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The repair of exercise-induced muscle damage (EIMD) is closely related with

inflammation. Branched-chain amino acids (BCAAs), as a nutritional

supplement, promote EIMD repair; however, the underlying mechanism

remains unclear. In vivo, Sprague–Dawley rats were subjected to

Armstrong’s eccentric exercise (a 120-min downhill run with a slope of −16°

and a speed of 16 mmin−1) to induce EIMD and BCAA supplement was

administered by oral gavage. Protein expression of macrophages (CD68 and

CD163) and myogenic regulatory factors (MYOD and MYOG) in gastrocnemius

was analyzed. Inflammatory cytokines and creatine kinase (CK) levels in serum

was alsomeasured. In vitro, peritoneal macrophages frommice were incubated

with lipopolysaccharide (LPS) or IL-4 with or without BCAAs in culture medium.

For co-culture experiment, C2C12 cells were cultured with the conditioned

medium from macrophages prestimulated with LPS or IL-4 in the presence or

absence of BCAAs. The current study indicated BCAA supplementation

enhanced the M1/M2 polarization of macrophages in skeletal muscle during

EIMD repair, and BCAAs promoted M1 polarization through enhancing

mTORC1-HIF1α-glycolysis pathway, and promoted M2 polarization

independently of mTORC1. In addition, BCAA-promoted M1 macrophages

further stimulated the proliferation of muscle satellite cells, whereas BCAA-

promoted M2 macrophages stimulated their differentiation. Together, these

results show macrophages mediate the BCAAs’ beneficial impacts on EIMD

repair via stimulating the proliferation and differentiation of muscle satellite

cells, shedding light on the critical role of inflammation in EIMD repair and the

potential nutritional strategies to ameliorate muscle damage.
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Introduction

High intensity or unaccustomed strenuous exercise can cause

exercise-induced muscle damage (EIMD). The main symptoms

of EIMD are the loss of muscle function and delayed onset

muscle soreness (Peake, 2019). The repair of EIMD mainly relies

on muscle stem cells, termed satellite cells (SCs). After skeletal

muscle damage, SCs proliferate and differentiate by expressing

sequential transcription factors, such as Paired box7 (Pax7),

Myogenic factor 5 (Myf5), Myoblast determination protein

(MYOD), and Myogenin (MYOG) (Scala et al., 2021).

Pax7 maintains the quiescent state of SCs. Myf5 and MYOD

mainly regulate SCs proliferation, whereas MYOG controls SCs

differentiation (Zammit, 2017). Understanding the mechanism

underlying skeletal muscle repair and finding intervention

strategies are important for accelerating the recovery process

from EIMD.

Studies suggest the EIMD-induced inflammatory response is

an integral part of the repair process (Fatouros and Jamurtas,

2016). Macrophages, with their inflammatory responses, play an

important role in promoting skeletal muscle repair (Markus et al.,

2021). Generally, macrophages divide into two types: The

classically activated M1 macrophages and the alternatively

activated M2 macrophages. M1 macrophages are present in

the pro-inflammatory period of EIMD and associated with

SCs proliferation (Otis et al., 2014; Varga et al., 2016),

whereas M2 macrophages are present in the anti-

inflammatory period of EIMD and associated with SCs

differentiation and tissue repair process (Arnold et al., 2007;

Fernandes et al., 2020). Importantly, M1 and M2 macrophages

require different metabolic programs to support energy

demands. M1 macrophages are mainly dependent on

glycolysis metabolism, mediated by HIF1α (Wang et al.,

2017), whereas M2 macrophages rely on fatty acid oxidation

(FAO) and lipid metabolic reprogramming regulated by

peroxisome proliferator-activated receptor γ (PPARγ) (Kang

et al., 2018). This suggests that macrophage metabolism and

polarization are closely linked, and macrophage polarization may

be regulated by metabolic pathways.

