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Early diagnosis and disease phenotyping in COPD are currently limited by the

use of spirometry, which may remain normal despite significant small-airways

disease andwhichmay not fully capture a patient’s underlying pathophysiology.

In this study we explored the use of a new non-invasive technique that assesses

gas-exchange inhomogeneity in patients with COPD of varying disease severity

(according to GOLD Stage), compared with age-matched healthy controls. The

technique, which combines highly accurate measurement of respiratory gas

exchange using a bespoke molecular flow sensor and a mechanistic

mathematical model of the lung, provides new indices of lung function: the

parameters σCL, σCd, and σVD represent the standard deviations of distributions

for alveolar compliance, anatomical deadspace and vascular conductance

relative to lung volume, respectively. It also provides parameter estimates for

total anatomical deadspace and functional residual capacity (FRC). We

demonstrate that these parameters are robust and sensitive, and that they

can distinguish between healthy individuals and those with mild-moderate

COPD (stage 1–2), as well as distinguish between mild-moderate COPD

(stage 1–2) and more severe (stage 3–4) COPD. In particular, σCL, a

measure of unevenness in lung inflation/deflation, could represent a more

sensitive non-invasive marker of early or mild COPD. In addition, by providing a

multi-dimensional assessment of lung physiology, this technique may also give

insight into the underlying pathophysiological phenotype for individual patients.

These preliminary results warrant further investigation in larger clinical research

studies, including interventional trials.
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Introduction

Chronic obstructive pulmonary disease (COPD) affects

nearly 400 million people worldwide (Adeloye, et al., 2022)

and is associated with high morbidity and mortality. It is

characterised by airflow limitation, and is typically diagnosed

by demonstrating obstructive spirometry in symptomatic

patients, e.g. post-bronchodilation FEV1/FVC <0.70 (FEV1:

forced expiratory volume in 1 s, FVC: forced vital capacity).

Spirometry is also the main physiological measure used to assess

severity and monitor progression in patients with COPD.

However, while spirometry has been shown to be predictive of

mortality and patient outcomes at a population level

(Anthonisen, et al., 1986) there is often significant discord

between FEV1 and symptoms, exacerbation frequency and

disease progression at an individual level, perhaps reflecting

the known heterogeneity in COPD pathophysiology (West,

2011). Furthermore, because FEV1 is substantially influenced

by large airway function, significant disease will have

accumulated in the smaller (<2 mm diameter) airways before

a diagnosis of COPD can be made (McDonough, et al., 2011)

(Johns, et al., 2014).

An alternative approach to physiological measurement in

COPD is to focus on gas exchange inhomogeneity. The Multiple

Gas Elimination Technique (MIGET), for example, has been

used to demonstrate significant inhomogeneity in both

ventilation and perfusion in the lungs of patients with COPD

(Wagner, et al., 1977), and to define distinct “phenotypes” of

ventilation-perfusion mismatch. Interestingly, this method has

also revealed significant gas exchange inhomogeneity in patients

with GOLD (Global initiative for chronic Obstructive Lung

Disease) Stage 1, i.e., patients with mild COPD with a FEV1 >
80% predicted, which was disproportionately greater than the

measured airflow limitation in those patients (Rodríguez-Roisin,

et al., 2009). This is in keeping with COPD as a disease that

initially involves the small airways, parenchyma and vessels,

prior to spirometric disturbance (Rodríguez-Roisin, et al.,

2009). Abnormalities of lung inhomogeneity have also been

measured in patients with COPD using the multiple breath

washout method (Verbanck, et al., 1998).

