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The current review is an update on experimental approaches in which birds

serve as model species for the investigation of typical failure symptoms

associated with autism spectrum disorder (ASD). The discussion is focused

on deficiencies of social behavior, from social interactions of domestic chicks,

based on visual and auditory cues, to vocal communication in songbirds. Two

groups of pathogenetic/risk factors are discussed: 1) non-genetic

(environmental/epigenetic) factors, exemplified by embryonic exposure to

valproic acid (VPA), and 2) genetic factors, represented by a list of candidate

genes and signaling pathways of diagnostic or predictive value in ASD patients.

Given the similarities of birds as experimental models to humans (visual

orientation, vocal learning, social cohesions), avian models usefully

contribute toward the elucidation of the neural systems and developmental

factors underlying ASD, improving the applicability of preclinical results

obtained on laboratory rodents. Furthermore, they may predict potential

susceptibility factors worthy of investigation (both by animal studies and by

monitoring human babies at risk), with potential therapeutic consequence.
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Introduction

With many problems in biomedicine, the key to success is finding a suitable model

system/species. Experimental models are essential for evidence-based studies, especially

those of the interventional type (which would be impractical or ethically unacceptable to

carry out in humans). They also help finding the appropriate level of explanation,

blissfully avoiding the traps of Scylla and Charybdis, extreme reductionism (cf. the

problem described as “the janitor’s dream” by Calvin, 1998) or undue generalization.

Model systems, however, may fail at times. Ever since, there has been an increasing

demand for alternative model species (Bolker, 2012; Yartsev, 2017) and phylogenetic

comparisons to improve the poor applicability of preclinical results obtained mostly on

laboratory rodents (Perrin, 2014).

Autism Spectrum Disorder (ASD) is one of the most common neurodevelopmental

disorders associated with altered social behavior. The variable and multifaceted character

of the disease necessitates reliable animal models and multilateral approaches. Birds as
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evolutionary alternatives to mammals, with a wide behavioral

repertoire, may well represent a special window of observation.

Animal models may help discern genetic vs. non-genetic

(epigenetic, environmental) factors in the etiology of ASD

(Ergaz et al., 2016). Experimental intervention may help reveal

the pathogenetic causes during gestation, and whether such risk

factors can be antagonized or reversed.

The current summary is not intended to give a

comprehensive account of available animal models for

different autism related syndromes (cf. previous thorough

reviews, Ergaz et al., 2016; Nicolini and Fahnestock, 2018).

Here, we are focusing on those applied on avian species,

elaborating on the valproic acid model (an example for non-

genetic interventions), and on a set of genetic modifications, in

which birds have been used as experimental subjects. Avian

models have helped in the past to solve problems such as

neural plasticity in early learning (McCabe and Horn, 1994;

Rose, 2000), adult neurogenesis (Goldman and Nottebohm,

1983; Nottebohm, 2005), thanks to the existence of common

patterns in evolution. In many ways, birds are better models of

human behavior than mammals. They are highly visual beings,

display vocal communication, even vocal learning, and often live

in pairs or flocks, exposed to multiple social signals.

Newly hatched domestic chicks have often been used as

models in studies of behavioral neuroscience (Bolhuis and

Honey, 1998; Rose, 2000; Zachar et al., 2008), because they

can display complex behaviors, not confounded by earlier

experience (Rose, 2000). Just like newborn humans, chicks

have a predisposition to prefer the proximity of conspecifics

(for review see Di Giorgio et al., 2017). Whether such

predispositions are affected by autism is a matter of debate

(Elsabbagh et al., 2013; Jones and Klin, 2013; Sgadò et al.,

2018; Zachar et al., 2019), however, the social bonds based on

innate stimulus preferences are certainly impaired by ASD. The

social interactions of domestic chicks are based on visual and

auditory cues (Koshiba et al., 2013), i.e., traits that are more

human-like than the olfactory-biased sociability of most

mammals (Brennan and Kendrick, 2006).

