i.e., probiotics) to increase beneficial intestinal

bacteria. Some studies mixed prebiotics and probiotics to form

synbiotics. Oligosaccharides such as fructooligosaccharides

(FOS) and galactooligosaccharides (GOS) are the most

common materials used as prebiotics. The commonly used

probiotics include Bifidobacteria, Lactobacilli, Streptococcus,

and VSL#3. VSL#3 is a mixture of probiotics, which can

increase beneficial bacteria such as Lachnospiraceae,

Faecalibacterium, and Ruminococcus (Jena et al., 2020).

Fecal microbiota transplantation (FMT) is the second

approach. It directly reverses the overall bacterial composition

and is a clinic-favored strategy for dysbiosis-dependent cancer

therapy. The potential effect of FMT on CRC and HCC is still

under investigation, although it is a useful treatment for

recurrent Clostridium difficile infection (CDI) (Hvas et al.,

2019; Khoruts et al., 2021).

Regarding bacteria-produced metabolites, the administration

of postbiotics (e.g., SCFAs) has been accepted as a third approach

for indirectly managing gut microbiota-involved carcinogenesis.

A recent consensus statement defined postbiotics as “the

preparation of inanimate microorganisms and/or their

components that confers a health benefit on the host”

(Salminen et al., 2021). Different materials and components

can be used as postbiotics, including cell-free supernatants

from bacterial culture medium, bacterial exopolysaccharides,

enzymes or cell wall fragments, bacterial lysates, and

microbiota-produced metabolites (Żółkiewicz et al., 2020).

Similarly, paraprobiotics (or ghost probiotics) have also been

introduced to amend dysbiotic microflora. Paraprobiotics refers

to viable microbial cells or crude cell extracts that confer a benefit

to the receiver (either human or animal) when orally or topically

administrated (Taverniti and Guglielmetti, 2011). Several

methods can be utilized to prepare inactive probiotics,

including heat, gamma or ultraviolet rays, chemicals (e.g.,

formalin), and sonication.

In addition, other microbiota-targeted manipulation, such as

supplementation of TLR antagonists (e.g., polymyxin B), FXR

agonists (e.g., obeticholic acid), or prokinetics (e.g., cisapride),

also serve as accessary approaches for HCC. The use of

antibiotics is controversial. Antibiotics aim to suppress the

overall growth of bacteria in the intestine and have

demonstrated protective effects on tumor cell proliferation

and invasion (Bullman et al., 2017; Han et al., 2020).

However, antibiotics can cause further dysbiosis and are

associated with CRC onset (Zhang et al., 2019).

Two recently updated reviews compared the advantages and

disadvantages of each approach (Kaźmierczak-Siedlecka et al.,

2020; Pothuraju et al., 2021). Some unsolved must be addressed

for better clinical application. First, the use of probiotics may

cause bacterial translocation and the transfer of resistant genes

through horizontal gene transfer, especially in patients with

underlying medical conditions. Similarly, FMT may transfer

unrecognized pathogens from the donor to the recipient.

However, aside from the safety issue, the potential benefits of

FMT as a therapeutic strategy are much higher than those of

probiotics. FMT improves the overall intestinal microbial

diversity, whereas probiotics have limited bacterial input. The

third inconclusive issue is postbiotics, since isolating metabolites

synthesized by bacteria remains challenging. However, recently

developed technology and analysis techniques, such as air-flow-

assisted desorption electrospray ionization mass spectrometry

imaging analysis (AFAI-MSI) (Chen et al., 2021), may help solve

these problems.

Conclusion and perspectives

In closing, evidence from preclinical models and clinical data

support the “two-hit hypothesis” for dysbiosis and its associated

alterations in the development of digestive system cancer.

Dysbiosis alone is not powerful enough to potentiate

carcinogenesis until the development of dysbiosis-induced

alterations, including inflammation, aberrant immune

response, gut microbiota-produced genotoxins, and cellular

stress response associated with genetic, epigenetic, and/or

neoplastic changes. These four mechanisms serve as second

hits to speed up carcinogenesis in gastrointestinal cancer,

especially CRC and HCC. Finally, three application-related

questions remain to be addressed:

• Inter-individual differences in gut microbiota may

complicate the differentiation of cancer patients and

healthy controls. Therefore, is it possible to screen gut
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microbiota from healthy individuals and develop a list of

“beneficial bacteria”? Moreover, can we build continent- or

race-based lists of beneficial bacteria to distinguish healthy

individuals from potential patients?

• Since each type of digestive system cancer harbors a unique

gut microbiota, can we screen them to build a cancer type-

based bacteria list? This category may help identify the “gut

microbiota-based susceptible factors” in digestive system

cancer and may be a novel measurement for cancer

prevention.

• Dietary soluble fibers are fermented by gut bacteria into

SCFAs, which have diverse health-promoting effects.

Increasing numbers of studies have reported the

beneficial role of SCFAs in cancer prevention and anti-

tumor therapy. If possible, nutrition-based strategies

should be incorporated into standard care for cancer

therapy, as dietary interventions are both cost-effective

and patient-friendly compared to other pharmacological

interventions. In the future, standard criteria or guidelines

for nutrient selection are needed and may improve

treatment outcomes and tolerance of cancer therapy.
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