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With the proven relationship between oral and general health and the growing

aging population, it is pivotal to provide accessible therapeutic approaches to

regenerate oral tissues and restore clinical function. However, despite sharing

many core concepts with medicine, dentistry has fallen behind the progress in

precision medicine and regenerative treatments. Stem cell therapies are a

promising avenue for tissue regeneration, however, ethical, safety and cost

issues may limit their clinical use. With the significance of paracrine signalling in

stem cell and tissue regeneration, extracellular space comprising of the cell

secretome, and the extracellular matrix can serve as a potent source for tissue

regeneration. Extravesicles are secreted and naturally occurring vesicles with

biologically active cargo that can be harvested from the extracellular space.

These vesicles have shown great potential as disease biomarkers and can be

used in regenerative medicine. As a cell free therapy, secretome and

extracellular vesicles can be stored and transferred easily and pose less

ethical and safety risks in clinical application. Since there are currently many

reviews on the secretome and the biogenesis, characterization and function of

extracellular vesicles, here we look at the therapeutic potential of extracellular

space to drive oral tissue regeneration and the current state of the field in

comparison to regenerative medicine.
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Introduction

Medicine is rapidly advancing towards precision therapy, using the latest

advancements in biotechnology to provide patient-tailored treatments. In dentistry

the emphasis has been placed more on enhancing the quality and aesthetics of dental

fillings or impression materials and use of digital technology for diagnosis and rapid chair

side treatments. With the growing aging population and the predicted increased number

of people aged 65 and over by 2050, the need for a more accessible, efficient and targeted

dental treatment is more palpable to regenerate dental tissues and restore clinical function

(UN Population Division, 2019).

Functional tooth is comprised of innervated and vascularized dental pulp

encased by dentin, cementum, and the harder enamel as the external protective
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layer. Periodontal or tooth supporting tissue consists of

periodontal ligament, gingiva and alveolar bone. Dental

caries and trauma often require restoration of the tooth by

placement of filling material in the crown or endodontic

therapy, to remove and replace dental pulp. Inflammation of

tooth supporting tissue results in periodontitis, loss of

alveolar bone, tooth mobility and ultimately tooth loss.

Conventional treatment replaces the missing tooth with

removable dentures, fixed restoration such as crown,

bridges, or placement of an implant. All of which aim to

replace a biological tissue with metal prosthesis.

Regenerative dentistry aims to replace conventional dental

treatments with biologically driven approaches to induce

repair of the diseased tissue, reduce inflammation and

eliminate scarring. These therapies aim to be minimally

invasive and can involve local delivery of active molecules

into the region of interest to stimulate tissue regeneration.

Regenerative approaches may be relatively easy for some

dental tissues such as dental pulp since dental pulp cells

can be grown and maintained in culture and subsequently

applied in regenerative endodontics (Brizuela et al., 2020;

Matoug-Elwerfelli et al., 2020). Similarly, conventional

filling materials can be replaced by biological alternatives

that stimulate stem cells and promote tissue regeneration in

dentin or enamel (Neves et al., 2017; Elsharkawy et al., 2018;

Birjandi et al., 2020). Treatment of edentulous patients can

ultimately be achieved by replacing the whole tooth organ

with bioengineered tooth or transplantation of constructed

embryonic tooth primordia into the oral cavity (Yelick and

Sharpe, 2019). It is however necessary to consider avenues

other than cell-based approaches for regeneration of these

tissues.

In regenerative medicine, Bioprinting, iPSCs and patient

derived stem cells can be used for tissue repair. Similarly,

Nanoparticle and Nanoclay technology are applied for drug

delivery (Dutta and Dutta, 2012; Balint et al., 2013; Zhang

and Zhang, 2015; Coyle et al., 2016; Dogan et al., 2017; Im,

2018; Hoveizi et al., 2019; Xie et al., 2022). New tools have

been developed for minimally invasive surgical approaches,

but further improvements are still required for regenerative

therapies to become effective for all major diseases. Scaling

up the size and speed of manufacturing, reproductivity and

reliability for clinical translation are some of the matters

that need tackling in regenerative medicine. Additionally,

more advanced assays should be developed to better

understand the cellular behaviour in these treatments and

accurately predict the performance of novel therapeutics in

vivo (Tucker et al., 2016). Regenerative dentistry faces

additional challenges due to lack of emphasis for

biologically driven therapeutics in clinics, strong

marketing aspect of the profession and lack of support

for clinical trials of regenerative therapies should they

pass the preclinical tests.