A novel method for the assessment of lung inhomogeneity,

based on highly-accurate measurements of gas-exchange at the

mouth has previously been published by our group (Mountain,

et al., 2018). This non-invasive approach utilises a mechanistic

model of the lung, the outputs of which are fit to very precise

measurements of respiratory gas exchange made by a bespoke

molecular flow sensor (Ciaffoni, et al., 2016). It provides

multiple novel parameters that serve as indices of

inhomogeneity in the lung. In particular, the method

quantifies the standard deviations (SD) of the distributions

of three physiological properties - alveolar compliance

(inflation/deflation), anatomical deadspace and vascular

conductance—that vary across the lung parenchyma. The

model of the lung is based upon a “normal” lung,

constraining the distributions of compliance and

conductance to be unimodal. This method is simple to

perform for operator and participant, and in a recent study

provided repeatable indices of inhomogeneity that could

reliably discriminate between six young healthy individuals

(20–30 years), six older healthy individuals (70–80 years) and

six patients with mild-to-moderate COPD (Mountain, et al.,

2018).

To explore further the applicability of this new

inhomogeneity test in patients with COPD, we used the

approach in a cohort of patients with COPD of varying

severity (according to GOLD stage) and age-matched healthy

controls. We tested the tolerability of the measurements in

patients with more severe COPD, examined the performance

of our lung model in more obstructed lungs, and explored the

relationship between the novel inhomogeneity parameters and

traditional spirometric measures of disease severity.

Methods

Experimental methods

Thirty-six participants (10 controls, 26 patients with

COPD) each underwent standard forced spirometry and

lung inhomogeneity testing. The lung inhomogeneity test

is a nitrogen multiple breath washout (MBW) test during

which the volunteer breathes through a mouthpiece with

their nose occluded for 15 min. For the first 10 min they

breathe air, and for the final 5 min they breathe 100% oxygen.

The mouthpiece is connected to the novel molecular flow

sensor (MFS), which records the flux of respired gases (O2,

N2, CO2, and water vapour) every 10 ms. Peripheral oxygen

saturation (SpO2) is recorded throughout using a pulse-

oximeter (Masimo, Radical 7). Where two washout

procedures were performed on the same individual (to

assess intra-subject repeatability), these were separated by

a 15-min recovery period to allow re-equilibration of the lung

with room air. COPD patients were studied at a time of

stability (i.e. not during an exacerbation). Informed written

consent was provided by each volunteer and the study was

approved by the South Central Oxford A Research Ethics

Committee (17/SC/0172).

Lognormal Lung Model

A computational model of an inhomogeneous lung, named

the “Lognormal Lung Model,” was fit to the measured gas-

exchange data. The model considers a total alveolar volume

made up of 125 lung units. Each unit has equal alveolar

volume at the lung’s functional residual capacity (FRC). The
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units vary in terms of their fractional share of total lung

compliance, fractional share of total pulmonary vascular

conductance, and fractional share of total deadspace. Alveolar

compliance and vascular conductance are each assumed to be

log-normally distributed across the 125 units with a coefficient of

correlation set at 0.8. The fractional standardised deadspace is

assumed to be normally distributed. A simplified schematic of the

model is shown in Figure 1 along with illustrations of the

distributions used to describe inhomogeneity within the lung.

The model is fit to the measured N2 washout data by minimising

the sum of squared differences between the model’s expired

molecular gas flux values and those recorded experimentally.

Three core indices of inhomogeneity are recovered: σCL, σCd,
and σVD represent the standard deviations of the log of the

standardised lung compliance, log of the standardised vascular

conductance, and of the standardised deadspace all relative to

lung volume, respectively. It also provides estimates of total

anatomical deadspace (VDS) and alveolar volume (VA), and

the FRC is calculated as the sum of the estimated VDS and VA.

The Lognormal Lung Model also makes an estimate of

SpO2 for each individual washout. In cases where the

modelled SpO2 was higher than the measured SpO2, this

was attributed to the presence of pure shunt or lung units

with very low ventilation:perfusion ratios; these features will

not contribute significantly to the expired gas composition.

However, if the modelled SpO2 was >3.5% lower than the

measured SpO2, the associated recovered lung parameters

were excluded from further analysis, reflecting the

significant disparity between the modelled physiology and

the individual’s true physiology.

To assess the quality of the Lognormal LungModel’s fit to the

measured data from each participant, the mean square error,

MSE, of the differences between the measured and simulated

molecular gas fluxes is evaluated. Further details of the

Lognormal Lung Model are described elsewhere (Mountain,

et al., 2018).

