Recent reports of a significant association between increased cardiorespiratory fitness (CRF) and reduced risk of developing severe coronavirus disease-2019 (COVID-19) symptoms (Brawner et al., 2021; Ekblom-Bak et al., 2021) point out the need for interventions to improve CRF in the general population. Papers published in this (Wang et al., 2020) and other journals (Dixit et al., 2020; Ranasinghe et al., 2020; Rodríguez et al., 2020; Sá Filho et al., 2020; Khoramipour et al., 2021) have already provided exercise recommendations for increasing and maintaining CRF during the COVID-19 pandemic. However, none of those papers have recognised that there are individuals who, due to temporary or permanent disabilities, are unable to exercise. Consequently, no alternative strategies to physical exercise have been provided. This paper intends to fill that gap in the COVID-19 literature.
Currently, several lines of evidence (Miyamoto et al., 2005; Ohori et al., 2012; Bailey et al., 2016; Hesketh et al., 2019) indicate that passive heat exposure may serve as an effective alternative to aerobic exercise training in improving CRF. Two of the four available studies in this research area have directly compared the effects of passive heat exposure with those of traditional exercise on CRF assessed by measuring peak oxygen uptake (
In addition to the beneficial effects on CRF, there is also evidence that passive heating may improve skeletal muscle contractile function. In a study conducted on 14 healthy males, Racinais et al. (2017) found increased peak twitch amplitude and maximal voluntary torque of the soleus muscle following 11 consecutive days of whole-body heat exposure (1 h per day) in a heat chamber at 48–50°C. Given that weak muscle strength may predispose a person to severe COVID-19 (Cheval et al., 2021), the findings of Racinais et al. (2017) are highly relevant in the context of strengthening the resilience to severe forms of the disease in individuals unable to exercise. Other documented exercise mimetic properties of passive heat treatment in the form of sauna bathing and hot water immersion include reduced body weight, improved glycemic control in people with type 2 diabetes mellitus, reduced depression, and improved appetite, sleep quality, and wellbeing (Dorsey et al., 1996; Hooper et al., 1999; Naumann et al., 2017; Hayashi et al., 2022).
Obviously, of the heating methods mentioned in the two preceding paragraphs, hot water immersion has the highest practical value because many households possess the necessary equipment (i.e., a bathtub and hot water) for its implementation. Furthermore, hot water immersion is, in general, deemed safe (Thompson et al., 2017). Although heat illness has been pointed out by some as a potential consequence of taking a hot bath (Hoekstra et al., 2020), no ill health effects were observed in studies that had participants with impaired thermoregulatory capacity (i.e., spinal cord injury and diabetic patients, and elderly people) submerged up to the nipple line/neck in 39°C–42°C water for 20–60 min (Hooper et al., 1999; Gass et al., 2001; Rivas et al., 2016; Akerman et al., 2019; Yamashiro et al., 2020; James et al., 2021). Theoretically, the risk for heat stroke associated with the hot water immersion treatment described by Bailey et al. (2016) previously in the text is low because this treatment induces an increase in body core temperature no higher than 38°C. The onset of heat stroke is associated with core temperatures above 40°C (Costrini et al., 1979; Aarseth et al., 1986; Epstein et al., 1995; Kjertakov and Epstein, 2013). Available evidence indicates that hot water immersion is generally only contraindicated in people with epilepsy, as in some of this population hot bathing can provoke seizures (Stensman and Ursing, 1971; Satishchandra et al., 1988; Bebek 2001; Yalçın et al., 2006). It also needs to be noted that hot water immersion may cause transient symptomatic hypotension in some individuals (Turner et al., 1980).
