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Catheter ablation has become an important treatment for atrial fibrillation (AF),

but its recurrence rate is still high. The aim of this study was to predict AF

recurrence using a three-dimensional (3D) network model based on body-

surface potential mapping signals (BSPMs). BSPMs were recorded with a 128-

lead vest in 14 persistent AF patients before undergoing catheter ablation

(Maze-IV). The torso geometry was acquired and meshed by point cloud

technology, and the BSPM was interpolated into the torso geometry by the

inverse distance weighted (IDW) method to generate the isopotential

map. Experiments show that the isopotential map of BSPMs can reflect the

propagation of the electrical wavefronts. The 3D isopotential sequence map

was established by combining the spatial–temporal information of the

isopotential map; a 3D convolutional neural network (3D-CNN) model with

temporal attention was established to predict AF recurrence. Our study

proposes a novel attention block that focuses the characteristics of atrial

activations to improve sampling accuracy. In our experiment, accuracy

(ACC) in the intra-patient evaluation for predicting the recurrence of AF was

99.38%. In the inter-patient evaluation, ACC of 3D-CNN was 81.48%, and the

area under the curve (AUC) was 0.88. It can be concluded that the dynamic

rendering of multiple isopotential maps can not only comprehensively display

the conduction of cardiac electrical activity on the body surface but also

successfully predict the recurrence of AF after CA by using 3D isopotential

sequence maps.
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1 Introduction

Atrial fibrillation (AF) is the most common cardiac

arrhythmia with a prevalence of 10%–18% in people aged

over 80 (Zoni-Berisso et al., 2014). Although catheter ablation

(CA) therapy can effectively treat AF, the recurrence rate of AF is

still high, and the mechanism of recurrence is not clear (Schotten

et al., 2011; Calvo et al., 2018; McCann et al., 2021). At present,

predicting postoperative recurrence in AF patients based on

preoperative clinical baseline data would enable the selection

of the best personalized treatment for AF patients.

Various body surface electrocardiogram (ECG) and

intracardiac electrogram (EGM) predictors associated with AF

recurrence after CA have been reported. Everett et al. (2001)

concluded that the spectrum of AF signals contains information

related to its tissue and can be used to predict the successful

termination of AF in ten dogs. Takahashi et al. (2006) found that

a higher organization index (OI) of atrial EGM was associated

with the termination of AF during limited ablation; this

parameter may be useful for anticipating the extent of

ablation. Meo et al. (2013) argued that the amplitude

variability of AF waves (f-waves) could be characterized by

multi-lead ECG to predict the prognosis of CA. Szilágyi et al.

(2018) used body-surface ECG and intracardiac EGM signals for

spectrum analysis and found that dominant frequency (DF),

regularity index (RI), and OI could be used to predict AF

recurrence. Furthermore, most of the methods based on ECG

complexity investigated to date have been determined both in the

frequency (Alcaraz et al., 2016; Hidalgo-Muñoz et al., 2017) and

time domain (Nault et al., 2009) or in AF cycle length (Matsuo

et al., 2009), and a few by sample entropy (Alcaraz et al., 2011).

Nevertheless, the acquisition of EGM is difficult for its trauma,

and some body-surface ECG, like the standard 12-lead ECG or

single-lead ECG, could not provide sufficient spatial–temporal

information on atrial activity to predict AF recurrence.

Body-surface potential mapping signals (BSPM) can not only

provide sufficient body surface information but also effectively

characterize the atrial complexity of patients with AF. Bonizzi

et al. (2010) demonstrated that BSPMs outperform standard

single-lead analysis and proposed a novel automated approach to

quantitatively assess the degree of the spatial–temporal

organization of atrial activity (AA) during AF. Zhang et al.

(2018) suggested that the fast Fourier transform (FFT)

algorithm is a useful and convenient way to evaluate the

rhythm of BSPMs in AF patients, which is important for

identifying some hypotheses to predict the recurrence of AF.

Their study also demonstrated that multi-channel mapping is

superior to standard 12-lead ECG. Meo et al. (2018) proposed a

marker from BSPMs to quantify AF complexity that could be

used to select patients eligible for AF ablation. Marques et al.