There are striking behavioral similarities between children

with ASD and domestic chicks with socio-sensory deprivation

(Koshiba et al., 2016), further supporting feasibility of the avian

model.

Chicks react to social isolation by displaying behaviors aimed

at reuniting with conspecifics (Gallup and Suarez, 1980), and

they prefer larger groups of siblings over smaller ones (Zachar

et al., 2017). The drive to reinstatement can be evaluated by

measurement of distress vocalization (Marx et al., 2001; Takeuchi

et al., 1996; Yazaki et al., 1999; Montevecchi et al., 1973; Zsedényi

et al., 2014). Such innate gregariousness of naïve domestic chicks

likely relies on the social brain network (SBN, Goodson, 2005),

and affiliation to siblings is likely processed similarly to other

social behaviors (Mayer et al., 2017). The mesolimbic

dopaminergic reward system is amply interconnected and

overlapping with SBN forming the phylogenetically

conservative social decision-making network (O’Connell and

Hofmann, 2011) (Figure 1). Therefore, the separation-

reinstatement paradigm of the young domestic chick can be

an appropriate laboratory model of sociability [e.g., the test for

group preference (Zachar et al., 2017) and other tests of

belongingness or aggregation, see Nishigori et al., 2013].

Song learning and singing in oscine birds is often paralleled

with the human language (affected by ASD). Remarkably,

however, no studies known to us have been reported on effect

of embryonic VPA treatment on the vocal behavior of songbirds

(either learned singing or innate calls).

Relevant VPA based (or other environmental intervention-

based) models should also consider the importance of innate

calls. Parental care requires intense cooperation through

coordination and synchronization of behavior, and an intense

communication between the parents. Zebra finches change their

vocal communication over pair formation and during nest

building and incubation (Gill et al., 2015). They reduce the

amount of distance calls and courtship singing, while

increasing the frequency of the low amplitude calls specifically

used for short distance communication between the pairs

(D’Amelio et al., 2017). Furthermore, the acoustic interactions

between the twomembers of the pair become more synchronized

(Gill et al., 2015). Coordinated duetting between the parents may

function as negotiations over the parental effort, at least during

the egg incubation phase (Boucaud et al., 2016, 2017). Compared

to widely studied courtship songs, little is known about the short

distance calls (Ter Maat et al., 2014). The neural substrate

responsible for these calls overlaps, at least partially, with the

brain’s song system (Gobes et al., 2009; Giret et al., 2015),

however the different social function implies the involvement

of different regions and/or genes. The elaborate male song is a

learned behavior, and, in this sense, it is more like human speech

than are innate calls. The shorter calls are suitable for individual

recognition (Elie and Theunissen, 2018) and for promoting

cooperation between individuals, another facet of similarity

with human language. The latter is often neglected in the

scientific literature on birdsong. Moreover, female zebra

finches are also capable of cooperative vocalization. They

possess a less developed (but otherwise homologous) neural

network for processing song than that of males (Shaughnessy

et al., 2019). Such, more specific, songbird models might provide

novel insight into cooperative vocalization in normal or

pathological states.

Embryonic treatment with VPA

A well-established ASD model for laboratory rodents is

prenatal exposure to valproic acid (VPA), a known

antiepileptic substance (Rodier et al., 1996, for comprehensive

reviews see Roullet et al., 2013; Nicolini and Fahnestock, 2018)
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and mood stabilizing agent (Cipriani et al., 2013). The key factor

in the action of VPA seems to be inhibition of histone deacetylase

(Göttlicher et al., 2001), affecting gene expression and

transcription during CNS development.

VPA has been used in birds first as a teratogenic agent.

Domestic chicken eggs were injected with VPA at critical times of

development to studymalformations (Barnes et al., 1996;Whitsel

et al., 2002; Hsieh et al., 2013), or modifications of gene

expression (Akhtar et al., 2015), e.g., reduction of PAX6

(Zosen et al., 2022). The reported distinct and dose-dependent

effects of VPA on brain development potentially reflect on

behavioral measures (Barnes et al., 1996; Zosen et al., 2022).