Regenerative potential of
extracellular space

Much work has been done on the development of new

materials to recapitulate cellular function and promote tissue

regeneration. Autologous or allogenic cell therapies can

contribute to tissue regeneration, but the low proliferative

potential of differentiated cells and their limited availability

has restricted their use. Therefore, although stem cell therapy

is a promising avenue for tissue regeneration, issues such as

immune compatibility, risk of infection and tumorigenicity have

prevented these treatments from becoming the mainstream

regenerative approach (Maguire, 2013; Eggenhofer et al., 2014;

Jiang et al., 2014; Laurencin and Nair, 2014; Turinetto et al., 2016;

Menasché, 2018; Arnold et al., 2019; Zhou et al., 2019; Laurencin

and Daneshmandi, 2020; Matai et al., 2020).

For years the focus of developmental biology, the base of

regenerative biology, has been on the contents of the cells and the

role of intracellular events in cellular behaviour and function.

Today, there is an increasing appreciation of the extracellular

space as a force to drive cellular function, stemness, homeostasis,

healing, survival and motility (Naba et al., 2016; Laura, 2018).

Furthermore, it is established that the paracrine effect of stem

cells plays a major role in tissue repair and regeneration. This

effect is through the extracellular space which is composed of the

ECM and the cell secretome.

The ECM is a network of proteoglycans, glycosaminoglycans

and proteins arranged in a 3D architecture that provides

structural properties and signalling cues whilst serving as the

microenvironment that diffuses nutrients. Therefore, ECM and

ECM-derived biomaterials are extensively studied for their

potential in tissue regeneration and as delivery vehicle for

stem cell treatments (Capella-Monsonís et al., 2020). For

example, Melatonin-loaded hydrogels show favourable

viscoelastic properties and promote accelerated and enhanced

quality of bone formation in regeneration of furcation defect in

dogs (Abdelrasoul et al., 2022). Specifically, extracellular matrix

derived from dental pulp stem cells can promote mineralization

of human gingival fibroblasts (Nowwarote et al., 2022). Dual

ECM scaffolds derived from pulp and endothelial ECM promote

attachments of mesenchymal stem cells and subsequently

odontogenic differentiation. Subcutaneous implantation of

these scaffolds into tooth root slice model in vivo results in

odontogenic differentiation of dental pulp and bone marrow

derived MSC (Huang et al., 2018). ECMs are also used in disease

modelling and cancer. Indeed, cell derived ECMs are great tools

to study cancer microenvironment as they provide a more

physiologically relevant phenotype of cancer cells in

comparison to conventional 2D and 3D culture models

(Serebriiskii et al., 2008; Eberle et al., 2011; Kaukonen et al.,

2017; Hoshiba, 2018). This interesting application of ECM has

not been tested extensively in oral dysplasia or cancer models

such as squamous cell carcinoma. Further understanding and
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correlation of the composition and biological function of ECM is

essential in regenerative approaches of complex oral tissues.

Secretome is composed of the factors that are actively or

passively released by the cells. This ranges from cytokines,

chemokines, growth factors, lipids to free nucleic acids and

extracellular vesicles. The secretome has been shown to have

various roles in tissue repair, angiogenesis and

immunoregulation (Xia et al., 2019; Willis et al., 2020;

Damayanti et al., 2021). Secretome can be easily harvested,

freeze dried and transported. As a cell free approach,

secretome therapy does not induce the adverse effects of cell

therapies such as tumorgenicity and host rejection (Song et al.,

2019; Mocchi et al., 2021). An important and biologically active

component of the secretome are Extracellular vesicles.