(2020) used frequency and phase analyses of BSPM maps to

reveal distinct behavior between arrhythmias. Li et al. (2018)

proposed a deep learning algorithm based on BSPMs to predict

AF recurrence after CA. However, most studies quantify AF

complexity using traditional machine-learning methods, and few

studies use deep learning to predict AF recurrence after CA based

on the three-dimensional (3D) spatial–temporal features of

BSPMs.

Due to the volume of BSPMs and the difficulty of

distinguishing and quantifying important features, electrical

image sequence representation is a common visualization tool

in evaluating and understanding BSPMs (Brook and MacLeod,

1997). Common methods include isochrone maps, isopotential

maps, integral maps, isoarea or isointegral maps, and phase maps

(Brook and MacLeod, 1997; Rogers et al., 1998). Isopotential

maps are obtained by directly plotting the mapped ECG

data—the voltage amplitude—on the model without

modification. This drawing will not add any additional

information nor any data processing, so it will not lose any

mapping information.

In this study, 3D visualization techniques were used to deeply

explore the temporal evolution of BSPMs to predict the

recurrence of AF. It takes a step from previous research and

proposes a noninvasive isopotential map-based approach for the

evaluation of AF complexity. We here propose a new method for

extracting the spatial–temporal characteristics of cardiac

activations during AF and realize the prediction of AF

recurrence by inputting 3D isopotential sequence maps into a

3D convolutional neural network (3D-CNN). This method not

only provides the overall propagation pattern of ECG signals on

the body surface but also successfully predicts the recurrence of

AF. At the same time, the innovative temporal-attention block

solves the problem of the 3D input signal not being able to

effectively extract important information based on time series.

2 Material and methods

2.1 Data collection

BSPM data from 33 patients with clinical AF were collected

before and after macrovascular surgery atWest China Hospital of

Sichuan University; 14 AF patients with radiofrequency surgery

ablations and successful electrical cardioversion within

3–4 weeks had been the subject of continuous follow-up

studies for 1 year. The study was approved by the ethics

review board of West China Hospital, Sichuan University, and

written informed consent was obtained from all patients upon

admission. Moreover, their personal information was

anonymized and de-identified prior to analysis. Table 1 lists

their clinical characteristics and the basic information.

A 128-lead vest connected by elastic bands constitutes the

front-end signal acquisition equipment. Every electrode is gold-

plated copper, and all electrodes were gathered on a soft PCB

board. Figure 1A illustrates how the electrodes were distributed

on a patient’s body surface. There were 74 electrodes distributed
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TABLE 1 Fundamental information and clinical characteristics of subjects.

ID Age Sex Height Weight Preoperative
rhythm

Description Surgical
process
and treatment
plan

Recurrence Segments

13 53 Male 170 66 AF RHDa: MSb, MRc, TRd MVRg, TVPh, Mazej No 72

14 52 Male — — AF RHDa: MSb, MRc, TRd MVRg, Mazej No 106

16 50 Male 164 58 AF RHDa: MSb, ASf, ARe MVRg, Mazej No 86

17 50 Male 170 68 AF RHDa: MSb, MRc, ARe MVRg, Mazej No 82

18 69 Male 173 56 AF RHDa: MSb, TRd MVR, Mazej Yes 69

19 46 Female 156 55 AF RHDa: MSb, MRc, TRd MVRg, TVRh, Mazej Yes 62

20 44 Female 155 55 AF RHDa: MSb, MRc, TRd MVRg, TVRh, Mazej No 68

21 50 Female 155 45 AF RHDa: MSb, TRd MVRg, TVRh, Mazej No 74

22 46 Male 173 67 AF RHDa: MSb, TRd MVRg, TVRh, Mazej No 91

23 65 Female 156 57 AF RHDa, MSb, MRc, TRd MVRg, TVRh, Mazej No 70

24 42 Female 157 80 AF RHDa: MRc, TRd MVRg, TVRh, Mazej Yes 108

25 62 Female 152 55 AF RHDa: MSb, ARe MVRg, TVPh, Mazej No 88

26 43 Female 153 49 AF RHDa: MSb, TRd MVRg, AVRi, TVRh, Mazej No 76

30 50 Female 154 47 AF RHDa: MSb, MRc, TRd MVRg, TVRh, Mazej Yes 120

aRHD, rheumatic heart disease.
bMS, mitral valve stenosis.
cMR, mitral valve regurgitation.
dTR, tricuspid valve regurgitation.
eAR, aortic valve regurgitation.
fAS, aortic stenosis.
gMVR, mitral valve replacement.
hTVR, tricuspid valve replacement.
iAVR, aortic valve replacement.
jMaze, surgical maze surgery of AF.