In relation to autism-related social deficits, administration of

VPA in ovo caused impairment of social behavior (but not

imprinting) in chicks (Nishigori et al., 2013). VPA alters the

approach response to visual cues resembling to conspecifics such

as simulated biological motion (Lorenzi et al., 2019; Matsushima

et al., 2022) or face like stimuli (Adiletta et al., 2021), suggesting

an early effect on social stimulus processing similar to autistic

children. VPA abolished the innate visual predispositions of

chicks to hen features, while imprinting remained unaffected

(Sgadò et al., 2018). Similarly, in a study by Zachar et al. (2019),

early learning (passive avoidance training) and color

discrimination were not impaired by VPA treatment. At

variance with the results of Sgadò et al. (2018), albeit at a

later phase of post-embryonic development, VPA exposure

did not affect the innate approach preference of birds for the

larger over smaller group of conspecifics, or for companion birds

with natural facial features over those with blurred features

(Zachar et al., 2019). However, VPA did attenuate social

exploration and the recognition of familiar conspecifics, by

the end of the third week post-hatch, drawing attention to the

importance of early social exploration in human ASD (Zachar

et al., 2019). The corollary from these studies is that subtle

alterations in innate predispositions and social exploration

might well predict the future manifestation of ASD. Therefore,

a standardized recording and monitoring of human babies at risk

during the early postnatal period would be highly recommended

practice.

The valproate model exemplifies the potential role of

epigenetic/environmental factors in the pathogenesis of ASD.

Other animal models, including those applied mainly in

songbirds, are based upon genomic alterations.

Genomic alterations

Deficits in the acquisition of culturally transmitted social

skills, including speech and language are important early

indicators of ASD (Tager-Flusberg et al., 2005; Mody and

Belliveau, 2013; Sperdin and Schaer, 2016). The elaboration of

birdsong is often compared to the complexity of human speech

(Aamodt et al., 2019). Songbirds may represent useful models

for certain aspects of ASD both in terms of vocal

communication and sociability. Several candidate genes,

common to songbirds and humans, have been described to

participate in the production and socially meaningful

perception of song/speech (for an overview of zebra finch

studies see Panaitof, 2012). Genomic interventions in altricial

songbirds may help understand the etiology of some of the

failure symptoms in ASD. By contrast, very few studies

have tackled the genetic basis of social behavior of precocial

birds. Of five candidate genes, TTRAP showed a correlation

with social behavior of domestic chicks (Johnsson et al.,

2018). Though none of those five genes were confirmed

candidates in human autism (Satterstrom et al., 2020),

TTRAP is associated with language-related regions (Pinel

et al., 2012).

FIGURE 1
Brain regions constituting the social brain network (white), themesolimbic dopaminergic reward system (dark grey) and their overlap (light grey)
in mammals (A) and in birds (B). The two interconnected networks are collectively designated as the social decision-making network. AH: anterior
hypothalamus, blAMY: basolateral amygdala (avian homologue Nc/AIv: caudal nidopallium/ventral intermediate arcopallium), BNST: bed nucleus of
the stria terminalis, HIP: hippocampus, LS: lateral septum, MeAMY: medial extended amygdala (avian homologue TnA: nucleus taeniae), NAcc:
nucleus accumbens, PAG: periaqueductal gray (avian homologue ICO/GCT: intercollicular nucleus/midbrain central gray), POA: preoptic area, Str:
striatum, VMH: ventromedial hypothalamus, VP: ventral pallidum, VTA: ventral tegmental area. Based on O’Connell and Hofmann, 2011.
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The following account is not intended to cover the ever-

expanding plethora of genomic factors that are potentially linked

to the pathogenesis of ASD. We merely attempted here to

summarize the most promising lines of investigation, in which

songbirds played an important part as experimental subjects.