Human studies have shown that Branched-Chain Amino

Acids (BCAAs) supplementation is an effective approach to

accelerate the recovery from EIMD (Rahimi et al., 2017;

Owens et al., 2018). BCAAs, including leucine, isoleucine, and

valine, are essential amino acids for mammals. BCAA,

particularly leucine, activates the mammalian target of

rapamycin complex 1 (mTORC1), a central signaling node

that exerts widespread control over cellular metabolism and

growth (Wolfson and Sabatini, 2017). Mammalian target of

rapamycin (mTOR) plays an important role in the

macrophages function by regulating gene expression at the

transcriptional and translational levels (Kang and

Kumanogoh, 2020). In recent years, BCAAs have been closely

linked with glucose and lipid metabolism in metabolic and

cardiovascular diseases (Wang et al., 2019; Supruniuk et al.,

2021).

As a nutritional supplement, BCAAs reduce muscle soreness

and the level of muscle damage biomarkers (Matsumoto et al.,

2009; Doma et al., 2021; Khemtong et al., 2021; Bai et al., 2022),

accompanied with changes in inflammatory cytokines in blood

(Matsumoto et al., 2009). However, the underlying mechanism

remains to be fully understood. In this study, we established an

EIMD model and explored the role of macrophages in BCAA

alleviated skeletal muscle damage. In addition, we further

explored the mechanism of BCAA regulated macrophage

polarization and the effect of BCAA-intervened macrophages

on satellite cells.

Materials and methods

Animals

Male Sprague–Dawley rats (8-week-old; Charles River

Laboratories China, Inc., Beijing, China) were provided with

stanard rat chow and tap water ad libitum in a temperature-

controlled room with a 12/12-h light/dark cycle. The protocol

was approved by the Animal Research Ethics Committee of

Beijing Sport University.

High intensity exercise and BCAA
administration

High intensity exercise refers to Armstrong’s eccentric

exercise model published in 1983 (Armstrong et al., 1983) and

has been reported to cause EIMD. All animals in exercise groups

conducted adaptive training for 2 days (treadmill slope 0°, speed

16 m min−1, 5 min at day 1 and treadmill slope 0°, speed

16 m min−1, 10 min at day 2) and performed the formal

exercise experiment after a day off. The Armstrong’s eccentric

exercise was conducted on the fourth day (treadmill slope −16°,

speed 16 m min−1, 120 min).

All animals in the BCAA group received BCAA supplement

dissolved in water (1 g/kg body weight, consisted of 50% leucine,

25% isoleucine, and 25% valine) by oral gavage once a day from

3 days prior to the initiation of the eccentric exercise to the day

they were sacrificed (Kato et al., 2016). On the day of eccentric

exercise, BCAA supplement was administered immediately after
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the exercise. All animals in the placebo group (PLA) received

distilled water by oral gavage once a day over the same period.

Animal experiments

All animals were randomly divided into four groups: The

non-injured control placebo (Con-PLA; n = 8), non-injured

control BCAA (Con-BCAA; n = 8), exercise placebo (E-PLA;

n = 32, and exercise BCAA supplement (E-BCAA; n = 32)

groups. For the exercise group, 8 rats from each group were

sacrificed at each time point of 1, 3, 5, and 7 days after the

eccentric exercise. The gastrocnemius muscle and blood were

collected at various time points. The gastrocnemius muscle was

fixed using 4% paraformaldehyde for histochemical analysis, and

blood was collected from abdominal aorta for enzyme-linked

immunosorbent assay (ELISA). The remaining samples were

stored at −80°C until protein expression analysis.

ELISA to assess cytokine release in serum

The serum was collected from abdominal aorta of rats at each

indicated time. Creatine kinase (CK), IL-6, and IL-10 levels in the

diluted serum samples were analyzed using respective ELISA kits

(Jianglaibio, shanghai, China) as per themanufacturer’s instructions.

The final signals were read using a pan-wavelength micro plate

reader (BioTek Instruments, United States).

Muscle histology and
immunohistochemistry

First, muscles samples were fixed in 4% paraformaldehyde

and embedded in paraffin wax. Further, the samples were stained

using hematoxylin and eosin (H&E). For immunohistochemical

analysis, the sections were adhered to poly-L-lysine-coated slides.

