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Jinwu Gutong capsule (JGC) is a traditional Chinese medicine formula for the

treatment of osteoarthritis (OA). Synovitis is a typical pathological change in OA

and promotes disease progression. Elucidating the therapeutic mechanism of

JGC is crucial for the precise treatment of OA synovitis. In this study, we

demonstrate that JGC effectively inhibits hyperproliferation, attenuates

inflammation, and promotes apoptosis of synovial cells. Through scRNA-seq

data analysis of OA synovitis, we dissected two distinct cell fates that influence

disease progression (one fate led to recovery while the other fate resulted in

deterioration), which illustrates the principles of fate determination. By

intersecting JGC targets with synovitis hub genes and then mimicking

picomolar affinity interactions between bioactive compounds and binding

pockets, we found that the quercetin-AKR1C3 pair exhibited the best affinity,

indicating that this pair constitutes the most promising molecular mechanism.

In vitro experiments confirmed that the expression of AKR1C3 in synovial cells

was reduced after JGC addition. Further overexpression of AKR1C3 significantly

attenuated the therapeutic efficacy of JGC. Thus, we revealed that JGC

effectively treats OA synovitis by inhibiting AKR1C3 expression.
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Introduction

Osteoarthritis (OA) is the most common age-related chronic

degenerative whole-joint disease and affects more than

300 million people worldwide (Choi et al., 2019; Boer et al.,

2021). OA imposes a severe social and economic burden, and its

total costs are estimated to equal 1%–2.5% of a country’s gross

domestic product (GDP) (Hiligsmann et al., 2013; Brown et al.,

2021). The main pathological features of OA are cartilage

degeneration and synovial inflammation (Sellam and

Berenbaum, 2010). Increasing evidence indicates that synovial

inflammation not only is directly linked to clinical symptoms

such as joint swelling and inflammatory pain but also increases

cartilage injury (Atukorala et al., 2016; Labinsky et al., 2020).

Thus, inhibiting synovitis is a crucial aspect of preventing OA

development.

The current treatments for synovitis mainly include

nonsteroidal anti-inflammatory drugs (NSAIDs) and

glucocorticoids (GSs), but their effects are often short-lived

and may even lead to a greater degree of cartilage loss

(Conaghan et al., 2019; Pontes-Quero et al., 2021). Jinwu

Gutong capsule (JGC) is a traditional botanical formula

widely used in China for OA treatment and is widely believed

to have considerable potential with respect to clinical efficacy

(Zhao et al., 2022). Indeed, the combined application of JGC with

NSAIDs or GS can significantly improve the efficacy of OA

treatment. However, the pharmacological mechanism of JGC

remains unclear and warrants further research.

Single cell sequencing provides insights into the underlying

mechanisms of OA development. Early research mainly focused

on cartilage degeneration: Tang et al. identified seven molecularly

defined populations of chondrocytes in the human OA cartilage

(Ji et al., 2019); Jeon et al. (2017) found that p16INK4a positive

senescent chondrocytes contribute to the development of

spontaneous and injury-induced OA. In recent years, people

have increasingly recognized the important role of synovitis in

the development of OA. Nanus et al. (2021) illustrated that there

are distinct synovial fibroblast subsets in early OA and end-stage

OA. Knights et al. (2022) displayed Prg4hi lining fibroblasts

secrete Rspo2, which drives pathological joint crosstalk after

injury.

In this study, we demonstrate the therapeutic effect of JGC on

synovial inflammation and hyperplasia. A single-cell synovial

atlas was produced, which allowed an in-depth exploration of the

synovial microenvironment. Further transcriptional dynamics

analysis revealed a cell fate decision mechanism that affects

disease progression and recovery. We also identified the target

of JGC in treating OA synovitis and verified this target through

computer simulations and biological experiments.

Materials and methods

Preprocessing of Jinwu Gutong capsule

Commercial JGC (specification: 0.5 g per pill) was purchased

from Guizhou SSLF Pharmaceutical Co., Ltd. (Guizhou, China,

approval number: Z20043621). According to the literature

(Sridhar et al., 2021), JGC was powdered and extracted using

a Soxhlet extractor with 6 times the amount of 90% ethanol. The

solvent was then concentrated using an electrically heated blast

drying oven at 45°C. Subsequently, the concentrate was

lyophilized with a freeze dryer and weighed. The JGC extract

was dissolved in DMSO (20 mg/ml) and stored at −80°C for

later use.