Extracellular vesicles (EV) are naturally occurring vesicles with

biological cargo that mediate cell-cell communication. The field

of extracellular vesicles is constantly evolving with the

identification of new groups of nanoparticles based on their

size, function and cargo such as exosomes, ectosomes,

exomeres, supremeres and migrasomes (Raposo and

Stoorvogel, 2013; Cocucci and Meldolesi, 2015; Zhang et al.,

2018; Zhang et al., 2021). Some of the regenerative cargo within

native, unmodified extracellular vesicles (EVs) are mRNA,

miRNA, proteins. Therefore, EVs can be used as biomarkers

of different diseases as well as cancer. A recent work has shown

that EVs can contribute to cancer aggressiveness (Nigri et al.,

2022). Equally EVs can modulate activity of immune cells and

remodelling of ECM and subsequently contribute to tissue repair

(Silva et al., 2017). As an example extracellular vesicles protect

the bone and cartilage from degradation and promote bone

regeneration (Cosenza et al., 2017; Jia et al., 2019). Bone

marrow stem cells (BMSCs) treated with EVs promote healing

of calvarial defect in mice (Li et al., 2020). Similarly, EVs derived

from human Placenta MSC and human BMSC promote myelin

regeneration and functional recovery (Hu et al., 2016; Clark et al.,

2019). EVs can be traced back to their cells of origin and exhibit

similar or even enhanced in vivo performance in comparison to

their parent cells (Larssen et al., 2017; Chen and Guo, 2020).

Extracellular vesicles derived from BMSCs promote liver

regeneration with the same efficiency as BMSCs in a mouse

model of hepatic ischemia (Anger et al., 2019). However, In a rat

model of myocardial infarction, MSC derived EVs performed

better than their MSC (Shao et al., 2017). Similarly iPSC-derived

cardiomyocyte EVs have enhanced performance in comparison

to cell injection in mice (El Harane et al., 2018). The regenerative

effect of EVs can even be modified by altering the culture

condition of their parent cells (Murphy et al., 2019;

Ramasubramanian et al., 2019). Hypoxic condition results in

increased biological activity of the cell and subsequently

increased regenerative potential of their secreted EV (Hu and

Li, 2018). Culturing osteoblasts in the presence of mineralizing

supplements results in EVs that are capable of mineralization in

MSC cultures. Similarly, priming MSCs derived from adipose

tissue with TNF-a results in EV secretion and osteogenic

differentiation of human primary osteoblasts (Davies et al.,

2017; Lu et al., 2017; Lee and Kim, 2021; Liu and Holmes,

2021; Nagelkerke et al., 2021). EVs can also be bioengineered

and enriched with favourable factors such as drugs and growth

factors to serve as targeted therapies (Kim et al., 2022). All of

these demonstrate the huge potential of EVs for tissue

regeneration.

EVs can be derived from dental mesenchymal stem cells

(DMSC). These cells have the advantage of enhanced

regenerative ability and good accessibility. DMSC can be

harvested from multiple sites in the oral cavity such as Dental

pulp stem cells, exfoliated deciduous tooth stem cells, apical

dental papilla stem cells, periodontal ligament stem cells, dental

follicle stem cells, gingiva derived mesenchymal stem cells and

tooth germ progenitor cells (Chouaib et al., 2022). Similar to their

parent cells, conditioned medium or secretome form dental

mesenchymal stem cells (DMSCs) exhibits great regenerative

potential and possess greater amount of metabolic and

proliferative associated proteins, neutrophils and chemokines

in comparison to non-dental conditioned medium (El Moshy

et al., 2020). Interestingly, DMSCs has been shown to promote

tissue regeneration in liver (Hirata et al., 2016; Matsushita et al.,

2017), and in many pathological conditions such as diabetes and

neurological disorders (Izumoto-Akita et al., 2015;

Jarmalavičiūtė et al., 2015; Mita et al., 2015; Ahmed et al.,

2016; Asadi-Golshan et al., 2018; Wang et al., 2019; Chen

et al., 2020), Cardiac and pulmonary lesions (Wakayama

et al., 2015; Yamaguchi et al., 2015) and alveolar bone defects

(Omori et al., 2015; de Cara et al., 2019; Hiraki et al., 2020; Qiu

et al., 2020). Despite these discoveries, there are limited number

of studies on the characterization and biological function of

dental mesenchymal stem cell derived secretome or exosomes

in comparison to other sources of EVs in regenerative medicine.