Further, the sections were deparaffinized and fixed in 0.1%

trypsin for 30 min, followed by blocking with 5% serum for

30 min. The sections were incubated with the following primary

antibodies for 4 h at room temperature: rabbit anti-mouse CD68

(1/300 dilution; CST) and rabbit anti-mouse CD163 (1/

500 dilution; CST). Next, they were incubated with secondary

antibodies [anti-rabbit FITC-conjugated (1/250 dilution, CST)]

for 40 min at room temperature.

Primary peritoneal macrophage culture
and BCAA intervention

Primary peritoneal macrophages (M0) were isolated from

mice as previously described (Bisgaard et al., 2016). 1ml of

3% Brewer thioglycollate medium was injected into the

peritoneal cavity of each mouse. After 3 days, mouse was

euthanized by cervical dislocation. 10 ml of cold PBS was

injected into the peritoneal cavity of each mouse. The

peritoneal fluid was collected and centrifuged for 10 min

at 1,500 rpm in a refrigerated centrifuge. The cell pellet

was resuspended in DMEM medium and cells were

cultured for 4–6 h at 37°C, during which the peritoneal

macrophages attached to culture plates, allowing their

separation from other types of cells. Subsequently, non-

adherent cells were removed by gently washing 3 times

with warm PBS. The M0 macrophages were cultured in

DMEM (Cell Science & Technology Institute, Japan)

supplemented with 10% FBS (Gibco), 100 U/mL penicillin,

and 100 μg/ml streptomycin. M1 and M2 macrophages were

obtained by incubating with LPS (0.5 μg/ml, Sigma) and IL-4

(20 ng/ml, PeproTech), respectively, for 24 h. For BCAA

intervention, 8 mmol/L BCAA stock solution (Sigma) was

used. Macrophages were treated with different

concentrations of BCAAs as previously described (Lian

et al., 2015; Wang et al., 2019). Cells were treated with 2-

deoxy-D-glucose (Liu et al., 2021) (2-DG, 1 mM; Solarbio,

Shanghai, China) and rapamycin (Zhenyukh et al., 2017)

(100 nM, Sigma-Aldrich).

Co-culture of C2C12 cells and
macrophages

M0 macrophages were stimulated with LPS or IL-4 in the

presence or absence of BCAAs in culture medium for 24 h,

respectively. The cells were then cultured with fresh medium

for 12 h, and the culture medium were collected, namely,

M1 conditioned medium, M1+BCAA conditioned medium,

M2 conditioned medium, and M2+BCAA conditioned

medium. For the proliferation assay, C2C12 cells were

cultured in M1 conditioned medium and M1+BCAA

conditioned medium, respectively, for 24 or 48 h. For the

differentiation assay, differentiation medium (DMEM medium

with 2% horse serum, 100 U/mL penicillin, and 100 μg/ml

streptomycin) with M2 or M2+BCAA conditioned media (1:1)

were added to the differentiating myotubes every 24 h for 1, 3, or

5 days. All cells were cultured in a humidified incubator at 37°C

with 5% CO2 and 95% air.

C2C12 cell proliferation assay

C2C12 cells proliferation was assessed by Cell Counting Kit-8

(CCK8, Dojindo, Japan). C2C12 cells were seeded in 96-well

plate at density of 4 × 103 cells/well and cultured with 100 μl

M1 conditioned medium or 100 μl M1+BCAA conditioned

medium for 48 h, respectively. 90 μl fresh DMEM medium

and 10 μl CCK-8 reagent were then added to each well and
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the cells were incubated at 37°C for 1 h. The measurement was

done using a pan-wavelength micro plate reader (BioTek

Instruments, United States) at 450 nm.

Real-time quantitative PCR

The total RNA were extracted from cells using Trizol reagent

(Invitrogen, United States) and reverse transcribed into cDNA

using RT SuperMix kit (Promega, United States). Real-time

quantitative PCR (q-PCR) was performed using SYBR Green

PCR mix (ABI, United States) and real-time PCR system (Bio-

Rad) with the primer sequences in Table 1.