Statistical analysis

The COPD patients were divided by GOLD Stage; 1: FEV1 >
80% predicted; 2: FEV1 50%–79% predicted; 3: FEV1 30%–49%

predicted; and 4: FEV1 < 30% predicted. Due to the small

number of available patients in Stage 1 and in Stage 4 (see

Table 1), to evaluate whether the Lognormal Lung parameters

could distinguish patients with more severe disease (including

FIGURE 1
Lognormal Lung Model of pulmonary inhomogeneity. (A) Schematic of three lung units within the Lognormal Lung model. Each unit has the
same alveolar volume at FRC (VAi) but the units vary in their fractional share of total anatomical deadspace volume (VDi), lung compliance (CLi), and
vascular conductance (Cdi). Venous blood (blue) is oxygenated by the alveolar gas and departs as arterial blood (red). The anatomical deadspace
introduced into the airway by the molecular flow sensor (VDMFS) is accounted for within the model. (B) Example of normal distribution used to
describe the distribution of VD, the standardised deadspace to alveolar volume ratio, across the 125 lung units within the model. The width of this
distribution is defined by the standard deviation, σVD, with an integrated area of 1. (C) Contour plot illustrating the bivariate lognormal distribution
which describes the variation lung compliance (CL) and vascular conductance (Cd) across the lung units within the Lognormal Lungmodel. Contour
intervals are values for the probability density function.
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more obstructed lungs) from those with less severe disease

using a statistical linear fixed-effects model, we grouped

together patients in GOLD Stages 1 and 2, and patients in

Stages 3 and 4. As such, we used a linear fixed-effects model in

which “severity group” was a categorical fixed effect with 0:

healthy control group, 1: GOLD Stage 1 and 2 patients; and 2:

Gold Stage 3 and 4 patients. To control for possible effects of

height, age, BMI, and sex on determined parameters, these

participant characteristics were used as covariates in the model.

For each determined parameter, X, the model was written as

follows:

X � Intercept + α ln(Height) + β ln(Age) + γ ln(BMI)
+ δisFemale + Categorical[SeverityGroup]

(and in the case of volume parameters, e.g., FRC and deadspace

volume, ln(X) was used).

Non-significant factors relating to participant characteristics

were removed sequentially, least-significant first, until only the

significant terms plus “Severity Group” remained.

Correlations were assessed using the Spearman rank-order

method. Intra-participant parameter repeatability was assessed

by calculating the standard deviation, σ, of the determined

parameter values for each individual’s repeated tests. The

average of these standard deviations was calculated across the

group of subjects with COPD.

Results

Anthropometric data and basic spirometry for the

participants are shown in Table 1. The N2 washout

experimental procedure was generally tolerated well by the

patients with COPD. In order to assess intra-subject

repeatability for patients with COPD, all patients were asked

to perform two washout tests, but one patient chose to perform

only a single inhomogeneity test. In two washout tests, the

recorded N2 profiles indicated the presence of a leak from the

participants’ nose or mouth, and in these cases the Lognormal

Lung model failed to successfully fit to the measured gas-

exchange data and to converge on an optimised set of

parameters. In all other cases, the minimisation was

successful, returning a set of estimates for the lung

parameters. The computational time required to perform a

successful minimisation was typically close to 1 hour. The

parameters determined from a further seven datasets were

excluded on the grounds that the modelled SpO2 during air

breathing was more than 3.5% below the value measured by the

pulse-oximeter during the same period. As such, there were two

COPD patients for whom parameters from both experimental

procedures were excluded and 24 for whom inhomogeneity

parameters were obtained. For six of those participants a

single parameter set was obtained, and for 18 participants two

acceptable sets of parameters (from two washout tests) were

available (in which case averaged values are presented).