FIGURE 1
Framework of our predictionmodel of AF recurrence. (A) The distribution of the electrodes. There are 128 electrodes, including 74 on the chest
and 54 on the back. (B) The experimental scene. (C) Torso geometries. Torso geometries consist of 128 body surface electrodes and a body torso
geometry. (D) 128 electrocardiograms. Different colors show the BSPM of different channels, and there are 128 channels in total. (E) Isopotential
map. Different colors indicate different voltage amplitudes, and the darker the color, the lower the voltage. (F) 3D isopotential sequencemaps. y
and x are the height and width of isopotential map, and time is consistent with the time of the BSPMs.
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on the anterior body surface, while 54 were distributed on the

posterior body surface. Two adjacent electrodes belonging to the

same columnwere 3.5 cm apart. At the same time, three electrode

points were located in a triangular shape to construct the

Wilson’s center terminal as the reference point. This reference

point should be subtracted by the voltage value acquired at other

points to obtain the ultimate voltage value. Data recording and

storage uses the multi-channel electrophysiological signal

acquisition and recording system NeuroScan (ESI-128,

Compumedics Ltd., Australia) (Zhang et al., 2018). Figure 1B

depicts the experimental scene.

The entire experiment was verified on the AF signals

database before surgery; this is different from other work

which used sinus rhythm before AF (Sahadevan et al., 2004),

and where patient follow-up was conducted by the same doctor

performing the same surgical procedure, which can ensure that

the initial conditions of sample are the same. In this study,

preoperative signals were used to predict postoperative AF

recurrence, and postoperative sinus rhythm signals were used

to analyze the conduction law of AF cardiac activation on

BSPMs.

2.2 Framework overview

As shown in Figure 1, the two parts of this study were an

isopotential map and a 3D-CNN. In the former, the data

analyzed in this study were all BSPMs of patients with AF

and were filtered by the NeuroScan system at a 1–40 Hz

band-pass. After obtaining the torso geometry by pre-

processing technology based on a point cloud from a laser

scanning system (Guo et al., 2020), the BSPMs were

interpolated to 3D displacement by inverse distance weighting

(IDW). The patient’s isopotential map was displayed at the same

time, and the conduction law of cardiac electrical activity was

analyzed by BSPM. At the same time, the noise of baseline

wander (in record “bw”) (Goldberger et al., 2000) with a

signal-to-noise ratio of 12 dB was added to the original signal.

In the 3D-CNN part of this study, the isopotential map was

generated from the signal and transformed into 3D isopotential

sequence maps by combining time information. A temporal-

attention block for ECG signals was designed to predict the

recurrence of AF. Figure 1F shows the 3D isopotential sequence

maps. In order to process 3D isopotential sequence map

information more efficiently, the original isopotential map was

transformed into a gray-scale image with only one channel,

whereas the color image has three (RGB). The image input to

the CNN is significantly increased if a color image is employed, as

it is three times larger than a gray-scale image. A more effective

gray-scale image was employed because it can capture different

potentials at different pixel values; this can already reflect the

conduction of the ECG signal. The deep CNN is used to train the

processed 3D isopotential sequence maps.

The 128-channel unipolar BSPMs at about 3 min per patient

were collected, and the BSPMs were sampled at 1000 Hz.

Afterward, the original signal was cut into 2 s for analysis.

Segments with extremely poor signal quality were manually

eliminated due to circumstances such as patient movement

during the acquisition process. Consequently, the number of

segments saved varies for each patient, as shown in Table 1 with

specific subject information. The ratio of non-recurrent to

recurrent segments is 813:359. There is a great imbalance in

the amount of data. The overlap method is used to deal with

recurrent samples. It should also be noted that the shift between

two segments is equal to 175 points (Oliver et al., 2018; Andersen

et al., 2019). Thereafter, the total data were 1627 segments,

including 814 recurrent and 813 non-recurrent segments.