Western blot analysis

The tissues or cells were harvested using lysis buffer and

subjected to 10% SDS-PAGE. The separated proteins were

transferred to polyvinylidene difluoride membranes and

blocked using 5% bovine serum albumin for 1 h the

membranes were incubated with the following primary

antibodies for 12 h at 4°C: S6K (1/1000 dilution; CST), P-S6K-

T389 (1/1000 dilution; CST), HIF1α (1/1000 dilution; Abcam),

PPARγ (1/1000 dilution; CST), MYOD (1/1000 dilution; CST),

MYOG (1/200 dilution; Abcam), and GAPDH (1/3000 dilution;

CST). Further, they were incubated with the following secondary

antibodies for 2 h at room temperature: HRP-labelled anti-mouse

(1/5000, CST) or anti-rabbit (1/5000, Santa Cruz Biotechnology).

Finally, the signal was detected using a Image Quant LAS

4000 system according to the manufacturer’s instructions.

Statistical analysis

Statistical analyses were performed with one-way ANOVA or

two-way ANOVA followed by Bonferroni’s multiple

comparisons test using GraphPad Prism 9. All values are

expressed as mean ± SEM. p < 0.05 was considered significant.

Results

BCAAs promote EIMD repair

To explore the effect of BCAAs on EIMD, we established a rat

model with EIMD, and treated the rats with or without BCAAs.

The muscle fibers of the gastrocnemius in the PLA group showed

varying degrees of swelling and dilated intercellular space after

EIMD (Figures 1A,B). Moreover, the serum CK levels were

increased after EIMD (Figure 1C). These changes indicated

that the EIMD model was successfully constructed.

Importantly, with BCAA treatment, the muscle fiber swelling

was decreased on the first day after EIMD (Figure 1B) and the

serum CK level was lower at the fifth and seventh day after EIMD

(Figure 1C), compared with those in the PLA group. Meanwhile,

the expression of SCs proliferation marker MYOD was increased

in BCAA group (Figure 1D). In addition, BCAA advanced the

peak expression of another SCs differentiation marker MYOG by

2 days, indicating that BCAA supplementation accelerated the

repair of EIMD (Figure 1E). Collectively, these data

demonstrated that BCAA supplementation promoted EIMD

repair, consistent with previous studies (Kato et al., 2016;

Doma et al., 2021).

TABLE 1 Primers for quadriceps qPCR.

Gene Forward primer Reverse primer

18S AGGCCCTGTAATTGGAATGAGTC GCTCCCAAGATCCAACTACGAG

IL-6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC

TNF-α CAGGCGGTGCCTATGTCTC CGATCACCCCGAAGTTCAGTAG

iNOS GCTCGCTTTGCCACGGACGA AAGGCAGCGGGCACATGCAA

Arg-1 TGGCTTGCGAGACGTAGAC GCTCAGGTGAATCGGCCTTTT

CD206 CTCTGTTCAGCTATTGGACGC CGGAATTTCTGGGATTCAGCTTC

Mgl1 AACCAATAGCAGCTGCCTTCATGC TGCAACAGCTGAGGAAGGACTTGA

Myf5 TATTACAGCCTGCCGGGACA CTGCTGTTCTTTCGGGACCA

MYOG GGTGTGTAAGAGGAAGTCTGTG TAGGCGCTCAATGTACTGGAT

Myh4 GAGTTCATTGACTTCGGGATGG TGCTGCTCATACAGCTTGTTCTTG

Hk2 CTGCTTTGGAGATCCGAGGG GTCTAGCTGCTTAGCGTCCC

PFK1 ACGTGAAGGATCTGGTGGTTC GGATTCGGTCGAAGGCTGAA

LDHA CGTGCACTAGCGGTCTCAAA GGAGATCCATCATCTCGCCC
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BCAAs promote M1/M2 polarization of
macrophages during EIMD repair

To explore the potential role of macrophages in the

muscle repair facilitated by BCAAs, we analyzed the

expression of marker proteins for M1/M2 polarization

and the blood level of inflammatory cytokines in the

EIMD animals. Immunohistochemical results revealed

that BCAAs enhanced the protein expression of CD68

(M1) and CD163 (M2) during EIMD repair

(Figures 2A–D). BCAA advanced the peak expression of

CD68 by 2 days, suggesting that BCAAs accelerated

macrophages M1 polarization during EIMD repair.