Cell culture

The human synovial cell line SW982 was kindly provided by

Procell Life Science and Technology Co., Ltd. (Wuhan, China).

SW982 cells have been shown to possess characteristic features

similar to synovial fibroblasts which makes them an ideal tool to

study synovitis in OA (Karuppagounder et al., 2022). The cells were

cultured in DMEM/Ham’s F12 medium (DMEM/F12; HyClone,

Logan, UT, United States) with 10% fetal bovine serum (PAN

Biotech, Aidenbach, Germany) and 1% penicillin/streptomycin

(Gibco, Grand Island, NY, United States).

Detection of cell proliferation

The cell proliferative capacity was determined by Cell

Counting Kit-8 assays (CCK-8, Biosharp, Guangzhou, China).

Cells (10,000/well) were plated in 96-well plates, and DMSO,

CTGF or JGC was added according to the experimental design.

CTGF is a pro-inflammatory cytokine, that is, upregulated in OA

TABLE 1 Molecular docking results.

Bioactive compounds Targets affinity (kcal/mol)

quercetin AKR1C3 −10.1

syringetin CYP1B1 −9.3

apigenin CYP1B1 −8.3

quercetin MMP2 −8.2

quercetin CYP1B1 −7.9

chlorogenic acid MMP2 −7.7

apigenin PTGS2 −7.7

icariside F2 VEGFA −2.3
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and contributes to synovial hyperplasia (MacDonald et al., 2021).

The working concentration of CTGF was 25 ng/ml, and that of

JGC was 20 μg/ml. After 24 h, the supernatant was replaced with

CCK-8 working solution, and the absorbance at 450 nm was

measured.

Apoptosis detection

An Annexin V-FITC Assay Kit (Merck, NJ, United States) was

used to detect apoptosis in synovial cells. The cells were plated in 6-

well plates (50,000/well) and processed as described above. After

24 h, the cells were dissociated and stained according to the

instructions provided with the kit. In brief, cells were digested

with trypsin, washed gently with PBS, resuspended in buffer

solution to 1 × 106 cells/ml. Then 5 μl Annexin V-FITC was

added, and the mixture was incubated in the dark for 5 min 5 μl

propidium iodide (PI) was added to the cells before analyzed. We

measured the proportion of FITC(+) cells by flow cytometry.

Data sources and processing

Single-cell sequencing data for synovial cells were downloaded

from the GEO database (no. GSE176308), and 10X genomics data

were loaded into the R package Seurat (v4.0.2). Synovial cells were

obtained from 4 patients with early-stageOA (both painful and non-

painful sites) and 4 patients with end-stage OA (painful sites)

(Nanus et al., 2021). Cell quality control was applied to remove

low-quality cells with less than 300 detected genes or withmore than

10% mitochondrial genes. After normalizing the data, the cells were

dimensionally reduced and clustered according to the top

2,000 highly variable genes. The FindIntegrationAnchors

algorithm found a set of anchors between Seurat objects from

different patients. These anchors could be used to integrate the

objects using the IntegrateData function. Harmony package (v1.0)

was used to remove the batch effect, the diversity clustering penalty

parameter was set to 2 and the ridge regression penalty parameter

was set to 1.

Pseudotime analysis

The dynamic states of synovial cells were assessed using the

Monocle algorithm (v2.18.0). Monocle uses an unsupervised

algorithm to order whole-transcriptome profiles of single cells

and produce a ‘trajectory’ of an individual cell’s progress through

differentiation. We applied the “reduceDimension” function to

compute the CellDataSet object as a lower dimensional trajectory.

The Discriminative Dimensionality Reduction with Trees

(DDRTree) method was chosen for its ability to reduce

dimensionality while discriminating between different data

points. Following dimension reduction, the two features with the

most significant amount of information were extracted and used as

the coordinate axes to visualize the trajectory. Branched expression

analysis modeling (BEAM) was performed to identify genes with

branch-dependent expression and thus elucidate fate decision

mechanisms.

Cell cycle analysis

Independent cell cycle analysis was performed for each

synovial cell. The “CellCycleScoring” function in the Seurat

package was used to assign cell cycle scores according to S-

and G2/M-phase genes, which were identified following

procedures described in a previous study (Kan et al., 2022).

The number of control features selected from the same bin per

analyzed feature was set to 100 and the random seed was set to 1.

The cells were classified into G1, S, and G2/M phases based on

the maximal score of each cell cycle phase program.