The development environment of this research is the Win

10 system, 64 GB memory, i7-8700 CPU, and RTX2080 GPU.

The isopotential map compiler using the C++ development

language adopts Visual Studio 2013, and the deep learning

framework is the Tensorflow framework based on Python.

2.3 Isopotential map

Using the scanning platform, the 3D model of the torso

geometry is reconstructed by point-cloud technology (Chen

et al., 2013). The hardware is based on a Raspberry PI 3B +

microcontroller, stepper motor and laser drive circuit, scanning

tables, and optical sensor. Depth information is point-cloud

information, which had to be collected at different sites of the

torso by infrared cameras around the body. Then, the data

collected in the space were processed and recovered by

software, and the geometric shape of the torso geometry and

the position of the surface electrodes were finally obtained. The

format of the point cloud information is an obj file containing

83,184 vertices and 39,504 faces. There were a total of 129 meshes

representing 128 body surface electrodes and a body torso

geometry (for the latter, see Figure 1C).

IDW is a computational method based on the geometric

relationship between interpolated objects (Shepard, 1968). The

distance between the known point and the point to be

interpolated is the “weight value”, and the interpolation points

can be estimated by a weighted average. Assuming the known

point is Di(xi, yi), whose value is represented by zi(xi, yi), the
point to be interpolated is P(x, y), while di represents the

distance between the two points P(x, y) and Di(xi, yi). The
interpolation function can therefore be expressed as

f1,x(x, y) � ∑N
i�1∑N

j�1,i ≠ j(di)−(u−2)(dj)−u(x − xi)zi(zi − zj)∣∣∣∣∑N
i�1(di)−u

∣∣∣∣2 (1)

By replacing (x − xi) with (y − yi), the interpolation of the

f1,y(x, y) can be calculated. The weight of the distance is as

follows:

Frontiers in Physiology frontiersin.org04

Zhong et al. 10.3389/fphys.2022.1030307

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1030307


(di)−2 � 1[(x − xi)2 + (y − yi)2] (2)

Empirically, with the increase of the coefficient u, the

interpolation points become smooth, but the computational

overhead increases significantly. Usually, the parameter u is

taken to be 2.

The different potential in the isopotential map was rendered

as different colors filling the vertex coordinates at the same time

(Abildskov et al., 1976). The 3D characterization process of the

ECG data from the BSPMs is principally divided into the

following steps:

1) Collect the synchronous BSPMs with a certain sampling

frequency � 1000Hz , as shown in Figure 1A, according to

the placement location of the acquisition electrode.

2) Remove noise or interference from power frequency,

breathing or muscle power from the ECG signal collected

in Step 1), and normalize the signal amplitude.

3) Based on the voltage amplitude after normalizing each of the

ECG data obtained in Step 2), draw the isopotential map

according to the IDW interpolation algorithm and estimate

the voltage. Then map the actual or interpolated voltage

values to the corresponding spatial coordinates, with

different voltage values rendered into different colors

according to the voltage level.

4) Repeat Step 3) to obtain the isopotential map of each

sampling time by the sampling interval 1/fs and complete

the dynamic rendering, then render one image at each

sampling interval and save the isopotential map of each

sampling time.

5) Within the period of time l, the isopotential map obtained in

Step 4) is synthesized to a 3D isopotential sequence map at a

fixed time interval Δt. The 3D isopotential sequence map

retains the color information contained in each isopotential

map rendering. Multiple series of time dimensions are

merged into a 3D isopotential sequence map. The fixed

time interval is Δt � 1/fs, for a certain period of time

l � K · Δt, where K is the number of isopotential maps

included in each synthesized 3D excited sequence map. In

this study, l � 2 s, Δt � 1ms, K � 2000.

6) Repeat Step 5) to obtain the 3D isopotential sequence maps

until all isopotential maps are traversed.