Intra-subject parameter repeatability was assessed for the

subjects with COPD for whom two accepted Lognormal Lung

parameter sets were determined. The intra-subject repeatability

of the airway parameters was good: the mean standard deviations

of the determined volumes were 8.5% and 3.3% of mean

parameter values for deadspace and alveolar volume,

respectively; for σVD the mean standard deviation was 4.9%

of the mean determined parameter, and for σCL this value was

5.2%. The variability was greater in the circulatory parameter,

σCd, at 22.5% of the mean parameter value.

Linear fixed-effects modelling showed that the determined

Lognormal Lung parameters for FRC and anatomical deadspace

(VDS) were each significantly affected by BMI (p < 0.05 and p <
0.01, respectively), such that an increase in BMI was associated

with a decrease in these parameters. Anatomical deadspace was

also significantly increased by height (p < 0.05), whilst FRC was

significantly lower for the female volunteers (p < 0.005). σVD and

TABLE 1 Anthropometric data for COPD patients and healthy controls. Data are shown as group mean ± standard deviation where applicable.

Healthy controls
(n = 10)

GOLD 1
(n = 4)

GOLD 2
(n = 10)

GOLD 3
(n = 10)

GOLD 4
(n = 2)

COPD all
(n = 26)

Female# (%) 3 (30%) 2 (50%) 3 (30%) 2 (20%) 0 (0%) 7 (27%)

Age/years 69.5 ± 4.1 66.8 ± 12.3 68.4 ± 7.9 70.4 ± 6.3 57.5 ± 10.6 67.9 ± 8.9

Height/m 1.73 ± 0.09 1.65 ± 0.10 1.73 ± 0.12 1.68 ± 0.11 1.72 ± 0.09 1.70 ± 0.11

Weight/kg 71.4 ± 16.3 87.3 ± 28.5 85.0 ± 22.8 76.5 ± 22.3 92.7 ± 29.4 83.7 ± 23.9

BMI/kg m−2 23.1 ± 3.6 31.5 ± 7.7 28.2 ± 54 26.6 ± 5.7 31.1 ± 6.7 28.6 ± 6.1

FEV1/% pred 113 ± 10 93 ± 7 63 ± 7 39 ± 5 23 ± 1 55 ± 22

FVC/% pred 121 ± 11 114 ± 10 91 ± 20 83 ± 15 67 ± 3 89 ± 20

FEV1/FVC 0.74 ± 0.07 0.68 ± 0.09 0.53 ± 0.05 0.37 ± 0.07 0.27 ± 0.00 0.47 ± 0.14
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σCL were both significantly reduced by height (p < 0.05 in each

case) and σCL also by age (p < 0.05). The mean square error,

MSE, was significantly increased by height (p < 0.0005).

Figure 2 shows the determined Lognormal Lung parameters

for patients in each COPD GOLD stage and for the healthy

control group. Analysis with the linear fixed-effects model

showed that σCL, σVD, and anatomical deadspace volume all

significantly increased with increasing COPD severity:

specifically, as shown in Figure 2, there were significant

increases in group 1 (Stage 1–2) versus the control group (p <
0.0001 for σCL, p < 0.005 for σVD, and p < 0.01 for anatomical

deadspace) and significant increases in group 2 (Stage 3–4)

versus group 1 (p < 0.0005 for σCL, p < 0.05 for σVD and

anatomical deadspace). For FRC, there was a significant increase

in COPD patients with more severe disease (group 2) compared

with those with milder disease (group 1) (p < 0.05) but no

significant difference between the control group and group 1. For

σCd and MSE there were significant increases in COPD group

1 versus the control group (p < 0.0005 and p < 0.005,

respectively) but no significant difference between group

1 and group 2.