Additionally, not all the studies using DMSC secretome have

characterized the stemness and differentiation capacities of the

EVs and their cell of origin in full detail. Additionally, There is

also a degree of variability in factors affecting the cells of origin

such as passage number, sorting of the cell and period of

conditioning that subsequently affects the secretome and its

biological function across different studies (Chouaib et al., 2022).

Challenges in secretome therapy for
tissue regeneration

The promising results of EVs and their benefit over cell-based

therapeutic approaches has resulted in them being tested in

clinical settings and their clinical safety being approved

(Escudier et al., 2005). As a cell free approach, secretome and

extracellular vesicles do not present the ethical and safety issues

associated with conventional cell therapies such as immune

compatibility, risk of infection and tumorigenicity.
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Additionally, they can be easily harvested, stored, transferred and

applied. Administration of autologous EV minimises the risk of

pathogen transmission and immunological intolerances and this

is can be a great advantage in assessment of EV function in

clinical setting and phase I or II trials (Beer et al., 2017).

Despite these advantages, the role of EVs as sole therapy still

requires further investigation. Identification of the active

molecule that exerts the biological function in EVs is

extremely challenging. Sensitivity of mass spectrometers

should be able to cover the range of low abundance proteins

over highly abundant proteins in the secretome and EVs to better

characterize them (Brown et al., 2012). The purify of final EV

population and their heterogeneous nature is equally important.

This is because the contents and therefore biological activity or

regenerative capacity of EVsmay vary depending on the cell type,

experimental setup and purification method. Variation in the

existing methods of purification, characterization and storage of

cells, their secretome and EVs are some of the other challenges in

the field although many of these are currently being addressed.

To bypass some of the limitations of natural occurring EVs and

avoid some of the mentioned inconsistencies, EVs can be

bioengineered and enriched with favourable factors resulting in

enhanced yield and better isolation but the full impact of these

modifications on target cells needs to be investigated in detail (Kim

et al., 2022). In clinical translation, it is yet to be determined which

donor cell source can provide the most potent EV subtypes and

which factors influence this (Beer et al., 2017). Mass production of

EVs is also challenging. Even the golden standard of EV purification

with ultracentrifuge has its own setbacks such as availability of the

equipment in all labs, potential of co-isolation of non-vesicle

macromolecules with EV and EV aggregation. Ultracentrifugation

is also time consuming. However commercial EV purification kits

that are currently available are not yet suitable for clinical

application. It is therefore important to establish the

manufacturing workflow for suitable EV purification according

to good manufacturing practice (GMP) and enhance their

storage condition and accessibility for clinical application. EV

therapeutics are currently categorized as biologicals with active

substance but it is still not clear if a step for pathogen reduction

would be implemented inmass production of EV and if so, how that

step affects the morphology and integrity of EV and subsequently

the interaction with target cells and biological activity (Beer et al.,

2017).

Majority of currently running EV clinical trials are aimed

to monitor circulating EV as biomarkers, disease progression

and cancer diagnosis and very few are addressing tissue repair

and regeneration. With the proven link between the oral and

general health, designing preclinical studies and clinical trials

that aim to improve oral health using regenerative approaches

is important. The great advantage of cell free approaches over

cell-based therapies, makes secretome and EV a very attractive

tool for regenerative treatment. Much work must be done to

uncover the full potential of secretomics in oral health and to

then develop standards for reproducibility, clinical transition

and accessibility for public.
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