Jinwu Gutong capsule target prediction

We obtained information regarding the main raw materials

from the JGC drug manual. Information about the main active

ingredients of these raw materials was obtained from the relevant

literature (Supplementary Table S2). The SDF format files of

molecular structures were downloaded from the Pubchem

database (https://pubchem.ncbi.nlm.nih.gov/). Targets of these

molecular structures were predicted using the

SwissTargetPrediction database (http://www.swisstargetprediction.

ch/) (Daina et al., 2019). The species was confined to “Homo

sapiens”, and the predicted targets with a probability more than

0.3 were included in this study.

Molecular docking

Macromolecular structures were downloaded from the

RCSB PDB database (https://www.rcsb.org), and biological

ligands were accessed from PubChem database. PDB files were

converted to the PDBQT format. We used AutoDockTools

software to search for possible active pockets, removed all

water molecules and assigned hydrogen polarities. AutoDock

Vina was employed to conduct molecular docking between the

active ingredients and targets, then took the conformation

with the highest docking score (Affinity). Finally, we used the

PyMOL software to visualize the results of molecular docking.

Statistical analysis

Bilateral tests were performed for all statistical tests. A

p-value lower than 0.05 was considered to indicate statistical
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significance. R software version 4.0.2 (https://www.r-project.org/

) was used for the analysis. The following R language packages

were used in this study: “dplyr”, “Seurat”, “monocle”, “monocle”,

and “iTALK”. The “drug-material-target” network was visualized

using Cytoscape_3.7.2 (https://cytoscape.org).

Results

Jinwu Gutong capsule exerts ideal
therapeutic effects on reducing
inflammation and hyperplasia of synovial
cells

JGC is widely used for OA treatment with ideal clinical

efficacy. According to the instructions, the main raw materials

of JGC include Cibotium barometz (CB [Cyatheaceae; Cibotium

barometz (L.) J. Sm]), Epimedium (ED [Berberidaceae;

Epimedium sagittatum (Siebold & Zucc.) Maxim]), Clematidis

radix (CR [Ranunculaceae; Clematis chinensis Osbeck]), Zaocys

dhumnades (ZD [Colubridae]), Achyranthes bidentata Blume

(ABB [Amaranthaceae; Achyranthes bidentata Blume]),

Chaenomeles sinensis (CS [Rosaceae; Pseudocydonia sinensis

(Dum.Cours.) C.K. Schneid]), Pueraria lobata (PL [Fabaceae;

Pueraria montana var. lobata (Willd.) Maesen & S.M. Almeida ex

Sanjappa & Predeep]), Curcuma longa (CL [Zingiberaceae;

Curcuma longa L., Sp. Pl.: 2 (1753)]), Psoralea corylifolia Linn.

(PCL [Fabaceae; Cullen corylifolium (L.) Medik]), and

Campanumoea javanica bl (CJB [Campanulaceae; Codonopsis

javanica (Blume) Hook. f. & Thomson, Ill. Himal. Pl. t.16 B

(1855)]). Certain materials (ED, ABB, CS, PL, CL, and CR)

reportedly have significant anti-inflammatory and antioxidant

activities, and the aqueous extract of CR exerts a good anti-

osteoarthritis effect (Cheng et al., 2013; Lin et al., 2019; Cheng

et al., 2020; Jeon et al., 2020; Lin et al., 2021; Razavi et al., 2021).

The reasonable compatibility of these materials guarantees

curative efficacy.

Synovial tissue shows discordant hyperplasia and

inflammation during OA progression. The human synovial

cell line SW982 was treated with JGC to assess the effect of this

drug on synovial hyperplasia. In normal synovial cells, the

inhibition of proliferation by JGC was not significant,

indicating tolerable drug toxicity. We then induced

hyperproliferation using the growth factor CTGF, and JGC

exerted a more pronounced inhibitory effect on the

proliferation of active synovial cells (Figure 1A). Flow

cytometry showed that the proportion of FITC(+) synovial

cells was significantly increased, showing the apoptosis-

promoting effect of JGC on SW982 cells (Figure 1B). The

inflammatory cytokine IL-1β was applied to induce intense

inflammation in synovial cells. Although the expression levels

of numerous inflammatory genes (IL-1β, IL-6, IL-8, NOS2,

and TNF-α) were clearly increased, JGC treatment

significantly reversed the increase in expression caused by

inflammatory stimulation (Figure 1C). We also found similar

trends for the intracellular reactive oxygen species (ROS)

levels: inflammation led to increased ROS levels in

SW982 cells, and this increase was relieved after JGC

addition (Figure 1D). These results confirm the therapeutic

effect of JGC on synovitis in vitro.