To gain some insight into whether the differences in

parameters detected through linear regression were simply

population or group differences, or whether it is possible to

determine individually for patients with COPD if they were

outside the normal range, we defined the upper limit of normal

for each parameter as parameter mean + 1.98σ for the control

group. We found that 22 of 24 COPD patients had σCL
parameters greater than the upper limit of normal. This

makes σCL a very sensitive marker for the presence of

FIGURE 2
Lognormal Lung model parameters for healthy age-matched controls and COPD patients of increasing GOLD Stage. (A) Standard deviation for
the distribution of lung compliance, σCL, (B) Standard deviation for the distribution of anatomical deadspace, σVD, (C) Standard deviation for the
distribution of vascular conductance, σCd, (D) Anatomical deadspace volume (E) Functional residual capacity, FRC, and (F)Mean squared error, MSE.
Gold Stages are defined as 1: FEV1 > 80% predicted; 2: 50% predicted < FEV1 < 80% predicted; 3: 30% predicted < FEV1 < 50% predicted; and, 4:
FEV1 < 30% predicted. Data are shown for individuals in black, and stage-by-stage averages and standard deviations are shown in red. Group averages
are not shown for stage 4 due to low group population. Significant differences were identified between healthy controls and patients with less severe
obstruction (stages 1 and 2) for σCL, σCd, σVD, deadspace volume, and MSE. Significant differences between COPD patients with less severe
obstruction (stages 1 and 2) and those with more severe obstruction (stages 3 and 4) were identified for σCL, σVD, deadspace volume, and FRC.

Frontiers in Physiology frontiersin.org05

Smith et al. 10.3389/fphys.2022.1032126

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1032126


chronic airways disease that is meaningful at the level of an

individual, and indeed it could distinguish GOLD stage

1 COPD patients from healthy controls in a direct pairwise

comparison (p < 0.05, Welch t-test).

Finally, direct correlations between spirometric

measurements (FEV1 %predicted and FEV1/FVC) and the

Lognormal Lung inhomogeneity parameters within the COPD

group were assessed by Spearman correlations (r). The strongest

correlations were identified for σCL, for which there was a strong
significant negative correlation with FEV1/FVC (r = −0.66, p <
0.0005), and a weaker, but nonetheless significant correlation

with FEV1 %predicted (r = −0.61, p < 0.005). Significant negative

correlations were also found for σVD with FEV1/FVC (r = −0.58,

p < 0.001) and with FEV1 %predicted (r = −0.44, p < 0.05), but

not for σCd.

Discussion

In this study, a new non-invasive technique was used to

assess lung inhomogeneity in a group of COPD patients with

disease severity ranging frommild to very severe. Good patient

tolerance of the N2 washout procedure demonstrated the

clinical feasibility of this technique. The intra-individual

repeatability of most of the determined parameters was very

good. The exception was the repeatability of the recovered

values for σCd, which were determined less precisely than

the airway parameters, reflecting the inherent challenge

of estimating vascular parameters from respiratory gas

analysis.

All three inhomogeneity parameters (σCL, σVD, and σCd)
were found to be significantly elevated in patients with COPD,

compared to the healthy control group. This is consistent with

previous literature where lung inhomogeneity is assessed by

MIGET (Wagner, et al., 1977) and the multiple breath washout

technique (Verbanck, et al., 1998). The advantage of our

technique is that it is simple to perform and non-invasive,

unlike MIGET, and that the parameters obtained relate to

intrinsic physiological properties of the lung, unlike MBW-

derived indices which rely on parameterisation of the nitrogen

or tracer gas profiles at specific timepoints. As such, our

technique has the potential not only to identify

lung inhomogeneity, but also to provide important

biological insights into the nature of the underlying lung

abnormality.

Inherent within the Lognormal Lung model is the

assumption of unimodal distributions of compliance and

conductance across the lung units. Whilst this assumption can

be confidently made in healthy individuals (Beck, et al., 2012), bi-

or even trimodal distributions have been identified in patients

with advanced COPD (Wagner, et al., 1977). This modelling

assumption is likely to be the explanation for the model’s

increased mean squared error for the COPD group, and may

also underlie the difference observed for some patients between

modelled and measured SpO2. Although this led to the exclusion

of seven of the 49 determined parameter sets from our analysis,

acceptable lung parameters were determined for 82% of lung

inhomogeneity tests undertaken within the COPD patient

group, and measurements were possible in 24 of the

26 patients (92%).