We give different colors to different voltage values

according to the voltage level: the darker the color, the

lower the voltage. Red represents a wave crest, and blue

represents a wave trough. The research uses the OpenGL

graphics interface in Visual Studio 2013 software to load the

3D torso model, obtain the isopotential map at each sampling

time at a time interval of 1 ms (i.e., 1/fs), and use the screen

capture function glReadPixels in OpenGL to save the image at

each sampling time.

In our study, we use a CNN to analyze the 3D isopotential

sequence maps, as too much input will increase the difficulty of

network convergence. Thus, only the isopotential map from the

front part of the torso is included, and the information from the

back part is totally ignored.

2.4 Architecture and training of the
prediction model

We used 3D-CNN to predict AF recurrence. The architecture

of the network is shown in Figure 2. The network takes 3D

isopotential sequence maps as input and the vector representing

recurrence or non-recurrence as output. The 3D isopotential

sequence maps generated by a series of 2D isopotential maps as

the dataset is input into the 3D-CNN. The size of the 3D

isopotential sequence maps is W × H × T, where W indicates

its width, H its height, and T is the number of frames of the 3D

isopotential sequence maps. We arrive at an architecture

consisting of eight convolutional layers, three fully connected

layers, and a Softmax.

2.4.1 3D-CNN
In order to make the optimization of such a network

tractable, we employed skip connections in a similar manner

to those found in the U-Net architecture (Ronneberger et al.,

2015). The skip connections between neural network layers

optimize training by allowing the information of low- and

high-resolution features to propagate effectively in different

layers of a neural network. The network architecture is

illustrated in Figure 2, including Blocks 1–3 and the temporal-

attention block. Block 3 is the full connection layer block. The

structures of other parts consist of a contracting path as shown in

Block 1 and an expansive path as shown in Block 2. The

contracting path follows the typical architecture of a

convolutional network. At each down-sampling step, we

doubled the number of feature channels. Every step in the

expansive path consists of an up-sampling of the feature map

followed by a 2 × 2 convolution (“up-convolution”) that halves

the number of feature channels. Based on the U-Net architecture,

the model extracts the feature on the output of the multi-scale

convolutional layer in the contraction path and inputs to the fully

connected layer. The prediction result is obtained through

Softmax. In Figure 2, C indicates the channel of the network

and Dense 256 indicates that the length of the output feature

vector is 256.

In the output part, the deep and shallow features of the

network can be fused by fusing the information of different layers

of the network. Among them, the network parameter F1 is the

output after the fifth convolution layer, F2–F4 process the

features after using up-convolution fusion on deep and

shallow features, and the deep and shallow features are fused

again through concatenating.
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2.4.2 Temporal attention
The temporal-attention block presented was mainly inspired

by SENet in 2017 (Hu et al., 2018) and the characteristics of ECG.

The prediction of AF recurrence mainly focuses on the signals

within a particular time. For example, for AF recurrence, we

mainly focused on the characteristics of atrial activations

(Heijman et al., 2021). The data used in this study include

ventricular and atrial activations. However, we paid more

attention to the atrial signal for the recurrence of AF. In order

to better identify the characteristics of atrial activation, we added

a temporal-attention block to the network so that the signal can

pay attention to K of W × H × T × C. For AF recurrence, the

temporal-attention block should give greater weight to the time

period of atrial activation, so that the network can pay more

attention to the time period related to AF recurrence.

A temporal-attention block is a computational unit which

can be built upon a transformation Ftr mapping an input

X ∈ RH2032×W′× T′×C′ to feature maps U ∈ RH×W×T×C. In the

following notation, we take Ftr to be a convolutional operator

and use V � [vs1, vs2,/, vsc] to denote the learned set of filter

kernels, where vsc refers to the parameters of the cth filter. We

can then write the outputs as usl, and usl refers to the parameters

of the l-th part of feature maps. That means vsl ∈ Ra×b×c and

Xl ∈ Ra×b×c, where:

usl � vsl*Xl � ∑C
k�1

⎛⎝∑i�a
i�1

∑j�b
j�1

∑z�c
z�1

vsijz × Xijz
⎞⎠

k

(3)

For a temporal feature, the traditional 3D convolution is the

convolution sum of the length, width, and time dimensions of the

signal. The characteristic relationship of the temporal and spatial

information is thus learned by the convolution kernel, and even

channel information will be mixed together through summation.