FOXP1, FOXP2
The Forkhead Box transcription factors FOXP1 and

FOXP2 were found to be linked to speech and language

disorders (Lai et al., 2001), and are among the risk genes for

autism (Satterstrom et al., 2020). Similarly distributed in the

developing human and songbird language-related centers, they

proved to be promising candidates for cross-species studies

(Teramitsu et al., 2004). Knockdown of FoxP2 in the basal

ganglia song nucleus, Area X, was found to impair singing in

zebra finches (Haesler et al., 2007). The importance of FoxP2 in

the regulation of singing has been supported by other

suppression or overexpression studies (Murugan et al., 2013;

Heston and White, 2015). In a more recent zebra finch study,

FoxP1 was found to be expressed mainly in striatal-projecting

HVC neurons (forebrain mirror neurons). Knockdown of FoxP1

expression in juvenile birds led to a selective learning deficit,

affecting the ability to form memories essential for the cultural

transmission of behavior (adult model song) (Garcia-Oscos et al.,

2021).

Cntnap2
An important target of FOXP2, Contactin-associated

protein-like 2 (Cntnap2) (Spiteri et al., 2007) has been

identified as an autism susceptibility gene (Alarcón et al.,

2008). This gene is considered a risk factor for language-

related disorders, including ASD, language impairment, and

stuttering (Arking et al., 2008; Li et al., 2010). A specific

enrichment of the CNTNAP2 protein was found in the song

nuclei of male zebra finches (Condro and White, 2014), pointing

to a generalized role in vocal learning across vertebrate species.

FXS, FMRP
Fragile X syndrome (FXS) is the most common inherited

form of ASD, characterized by hyperactivity, impulsivity, and

anxiety, as well as by defective language development. Many

FXS symptoms appear early in life, together with emerging

autistic features (Hagerman et al., 2017). A trinucleotide

repeat disorder, silencing of the gene leads to the loss of its

product, Fragile X mental retardation 1 protein (FMRP).

FMRP is an RNA-binding protein regulating the translation

of numerous mRNAs instrumental in the development and

maintenance of synapses. FXS animal models are based on the

loss of neural plasticity and an imbalance between inhibitory

and excitatory neuronal circuits, also mimicking certain

clinical symptoms of ASD. FMRP is a promising target for

therapeutic intervention. The gene and its product have been

identified in the vocal control system of the zebra finch,

recommended as a model for FXS-associated language

disorders (Winograd et al., 2008). Curiously, however,

despite obvious therapeutic advantages, experimental

interventions on FXS or FMRP, in relation to ASD, have

not yet been reported in avian species.

In addition to songbirds, FMRP has been located also in the

brainstem auditory nuclei of domestic chicks, with a specific role

in dendritic dynamics (Wang et al., 2014) and axonal growth

(Wang et al., 2020). In this capacity, FMRP is just one of many

genomic factors to regulate axonal pathfinding, some of which

have been demonstrated in avian vocal learning-relevant regions,

e.g., the SLIT-ROBO system (Wang et al., 2015).

ADNP
ADNP is an essential protein instrumental in brain

development and neural plasticity, thereby determining a host

of social and cognitive functions potentially malfunctioning in

autism. Mutations in ADNP system have been found in human

ASD cases (Helsmoortel et al., 2014; Satterstrom et al., 2020).

An established experimental model, Adnp± mice develop

impairments of cognitive and social behaviors (Vulih-

Shultzman et al., 2007), resulting in Alzheimer’s disease

related symptoms, as well as autistic features (Malishkevich

et al., 2015). Notably, male Adnp± mice are more seriously

affected, mimicking a similar prevalence of failure symptoms

in human subjects with ASD. The sex- and age-related expression

of ADNP mRNA was reported in different areas (cerebellum,

cerebrum, brainstem) of the zebra finch (Hacohen-Kleiman et al.,

2015), with a distinct sexual dimorphism (young males

expressing higher levels of ADNP than females, in agreement

with the notion that only males perform courtship singing). The

gene expression profile was largely confirmed in the

domesticated canary, and ADNP mRNA was found to be

enriched mainly in the mesopallium, harboring centers for

sensory integration and higher auditory processing (Hacohen-

Kleiman et al., 2020).