Cellular composition and communication
of synovial microenvironment in
osteoarthritis

To deeply dissect the molecular mechanism of JGC in the

treatment of OA synovitis, scRNA-seq data from 4145 synovial

fibroblasts (SFs) were examined in this study. SFs were clustered

into nine color-labeled subsets based on their unbiased

transcriptome signatures (Figure 2A). The cell cluster

properties were preliminarily assessed based on cluster-specific

markers (Figures 2B,C; Supplementary Figure S1; Supplementary

Table S1): the cells in SF-0 expressed high levels of IGFBP6,

MFAP5, and SEMA3C, indicating their high proliferative

capacity; the cells in SF-1 overexpressed CXCL12 and ID1,

suggesting a stronger inflammatory stimulus; the cells in SF-2

expressed MMP2 and WISP2, which play decisive roles in

fibrosis; the cells in SF-5 showed relatively high expression of

Piezo2, a mechanosensitive channel; the cells in SF-6 expressed

RNASE1, indicating decreased adhesion to cartilage; the cells in

SF-7 expressed genes critical for synovial angiogenesis

(expressing SCUBE3); and the cells in SF-8 expressed

relatively high levels of a cell cycle-related gene (CENPM).

We further calculated module scores to assess their

inflammatory and proliferative activities, which are the two

most prominent pathological features of synovitis. Consistent

with the abovementioned results, the SF-1 synovial cells showed

the highest level of inflammation, whereas the SF-0 cells

exhibited an excessive proliferative capacity (Figures 3A,B).

Overall, the proportions of cells from patients with or without

pain, according to clinical information, did not significantly

differ among the clusters; however, higher proportions of cells

in SF-0, SF-1, and SF-2 were obtained from end-stage OA

patients (Figures 3C,D). A cell‒cell communication analysis

revealed complex ligand‒receptor interactions in the synovial

microenvironment, and intercellular crosstalk was mainly

divided into cytokines, growth factors and others (Figure 3E).

Based on the cytokine categories, the synovial cells in SF-1

expressed higher levels of CXCL12, which interacts with the

ITGB1 receptor of surrounding cells to regulate proinflammatory

cytokine production (Kong et al., 2020). The growth factor

category revealed that CTGF secreted by SF-7 cells interacts

with LRP1, which is highly expressed on the surface of cells in

other clusters, to induce pathological progression (Schnieder

et al., 2020).
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Transcriptional dynamics analysis reveals
the regulation of synovial cell fate
decisions

The Monocle pseudotime algorithm was used to profile the fate

trajectory of synovial cells. The cells were dimensionally descended

and arranged in a typical dendritic shape (Figure 4A), and the fate

trajectory was divided into three cell states based on bifurcation

points (Figure 4B, state 1 to state 3). By comparing the gene patterns

in distinct cell states, we found certain classical progenitor/stem cell

markers to be significantly overexpressed in cell state 1 (OCT-4,

TRA-1-81, SSEA4, NANOG, etc.). Thus, cell state 1 was defined as

the origin of the trajectory (Figure 4C), and the synovial cells

gradually differentiated into two distinctive fates as the trajectory

progressed (Figure 4D).

We screened for “branch-dependent” genes that changed as the

cell fate developed and divided these genes into two genemodules. A

Gene Ontology (GO) enrichment analysis of “branch-dependent”

genes helped annotate the cellular properties across different cell

fates (Figure 4E). Certain functions that are beneficial to synovitis

recovery were significantly activated in cell fate 1 (e.g., negative

regulation of the inflammatory response and cell growth). However,

some terms that suggest pathogenesis were enhanced in cell fate 2

(such as positive regulation of angiogenesis). The expression

patterns of some canonical synovitis regulators were further

assessed, and certain restorative genes (such as NMB, APOE and

SMAD7)were highly expressed in cell fate 1 but decreased in cell fate

2. In addition, some pathogenic genes, such as ASPN and ACTA2,

showed completely contrary trends (Figure 4F). A cell cycle analysis

showed that the proportion of actively proliferating cells (G2/M)was

significantly higher in cell fate 2, indicating likely tissue hyperplasia

(Figure 4G). What’s more, the two pathways associated with pain

(prostanoid and eicosanoid signaling) showed increased activation

in cell fate 2, suggesting that these cells were more likely to induce

FIGURE 1
Therapeutic effect of JGC on synovitis. (A) CCK-8 assay showing the effect of JGC on cell proliferation. (B) Flow cytometry showing the effect
of JGC on apoptosis. (C) PCR showing that JGC effectively inhibits synovial inflammation. (D) JGC clearly reduces the intracellular ROS levels.
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clinical symptoms (Figure 4H). In summary, these results suggest

that cells in cell fate 1 contribute to recovery and that cells in cell fate

2 lead to synovitis progression.