Meanwhile, BCAAs increased the serum levels of

proinflammatory cytokine IL-6 in the early stage of

EIMD repair (Figure 2E) and the serum levels of anti-

inflammatory cytokines IL-10 in the late stage

(Figure 2F). Collectively, these data suggested that

BCAAs promoted both M1 and M2 polarization of

macrophages during EIMD repair.

FIGURE 1
Branched-chain amino acids (BCAAs) promote the repair of exercise-induced muscle damage (EIMD). (A) The effect of BCAAs on the
microstructure of gastrocnemius muscle in rats with EIMD as revealed by HE staining (Scale Bar = 50 um). (B) The effect of BCAAs on the cross-
sectional area of gastrocnemius fibers in rats with EIMD. (C) The effect of BCAAs on serum CK levels in rats with EIMD. (D,E) The effect of BCAAs on
the proliferation (MYOD) and differentiation (MYOG) of the gastrocnemius satellite cells (SCs) in rats with EIMD. Data are presented as mean ±
SEM. *p < 0.05, **p < 0.05 vs. PLA CON; &p < 0.05, &&p < 0.05 vs. BCAA CON; #p < 0.05, ##p < 0.05 between PLA and BCAA.

Frontiers in Physiology frontiersin.org05

Dong et al. 10.3389/fphys.2022.1037090

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1037090


FIGURE 2
BCAAs promoteM1 andM2 polarization ofmacrophages during EIMD repair. (A–D) BCAAs promotedCD68/CD163 expression inmacrophages
during EIMD repair as revealed by immunohistochemical analysis (Scale Bar = 100 um). (E,F) The effects of BCAAs on serum levels of inflammatory
cytokines, namely, IL-6, and IL-10 during EIMD repair. Data are presented as mean ± SEM. *p < 0.05, **p < 0.01 vs. PLA CON; &p < 0.05, &&p < 0.01 vs.
BCAA CON; #p < 0.05, ##p < 0.01 between PLA and BCAA.
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BCAA-promoted M1 macrophages
enhance the proliferation of SCs

We analyzed the direct effects of BCAAs on the polarization

of M1 macrophages in vitro. We isolated the primary peritoneal

macrophages from mice and exposed them to LPS with or

without BCAAs in culture medium. 800μm BCAA promoted

the mRNA expression of IL-6, TNF-α, and iNOS, suggesting

BCAA enhanced M1 polarization (Figures 3A–C).

It has been suggested that M1 macrophage affects SCs

proliferation (Minari and Thomatieli-Santos, 2022). We then

tested whether the conditioned medium from M1 macrophages

treated with BCAA could enhance SCs proliferation. To do so,

M0 macrophages were prestimulated with LPS with or without

BCAA for 24 h. Fresh medium was then added to the

M1 macrophages for 12 h and collected as conditioned media.

C2C12 cells were then cultured with these conditioned media for

24 or 48 h. As expected, medium from M1 macrophages

promoted the mRNA expression of Myf5, which is further

enhanced by BCAA-promoted M1 macrophages (Figure 3D).

Further, we analyzed the proliferation of C2C12 cells cultured

with conditioned medium using the CCK8 kit. The result showed

that the conditioned medium from prestimulated

M1 macrophages promoted C2C12 cells growth, which was

further enhanced by the conditioned medium from BCAA-

treated M1 macrophages (Figure 3E). Collectively, these data

suggested that BCAA-promotedM1macrophages could enhance

the proliferation of SCs.

BCAA-promoted M2 macrophages
enhance the differentiation of SCs

We also explored the direct effects of BCAAs on the

polarization of M2 macrophages in vitro. The primary

peritoneal macrophages were isolated from mice and exposed

to IL-4 with or without BCAAs in culture medium. 800 μm

BCAA promoted the mRNA expression of Arg-1, CD206 and

Mgl1, suggesting BCAA promoted M2 polarization

(Figures 4A–C).