Importantly, we showed that the airway inhomogeneity

model parameters, σCL and σVD, and the volume parameters

for deadspace (VDS) and FRC were significantly higher in

COPD patients with more severe lung obstruction compared

to those with milder disease. We found that the airway

parameter σCL, which describes the inhomogeneity of

FIGURE 3
Computed tomography (CT) imaging for two patients with stage 2 COPD, one of whom had no CT evidence of emphysema (left panel) and the
other of whom had significant paraseptal and centrilobular emphysema (right panel), with bullae (examples indicated by arrows). Both patients had
significantly elevated σCL (0.76 and 1.06, respectively). In the patient without CT evidence of emphysema, the estimated total anatomical deadspace
volume was normal (0.169 L). In the patient with CT evidence of emphysema, the estimated deadspace volume was substantially elevated
(0.502 L). This highlights the possibility that lung inhomogeneity testing might not only represent a means of identifying COPD, but also of providing
information about the underlying disease phenotype.

Frontiers in Physiology frontiersin.org06

Smith et al. 10.3389/fphys.2022.1032126

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1032126


alveolar compliance (alveolar inflation/deflation), correlated

with established spirometric measures of COPD disease

severity (FEV1 %predicted and FEV1/FVC). However, these

correlations are not perfect. There is significant overlap in σCL
values between different COPD stages, and only 37% of the

variance in σCL can be explained by FEV1%pred, and 44% by

FEV1/FVC. This suggests that σCL is not merely a proxy for

FEV1, but may instead provide other valuable information

about airways pathophysiology. One possibility is that σCL is a

more sensitive marker than FEV1 or FEV1/FVC for disease

burden in the small airways. This hypothesis is supported by

the observation that σCL is significantly elevated in the stage

1 patient group, despite a normal FEV1 and an FEV1/FVC

ratio that was only 3% below the normal threshold (0.7). In

keeping with this, in a recent study of asthmatic patients, we

demonstrated differential effects of bronchodilators on FEV1

and σCL, and showed that σCL was a better predictor of

disease burden and control than FEV1, suggesting that it

may be a surrogate marker of disease activity in the small

airways (Smith, et al., 2020).

The assessment of anatomical deadspace is a

physiological measure which is not currently measurable

with routine lung function testing. The finding of increased

anatomical deadspace seen in COPD patients is of

pathophysiological and clinical interest. Notably, this

index is not well correlated with spirometric indices of

airflow obstruction and indeed there is a broad range of

values within the middle stages of COPD with significant

overlap between stages. One hypothesis is that our

observations may reflect progressive centrilobular

emphysema which acts to dilate and/or destroy the

respiratory bronchioles (Hogg, 2004). Although too few

patients had contemporaneous CT imaging in our current

cohort to test this possibility formally, there were

indications that this is worth exploring in larger datasets.

Figure 3, for example, provides CT images for two patients

with COPD. Both patients had a substantially elevated σCL,
but the estimated anatomical dead space was elevated only in

the patient with extensive emphysema.

Finally, our lung inhomogeneity test also returns an

estimate of FRC, which was significantly higher in COPD

patients with more severe obstruction (stages 3 and 4),

compared with mild-moderate disease. This result is in

keeping with the known tendency for lung hyperinflation in

COPD, which may be attributed to reduced elastic recoil

and expiratory flow limitation (O’Donnell & Laveneziana,

2006).

In summary, we present here the use of a new technique

for assessing inhomogeneity in patients with COPD. We

demonstrate that our novel physiological indices are

robust and sensitive, suggesting that they may have

clinical utility in the assessment and management of

COPD. We also show that they can distinguish between

patients with mild versus more severe disease, and

importantly that they provide a multi-dimensional

assessment of lung physiology including information

about the underlying pathophysiology and phenotype of a

patient. In particular, σCL could represent a useful non-

invasive marker of early or mild small airways pathology,

which could facilitate early intervention in these patients

(Woodruff, et al., 2016). Larger clinical research studies,

including interventional studies, will be required to evaluate

its full potential as a method for comprehensive

physiological phenotyping.
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