Jinwu Gutong capsule treats synovitis by
inhibiting AKR1C3

A differential expression analysis between the two cell fates

identified a total of 403 key synovitis genes, including 195 and

208 upregulated genes in cell fate 1 and cell fate 2, respectively

(Figure 5A). Furthermore, by summarizing previous research

results, we collected 122 bioactive molecules from the raw

materials of JGC (Supplementary Table S2). Subsequently,

151 potential targeting relationship pairs were predicted

from the SwissTargetPrediction database (Supplementary

Table S3), and a “drug-material-target” network was

generated to visualize the potential therapeutic mechanism

(Figure 5B). By taking the intersection of JGC targets with

key genes of synovitis, five promising functional targets

(AKR1C3, VEGFA, CYP1B1, MMP2, and PTGS2) were

obtained (Figure 5C). Molecular docking was performed to

simulate the interaction between bioactive compounds and

binding pockets, which revealed a molecular basis for this

picomolar affinity (Supplementary Figure S2). The quercetin-

AKR1C3 pair exhibited the best affinity, indicating that this pair

FIGURE 2
ScRNA-seq profiling of synovitis microenvironments. (A) A uniform manifold approximation and projection (UMAP) plot showing the color-
coded cell clusters in the synovitis microenvironment. (B)Heatmap showing the marker gene expression in the different cell clusters. (C) UMAP plot
showing the marker gene expression in the different cell clusters.
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constitutes the most promising molecular mechanism

(Figures 5D,E; Table 1).

Further PCR results confirmed the hypothesis that

AKR1C3 expression was elevated in inflamed synovial cells and

effectively inhibited by the addition of JGC (Figure 6A). Rescue

experiments were performed to characterize the regulatory

relationship. AKR1C3 overexpression significantly attenuated the

JGC-induced inhibitory effect on synovial cell proliferation

(Figure 6B). Similarly, the anti-inflammatory effect of JGC on

synovial cells was clearly counteracted by

AKR1C3 overexpression (Figure 6C). Taken together, our

findings suggest that JGC treats synovitis in osteoarthritis by

inhibiting AKR1C3.

Discussion

OA is a chronic degenerative disease that involves pain and

disability, resulting in poor quality of life (Xie et al., 2021). Severe

synovitis is one of the typical pathological features of OA and

leads to disease progression (Jin et al., 2011; Zhang et al., 2022).

Certain botanical drugs, such as saponins and kaempferol, have

been shown to act as effective therapeutics in inflammatory

diseases (Devi et al., 2015; Dong et al., 2019). As a traditional

botanical formula, JGC has been widely used in clinical practice

and exerts good curative effects on OA synovitis. Thus,

elucidating the molecular mechanism of JGC has important

academic value and broad application prospects.

The pathological changes occurring in the OA synovium

mainly include inflammation, hyperplasia and fibrosis, all of

which usually coexist (Kuang et al., 2020). Our study shows that

JGC effectively inhibits the expression of proinflammatory

factors in synovial cells and reduces the intracellular ROC

levels in these cells. Furthermore, JGC restrained the

overproliferation of and induced apoptosis in synovial cells.

These results confirm the therapeutic effect of JGC on

synovitis at the cellular level, which complements the results

from previous studies.

FIGURE 3
Assessment of the synovial microenvironment and intercellular communication. (A) UMAP plot showing the level of inflammation in the
different cell clusters. (B) UMAP plot showing the proliferation ability of the different cell clusters. (C) Distribution of cells from patients with or
without pain. (D) Distribution of cells from early- and end-stage OA patients. (E) Cell‒cell communication in the synovial microenvironment.
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A pseudotime analysis revealed the transcriptional dynamics

and cell trajectory fates of synovial cells. In addition to the

inflammation-, proliferation-, and fibrosis-related terms

mentioned above, we found that the Hippo pathway was

significantly activated in cell fate 1. The cells in cell fate

1 were identified as synovitis repair cells, and certain previous

studies support our conclusion that activation of the Hippo

pathway by verteporfin significantly reduces the severity of

FIGURE 4
Pseudotime analysis of the synovium. (A) Trajectory plot of distinct cell clusters. (B) Trajectory plot of pseudotime states. (C) Trajectory heatmap
of different cell states. (D) Trajectory plot of different cell fates. (E) Trajectory heatmap of different cell fates. (F) Branch trend curves of crucial genes.
(G) Cell cycle distribution of different fates. (H) The activation levels of “Eicosanoid Signaling” and “Prostanoid Signaling”.
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synovitis (Caire et al., 2021; Symons et al., 2022). Certain key

genes (APOE and SMAD7) were found to silence cell fate 2.