It has been suggested that M2 affects SC differentiation

(Minari and Thomatieli-Santos, 2022). We then tested

whether the conditioned medium from BCAA-promoted

M2 macrophages could affect SCs differentiation. C2C12 cells

were cultured with differentiation medium and conditioned

media (1:1) from M2 or BCAA-treated M2 for 24 or 48 h. As

expected, the conditioned medium from M2 macrophages

promoted the mRNA expression of MYOG and myosin heavy

chain 4 (Myh4) in C2C12 cells, which was further enhanced by

the conditioned medium from BCAA-promoted

FIGURE 3
BCAA-promoted M1 macrophages enhance the proliferation of SCs. (A–C) The effects of various concentrations of BCAAs on the polarization
of M1 macrophages. (D,E) The effect of BCAA (800 μm)-treated M1 macrophages on C2C12 proliferation. Data are presented as mean ± SEM. *p <
0.05, **p < 0.01 vs. CON/0h; &p < 0.05, &&p < 0.01 vs. LPS; #p < 0.05, ##p < 0.01 between groups at the same time point.
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M2 macrophages (Figures 4D,E). Collectively, these data

indicated that BCAA-promoted M2 macrophages enhanced

the differentiation of SCs.

BCAAs promote M1 polarization via
mTORC1-HIF1α-glycolysis pathway

Next, we investigated how BCAA promoted M1 polarization.

M1 macrophages are essentially glycolytic cells (Juban and Chazaud,

2017). mTORC1 is a central regulator of cellular metabolism,

including glycolysis, and can be activated by BCAA. We then

investigated the role of mTORC1 in the BCAA-promoted

M1 polarization. As expected, BCAAs enhanced the activity of

mTORC1 in the process of M1 polarization (Figures 5A–C).

Importantly, rapamycin, an mTORC1 inhibitor, abolished BCAA-

promoted M1 polarization (Figures 5D–F), suggesting

mTORC1 mediated BCAA’s effect.

Hypoxia-inducible factor 1α (HIF1α), a transcriptional factor
targeted by mTORC1, controls glycolysis and M1 polarization

(Wang et al., 2017). BCAAs increased the protein level of HIF1α
during M1 polarization (Figures 5B,C). Rapamycin abolished the

BCAA-induced HIF1α and glycolytic enzymes expression (HK2,

PFK1 and LDHA) (Figures 5B,G–I). Furthermore, 2-DG, the

inhibitor of glycolysis, attenuated the mRNA levels of TNF-α and
iNOS induced by BCAA (Figures 5J,K), suggesting a weakened

M1 polarization. Collectively, these data demonstrated that

BCAAs promoted M1 polarization via activating the

mTORC1-HIF1α-glycolysis pathway.

BCAAs promote M2 polarization
independent of the mTORC1-PPARγ
pathway

We also explored how BCAA promoted M2 polarization.

Lipid metabolic reprogramming is essential for M2 polarization

(van den Bosch et al., 2017). mTORC1 and its downstream

transcription factor PPARγ are key regulators of lipid

metabolism in M2 polarization. We then investigated the role

of mTORC1 and PPARγ in the BCAA-promotedM2 polarization.

As expected, BCAAs enhanced the activity of mTORC1 and the

protein level of PPARγ during M2 polarization (Figures 6A,B).

Interestingly, rapamycin abolished the BCAA-induced

mTORC1 activation and PPARγ expression (Figure 6C), but

showed no effect on BCAA-promoted M2 polarization (Figures

6D–F). Collectively, these data suggested that BCAAs promoted

M2 polarization independent of the mTORC1-PPARγ pathway.

Discussion

In the present study, we demonstrated BCAA

supplementation promotes the repair of EIMD via enhancing

FIGURE 4
BCAA-promoted M2 macrophages enhance the differentiation of SCs. (A–C) The effect of BCAAs (800 μm) on M2 polarization of
macrophages. (D,E) The effect of BCAA (800 μm)-treated M2macrophages on C2C12 differentiation. Data are presented as mean ± SEM. *p < 0.05,
**p < 0.01 vs. CON/0d; &p < 0.05, &&p < 0.01 vs. IL-4; #p < 0.05, ##p < 0.01 between groups at the same time point.
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macrophage polarization. M1 andM2macrophages stimulate the

proliferation and differentiation of muscle satellite cells,

respectively. mTORC1-HIF1α-glycolysis pathway mediates the

BCAA’s effect on M1 polarization while BCAA-promoted

M2 polarization is independent of mTORC1.