Based on the findings of Bailey et al. (2016), sitting three times a week for 30 min in a bath filled with 42°C water up to the sternum (arms outside the water) for 2 months is expected to improve CRF in individuals with low fitness levels (i.e.,
Author contributions
MK conceived the idea, performed the literature search, and wrote the manuscript. AP reviewed the manuscript. Both authors contribute to the article and approved the final version.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
Aarseth H. P., Eide I., Skeie B., Thaulow E. (1986). Heat stroke in endurance exercise. Acta Med. Scand. 220 (3), 279–283. doi:10.1111/j.0954-6820.1986.tb02764.x
Adolph E. F. (1955). General and specific characteristics of physiological adaptations. Am. J. Physiol. 184 (1), 18–28. doi:10.1152/ajplegacy.1955.184.1.18
Akerman A. P., Thomas K. N., van Rij A. M., Body E. D., Alfadhel M., Cotter J. D. (2019). Heat therapy vs. supervised exercise therapy for peripheral arterial disease: A 12-wk randomized, controlled trial. Am. J. Physiol. Heart Circ. Physiol. 316 (6), H1495–H1506. doi:10.1152/ajpheart.00151.2019
Bailey T. G., Cable N. T., Miller G. D., Sprung V. S., Low D. A., Jones H. (2016). Repeated warm water immersion induces similar cerebrovascular adaptations to 8 weeks of moderate-intensity exercise training in females. Int. J. Sports Med. 37 (10), 757–765. doi:10.1055/s-0042-106899
Bebek N., Gürses C., Gokyigit A., Baykan B., Ozkara C., Dervent A. (2001). Hot water epilepsy: Clinical and electrophysiologic findings based on 21 cases. Epilepsia 42 (9), 1180–1184. doi:10.1046/j.1528-1157.2001.31000.x
Brawner C. A., Ehrman J. K., Bole S., Kerrigan D. J., Parikh S. S., Lewis B. K., et al. (2021). Inverse relationship of maximal exercise capacity to hospitalization secondary to coronavirus disease 2019. Mayo Clin. Proc. 96 (1), 32–39. doi:10.1016/j.mayocp.2020.10.003
Cheval B., Sieber S., Maltagliati S., Millet G. P., Formánek T., Chalabaev A., et al. (2021). Muscle strength is associated with COVID-19 hospitalization in adults 50 years of age or older. J. Cachexia Sarcopenia Muscle 12 (5), 1136–1143. doi:10.1002/jcsm.12738
Costrini A. M., Pitt H. A., Gustafson A. B., Uddin D. E. (1979). Cardiovascular and metabolic manifestations of heat stroke and severe heat exhaustion. Am. J. Med. 66 (2), 296–302. doi:10.1016/0002-9343(79)90548-5
Dixit S. (2020). Can moderate intensity aerobic exercise be an effective and valuable therapy in preventing and controlling the pandemic of COVID-19? Med. Hypotheses 143, 109854. doi:10.1016/j.mehy.2020.109854
Dorsey C. M., Lukas S. E., Teicher M. H., Harper D., Winkelman J. W., Cunningham S. L., et al. (1996). Effects of passive body heating on the sleep of older female insomniacs. J. Geriatr. Psychiatry Neurol. 9 (2), 83–90. doi:10.1177/089198879600900203
Ekblom-Bak E., Väisänen D., Ekblom B., Blom V., Kallings L. V., Hemmingsson E., et al. (2021). Cardiorespiratory fitness and lifestyle on severe COVID-19 risk in 279, 455 adults: A case control study. Int. J. Behav. Nutr. Phys. Act. 18 (1), 135. doi:10.1186/s12966-021-01198-5
Epstein Y., Sohar E., Shapiro Y. (1995). Exertional heatstroke: A preventable condition. Isr. J. Med. Sci. 31 (7), 454–462.
Gass E. M., Gass G. C. (2001). Thermoregulatory responses to repeated warm water immersion in subjects who are paraplegic. Spinal Cord. 39 (3), 149–155. doi:10.1038/sj.sc.3101117
Hayashi E., Aoyama M., Fukano F., Takano J., Shimizu Y., Miyashita M. (2022). Effects of bathing in a tub on physical and psychological symptoms of end-of-life cancer patients: An observational, controlled study. J. Hosp. Palliat. Nurs. 24 (1), 30–39. doi:10.1097/NJH.0000000000000803
Hesketh K., Shepherd S. O., Strauss J. A., Low D. A., Cooper R. J., Wagenmakers A. J., et al. (2019). Passive heat therapy in sedentary humans increases skeletal muscle capillarization and eNOS content but not mitochondrial density or GLUT4 content. Am. J. Physiol. Heart Circ. Physiol. 317 (1), H114–H123. doi:10.1152/ajpheart.00816.2018
Hoekstra S., Bishop N., Leicht C. (2020). Elevating body temperature to reduce low-grade inflammation: A welcome strategy for those unable to exercise? Exerc. Immunol. Rev. 26, 42–55.