Apolipoprotein E, a major apoprotein of the chylomicron,

inhibits synovial activation and ectopic bone formation (de

Munter et al., 2016); in contrast, Smad7 loss promotes

synovial inflammation and fibrosis (Blaney Davidson et al.,

2006; Zhou et al., 2018). Moreover, the expression of several

disease progression genes (ASPN, ACTA2 and LINC02381) was

FIGURE 5
JGC treats synovitis by inhibiting AKR1C3. (A) Heatmap showing differentially expressed genes among distinct cell fates. (B) Network showing
predicted targets of JGC. (C) Venn diagram showing the intersection of JGC targets with hub genes of synovitis. (D)Molecular structure of quercetin.
(E) Molecular docking pattern of the quercetin-AKR1C3 pair.
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increased in cell fate 2 (Yang et al., 2018; Wang and Zhao, 2020;

Wei et al., 2021). Joint pain is the predominant symptom of OA.

“Eicosanoid Signaling” and “Prostanoid Signaling” are thought to

be the main contributors to OA pain (Sanchez-Lopez et al.,

2022). Several enzymes of the eicosanoid receptors are well-

recognized targets of anti-inflammatory drugs that can reduce

synovial inflammation (Korotkova and Jakobsson, 2014).

Interestingly, our study found that cells in fate 2 were more

active in both pathways. This finding indicated that as synovial

cells progress toward fate 2, the patient’s pain symptoms will

likely become more severe. Overall, the consistency of our results

with those from previous studies bolsters the reliability of our

findings on cell fate determination.

We found that quercetin, an active component of JGC,

well matched the active pocket of AKR1C3, and a PCR

analysis confirmed a regulatory relationship. The

steroidogenic enzyme AKR1C3 plays an important role in

many diseases, such as prostaglandin disorder, metastatic

breast tumors and atopic dermatitis (Mantel et al., 2012;

Evans et al., 2019; Li et al., 2020). AKR1C3 mediates

hyperproliferation, oxidative stress and drug resistance in

various tissues (González-Muniesa et al., 2013; Yepuru

et al., 2013; Thoma, 2015). Although AKR1C3 is a

promising therapeutic target, no AKR1C3-targeting drugs

have been approved for clinical use to date (Pippione et al.,

2017). As a natural product, quercetin has been extensively

evaluated for its efficacy and pharmacological safety (Hu et al.,

2017; Ulusoy and Sanlier, 2020; Lai and Wong, 2021; Yan

et al., 2022). Our study verifies the therapeutic effect of

quercetin on OA synovitis by targeting AKR1C3, which

further broadens the potential application of quercetin.

This study has some limitations. There were relatively few

synovitis scRNA-seq samples and a lack of corresponding

chondrocytes and subchondral bone samples. Analysis of

additional samples would be conducive to eliminating the

heterogeneity caused by individual differences. Simultaneous

analysis of data from multiple tissues (synovium, cartilage,

subchondral bone) is beneficial to deepen our understanding

of OA disease process.

In summary, our study confirms the beneficial influence of

JGC in OA synovitis and thus shows that JGC effectively

suppresses inflammation and hyperproliferation in synovial

cells. An in-depth profiling of the synovitis microenvironment

and transcriptional dynamics revealed two distinct cell fates that

resolve or advance the disease. We also identified the

pharmacological mechanism of the quercetin-AKR1C3 pair of

FIGURE 6
Rescue experiments of AKR1C3. (A) PCR showing that AKR1C3 is inhibited by JGC. (B) CCK-8 assay showing that AKR1C3 overexpression
attenuates the JGC-mediated inhibition of cell proliferation. (C) ROS staining showing that AKR1C3 overexpression counteracts the anti-
inflammatory effect of JGC.
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JGC in the treatment of OA synovitis. These efforts will help

researchers better elucidate OA synovitis and improve treatment

outcomes.
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