Previous studies have shown that BCAA supplementation

alleviate the level of CK and muscle soreness following EIMD in

human. In the present study, our results also indicated that BCAA

supplementation reduce the level of CK and accelerate the recovery

of damaged muscle fibers, which is consistent with previous studies

(Fouré and Bendahan, 2017; Doma et al., 2021), however, the

mechanism remains unclear. Kato et al. (2016) study further

suggested that leucine-enriched essential amino acids reduce

muscle inflammation and enhance muscle repair after eccentric

contraction in rats. This phenomenon suggested that BCAA-

improved EIMD may be related to inflammation. Previous

studies indicated that macrophages play an important role during

skeletal muscle repair (Juhas et al., 2018; De Santa et al., 2019;

Fernandes et al., 2020). There is no relevant study on whether BCAA

intervention affect macrophage polarization during EIMD. Our

FIGURE 5
BCAAs promote M1 polarization via mTORC1-HIF1α-glycolysis pathway. (A–C) BCAAs (800 μm) promoted the expression of HIF1α and
mTORC1 activation during M1 polarization, and the effect of RAPA (rapamycin, mTORC1 inhibitor) on the expression of HIF1α. (D–F) Changes of
M1 polarization with RAPA. (G–I) The effect of RAPA on the rate-limiting enzyme of glycolysis. (J,K) Changes of M1 polarization with 2-DG, a
glycolysis inhibitor. Data are presented asmean ± SEM. *p < 0.05, **p < 0.01 vs. CON/DMSOCON/CTRL CON; &p < 0.05, &&p < 0.01 vs. RAPA/2-
DGCon; %p < 0.05, %%p < 0.01 vs. LPS/DMSO LPS/CTRL LPS; $p < 0.05, $$p < 0.01 vs. RAPA/2-DG LPS; #p < 0.05, ##p < 0.01 between groups LPS or LPS
+ BCAA.
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results showed that BCAA enhancesM1 andM2 polarization during

skeletal muscle repair in different time stages, meanwhile, similar

changes in the serum levels of inflammatory factors were observed

in vitro. These data suggested that macrophage polarization plays an

important role in BCAA-induced muscle repair.

In addition, skeletal muscle repair is a complex biological

process, the activation, proliferation, and differentiation of SCs

provides the potential capacity to muscle repair (La et al., 2018).

In the current study, our results showed that BCAA

supplementation promotes the proliferation and

differentiation of skeletal muscle SCs, which is consistent with

previous study (Duan et al., 2017). However, Kato et al. (2016)

have reported that BCAAs does not affect SCs. This discrepancy

could be attributed to the different muscle damage models.

Muscle damage is induced by high-intensity eccentric exercise

in the current study while electric stimulation of the tibialis

anterior muscle is used to induce EIMD in anesthetized rats in

Kato’s study. Further experiments are warranted to analyze the

differences between these two muscle damage models.

Our results show BCAAs promote M1 and M2 polarization

of macrophages, which further promote the proliferation and

differentiation of SCs, respectively. Previous studies have

reported that the pro-inflammatory and anti-inflammatory

factors promote the proliferation and differentiation of SCs,

respectively (Akahori et al., 2015; Varga et al., 2016). It can be

speculated that BCAA-promoted pro- and anti-inflammatory

factors mediate the stimulation of SC proliferation and

differentiation from M1 and M2 macrophages. Meanwhile,

other possible mechanisms should also be considered. The

repair process of skeletal muscle involves a variety of cell

types, such as macrophages and SCs (Tidball, 2017). It is not

entirely clear how macrophages and SCs work together to

promote skeletal muscle repair. Shang et al. (2020) have

reported that macrophage-derived glutamine promotes

satellite cell and muscle regeneration. Due to the important

relationship between BCAA and glutamine, we speculate that

glutamine may play an important role in BCAA-promoted

macrophages stimulating SCs and muscle repair.

mTOR signaling pathway is an important link between immune

response and cell metabolism, moreover, mTORC1 is an important

factor in sensing intracellular amino acid concentration (Kang and

Kumanogoh, 2020). In the present study, our results also show that

BCAAs promote M1 polarization dependent on mTORC1-HIF1α-
glycolysis pathway, whereas BCAAs promote M2 polarization

independent of the mTORC1/PPARγ pathway. Previous studies

show that mTORC1 plays an inconsistent role in M2 polarization.