Hooper P. L. (1999). Hot-tub therapy for type 2 diabetes mellitus. N. Engl. J. Med. 341 (12), 924–925. doi:10.1056/NEJM199909163411216
James T. J., Corbett J., Cummings M., Allard S., Young J. S., Towse J., et al. (2021). Timing of acute passive heating on glucose tolerance and blood pressure in people with type 2 diabetes: A randomized, balanced crossover, control trial. J. Appl. Physiol. 130 (4), 1093–1105. doi:10.1152/japplphysiol.00747.2020
Jiménez-Pavón D., Carbonell-Baeza A., Lavie C. J. (2020). Physical exercise as therapy to fight against the mental and physical consequences of COVID-19 quarantine: Special focus in older people. Prog. Cardiovasc. Dis. 63 (3), 386–388. doi:10.1016/j.pcad.2020.03.009
Khoramipour K., Basereh A., Hekmatikar A. A., Castell L., Ruhee R. T., Suzuki K. (2021). Physical activity and nutrition guidelines to help with the fight against COVID-19. J. Sports Sci. 39 (1), 101–107. doi:10.1080/02640414.2020.1807089
Kjertakov M., Epstein Y. (2013). Exertional heat stroke in athletes. Maced. J. Med. Sci. 1 (1), 473–477. doi:10.3889/mjms.1857-5773.2013.0308
Miyamoto H., Kai H., Nakaura H., Osada K., Mizuta Y., Matsumoto A., et al. (2005). Safety and efficacy of repeated sauna bathing in patients with chronic systolic heart failure: A preliminary report. J. Card. Fail. 11 (6), 432–436. doi:10.1016/j.cardfail.2005.03.004
Naumann J., Grebe J., Kaifel S., Weinert T., Sadaghiani C., Huber R. (2017). Effects of hyperthermic baths on depression, sleep and heart rate variability in patients with depressive disorder: A randomized clinical pilot trial. BMC Complement. Altern. Med. 17 (1), 172–179. doi:10.1186/s12906-017-1676-5
Ohori T., Nozawa T., Ihori H., Shida T., Sobajima M., Matsuki A., et al. (2012). Effect of repeated sauna treatment on exercise tolerance and endothelial function in patients with chronic heart failure. Am. J. Cardiol. 109 (1), 100–104. doi:10.1016/j.amjcard.2011.08.014
Racinais S., Wilson M. G., Périard J. D. (2017). Passive heat acclimation improves skeletal muscle contractility in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312 (1), R101-R107–R107. doi:10.1152/ajpregu.00431.2016
Ranasinghe C., Ozemek C., Arena R. (2020). Exercise and well-being during COVID 19–time to boost your immunity. Expert Rev. anti. Infect. Ther. 18 (12), 1195–1200. doi:10.1080/14787210.2020.1794818
Rivas E., Newmire D. E., Ben-Ezra V. (2016). Obese type 2 diabetics have a blunted hypotensive response to acute hyperthermia therapy that does not affect the perception of thermal stress or physiological strain compared to healthy adults. Physiol. Behav. 165, 374–382. doi:10.1016/j.physbeh.2016.08.026
Rodríguez M. Á., Crespo I., Olmedillas H. (2020). Exercising in times of COVID-19: What do experts recommend doing within four walls? Rev. Esp. Cardiol. 73 (7), 527–529. doi:10.1016/j.recesp.2020.04.002
Sá Filho A. S., Miranda T. G., de Paula C. C., Barsanulfo S. R., Teixeira D., Monteiro D., et al. (2020). COVID-19 and quarantine: Expanding understanding of how to stay physically active at home. Front. Psychol. 11, 566032. doi:10.3389/fpsyg.2020.566032
Satishchandra P., Shivaramakrishana A., Kaliaperumal V. G., Schoenberg B. S. (1988). Hot water epilepsy: A variant of reflex epilepsy in southern India. Epilepsia 29 (1), 52–56. doi:10.1111/j.1528-1157.1988.tb05098.x
Stensman R., Ursing B. (1971). Epilepsy precipitated by hot water immersion. Neurology 21 (5), 559–562. doi:10.1212/WNL.21.5.559
Thompson K. M., Coates A. M., Incognito A. V., Whinton A. K. (2017). Chronic heat exposure for health and exercise performance–cardiovascular research heats up. J. Physiol. 595 (13), 4137–4138. doi:10.1113/JP274003
Turner B., Pennefather J., Edmonds C. (1980). Cardiovascular effects of hot water immersion (suicide soup). Med. J. Aust. 2 (1), 39–40. doi:10.5694/j.1326-5377.1980.tb131813.x
Wang M., Baker J. S., Quan W., Shen S., Fekete G., Gu Y. (2020). A preventive role of exercise across the coronavirus 2 (SARS-CoV-2) pandemic. Front. Physiol. 11, 572718. doi:10.3389/fphys.2020.572718
Yalçın A. D., Toydemir H. E., Forta H. (2006). Hot water epilepsy: Clinical and electroencephalographic features of 25 cases. Epilepsy Behav. 9 (1), 89–94. doi:10.1016/j.yebeh.2006.03.013
Keywords: passive heat exposure, hot bath treatment, peak oxygen uptake, COVID-19, general population, clinical population
Citation: Kjertakov M and Petersen A (2022) Hot water immersion could be an effective alternative to physical exercise in improving cardiovascular fitness during the COVID-19 pandemic. Front. Physiol. 13:1035183. doi: 10.3389/fphys.2022.1035183
Received: 02 September 2022; Accepted: 31 October 2022;
Published: 25 November 2022.
Edited by:
Hamdi Chtourou, University of Sfax, TunisiaReviewed by:
Jessica Anne Mee, University of Worcester, United KingdomCopyright © 2022 Kjertakov and Petersen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Metodija Kjertakov, metodija.kjertakov@live.vu.edu.au