mTOR
Owing to its role in experience-dependent synaptic plasticity

(Garza-Lombó and Gonsebatt, 2016), the Mechanistic Target of

Rapamycin (mTOR) signaling cascade has been implicated as a

factor in the etiology of ASD, based chiefly on mouse models

(Chen et al., 2014; Kazdoba et al., 2016). In an elegant study on

zebra finch (Ahmadiantehrani and London, 2017) mTOR

signaling was activated in the auditory forebrain by

memorization of tutor song in adult males but not in younger

males (not old enough to copy song) or in females (who cannot

sing). Both the inhibition and constitutive activation of mTOR

during tutor experiences diminished copying of tutor song.

Remarkably, constitutive mTOR activation lowered the ‘social

engagement’ of juvenile zebra finches during tutor experiences,

somewhat similarly to the situation found in humans with

autism. The findings bear relevance for the role of the onset
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of mTOR cascade in the encoding of early life experience to

determine future behavior.

Glycogen synthase kinase-3 (GSK-3)
GSK-3 is a highly conserved serine/threonine protein

kinase that plays a central role in a wide variety of cellular

processes associated with cognition and behavior (Beurel et al.,

2015). In a recent study on zebra finch, inhibition of the splice

variant GSK-3β was found to attenuate social recognition and

decision making (Moaraf et al., 2022). Interestingly, birds are

“natural knockouts” for the GSK-3α gene (Alon et al., 2011),

enabling selective investigation of the effects of GSK-3β.
Although GSK-3β is not among the 102 key risk genes

recently defined for autism, being the 150th among

18,000 observed genes (Satterstrom et al., 2020), the

findings related to social recognition in songbirds may

potentially indicate a future involvement and predict a

novel line of investigation in this direction.

Novel aspects of convergent genomic regions
Based on a meta-analysis of convergence between avian and

human accelerated genomic regions (AR), the important study

by Cahill et al. (2021) casts light on the regulation of vocal

learning in different clades of birds (“rediscovered” two to three

times during avian evolution) and that of human speech. In

addition to known AR such as FOXP2 (already discussed above),

further novel candidate genes were ‘mined’ in this study. For

example, NR2F1, a neurodevelopment regulating transcription

factor with predicted function in vocalization behavior, proved to

be the highest density AR hotspot specific to vocal learning birds,

and it is also a SFARI class S gene for ASD (Abrahams et al.,

2013).

In most of the cases described above the genomic risk factors

had been identified first in humans, then confirmed in

mammalian model systems, and avian experiments “followed

suit” as logical sequels. Notably, however, in the last two

paragraphs examples were given for a reverse order of events:

avian studies taking the lead to predict potential susceptibility

factors worthy of investigation.

Dual subject studies
The past decade witnessed a tendency for coupled/

comparative studies, in which the results obtained from

avian and human subjects were jointly analyzed. Most of

these studies tackled different behavioral features of

diagnostic or therapeutic significance of ASD (Koshiba

et al., 2016; Kelley et al., 2017; Galizio et al., 2020; Shvarts

et al., 2020). In addition, molecular neuroanatomical

studies, carried out on multiple species, including man,

have also been reported, e.g., for the comparative

localization of FMRP (see above) in the auditory system

(Wang et al., 2014). Dual subject reports further

highlight the translational importance of investigation into

mechanisms across species, in which birds have a fair and

growing share.

Notion from comprehensive animal experiments will likely

be extrapolated to normal and impaired regulation of social

behaviors in humans. By model building of causal and

therapeutic significance, avian experiments continue to

contribute toward the elucidation of anatomically traceable

neural systems and developmental factors underlying human

autism spectrum disorder.
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