One study indicates that IL-4 stimulated bone marrow-derived

macrophages (BMDM) from TSC1 knockout mice, which

increased mTORC1 activity, M2 polarization weakened (Byles

et al., 2013). However, two other studies showed IL-4 stimulated

BMDM with mTOR inhibition (Torin1) or Raptor knockout mice

(decreased mTORC1 activity), M2 polarization weakened

FIGURE 6
BCAAs promote M2 polarization independent of the mTORC1-PPARγ pathway. (A–C) BCAAs (800 μm) enhanced the expression of PPARγ and
mTORC1 activity duringM2 polarization, and the effect of RAPA (rapamycin, mTORC1 inhibitor) on the expression of PPARγ. (D–F) The effect of RAPA
on the change in M2 polarization. Data are expressed asmean ± SEM. *p < 0.05, **p < 0.01 vs. CON/DMSOCON; &p < 0.05, &&p < 0.01 vs. RAPA CON;
%p < 0.05, %%p < 0.01 vs. IL-4/DMSO IL-4; $ p < 0.05, $$p < 0.01 vs. RAPA IL-4; #p < 0.05, ##p < 0.01 between groups IL-4 or IL-4+BCAA.
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(Covarrubias et al., 2016; Kimura et al., 2016). The reasons may be

related to different the knockout mice model. In addition,

Covarrubias et al. (2016) have reported that BMDMs were

treated with IL-4 for 16 h with 2-DG (the glycolysis inhibitor) or

etomoxir (the β-oxidation inhibitor), the mRNA levels of

M2 polarization decreased. This phenomenon suggests the

metabolism in M2 polarization is not only lipid metabolism and

may also involve glycolysis. Therefore, further experiments are

warranted to explore the mechanism how BCAA regulates

M2 polarization.

It has been shown that there is a wide spectrum of macrophage

activation states in vivo (Murray et al., 2014; Dort et al., 2019). An

expanded range of stimuli can drive macrophage activation with

distinct activation profiles in different directions (Kang and

Kumanogoh, 2020). In vitro, M1/M2 polarization can be

stimulated by chemical drugs or specific stimuli. Of note, the M1/

M2 polarization in vitro ignores the complexity of stimuli and

microenvironment and the wide activation spectrum in vivo. In

the current study, we used chemically activated macrophages to

investigate the effect of BCAA on macrophage polarization

in vitro. The results of cultured cells were consistent with the

expression of macrophage activation markers in vivo. Whether the

macrophage polarization in vitro accurately recapitulates the changes

of macrophages in vivo remains to be fully determined. Staining of

different types ofmacrophages in the damagedmusclemay be of help.

The current study demonstrated that BCAAs promoted

C2C12 proliferation and differentiation via enhancing the

macrophage polarization in vitro. On the other hand, when BCAAs

intakewas increased in vivo, the SCswere exposed to a large number of

factors, including the elevated BCAAs and inflammatory factors.

Whether BCAAs exert direct impacts on myoblasts remains to be

investigated. It is also possible that there are additive impacts from

elevated BCAAs and inflammatory factors. Nevertheless, our data

show that macrophages mediate, at least partially, the impacts of

BCAAs on SCs and thus the repair of EIMD. One limitation of our

study is that, although we demonstrate that BCAAs promote the

function of SCs via macrophages in cultured cells, direct evidence for

this occurring in vivo is lacking, which could be provided by

macrophage depletion animal model and the staining for SCs to

assess their numbers in the damaged muscle.

In summary, the current study shows that BCAAs improve

EIMD repair by promoting the proliferation and differentiation

of muscle SCs through macrophage polarization. The results

highlight the critical role of macrophage in BCAA-induced repair

of EIMD and indicate new approaches for the treatment of

muscle-related diseases.
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