The purpose of temporal attention is to extract the temporal

information from this mixture so that the model can learn the

temporal information more directly.

The 4D features are passed through a 1 × 1 × 1

convolution kernel, and the channel number is adjusted to

1 to obtain F through a reshape operation, where F ∈ RH×W×T

(Szegedy et al., 2015). Since convolution is only operated in a

local space, it is difficult to observe the relationship between

the local and global space. Using the squeeze operation

proposed by SENet, we encode all spatial features at a time

into a global feature, which is generated into temporal-wise

FIGURE 2
Structure diagram of the 3D-CNN classification framework.

Frontiers in Physiology frontiersin.org06

Zhong et al. 10.3389/fphys.2022.1030307

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1030307


statistics by global average pooling (AvgPool) and maximum

average pooling (MaxPool) (Woo et al., 2018). The temporal

weight MT is obtained by fusing the features of global average

pooling and max average pooling. MT goes through a

sequence and excitation operation. The shared network is

composed of a multi-layer perceptron (MLP) with one hidden

layer. After the shared network is applied to the block, we

merge the output feature vectors using element-wise

summation. The formula of the temporal weight MT is as

follows:

MT(F) � σ(MLP(AvgPool(F)) +MLP(MaxPool(F)))
� σ(W2ReLU(W1(Fsq

avg)) +W2ReLU(W1(F sq
max )))

(4)
where σ denotes the Sigmoid function, W1 ∈ RT/r×T and

W2 ∈ RT×T/r. The formula of AvgPool Fsq
avg and MaxPool

F sq
max are as follows:

Fsq
avg � 1

H × W
∑H
i�1
∑w
j�1
ft(i, j) (5)

FIGURE 3
Temporal-attention block and its variants. (A) Temporal-attention block. Two groups of features were obtained by global average pooling
(AvgPool) and maximum average pooling (MaxPool), then get the sum of the different features matrices. (B) Temporal-attention A1. Feature
acquisition contains only MaxPool. (C) Temporal-attention A2. Different channel features were obtained by MaxPool, and use concatenation to fuse
different channel features. (D) Temporal-attention A3. Different channel features were obtained by AvgPool and MaxPool, and use
concatenation to fuse different channel features.
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F sq
max � max(ft(i, j)) (6)

As with SENet, r is a super parameter for dimensionality

reduction. In this experiment, r = 4 is taken. The weighted

temporal attention is obtained by summing up the elements

to map the features and multiplying this by the original signal

F. Finally, the number of channels is adjusted to C using a

1 × 1 × 1 convolution kernel. The temporal-attention block

structure is shown in Figure 3A, while Figures 3B–D are all

variants of the structure. The temporal attention A1 structure

includes a 1 × 1 × 1 convolution kernel and just uses MaxPool

to generate temporal-wise statistics. Temporal attention

A2 and A3 structures use concatenation to fuse

different channel features instead of a 1 × 1 × 1

convolution kernel.

2.5 Optimization

There are more non-recurrent than recurrent samples,

which causes data imbalance. Therefore, the model fails to

learn the features of fewer classes and is trained with low

efficiency, as most locations are easy negatives that contribute

no useful learning signal. The purpose of using focal loss is to

solve the serious imbalance in the proportion of non-

recurrent and recurrent samples (Lin et al., 2017) and to

reduce the weight of a large number of easy-to-classify

samples in training. Focal loss reduces the contribution of

samples which are easy to classify to loss and makes the model

attend more to the hard-to-classify samples. The formula is as

follows:

L fl �
⎧⎨⎩ −α(1 − y′ )γ log(y′), y � 1

−(1 − α)y′ γ log(1 − y′), y � −1 (7)

As aforementioned, y ∈ {± 1} specifies the ground-truth

class and y′ ∈ [0, 1] is the model’s estimated probability for

the class with label y = 1, which means recurrent samples.

When γ = 0, L fl is equivalent to cross entropy (CE) and as γ is

increased, the effect of the modulating factor is likewise

increased. The γ reduces the contribution of easy-to-classify

samples to loss. The α can be used to balance the uneven

number of non-recurrent and recurrent samples. In our study,

we set γ to 2 and α to 0.25.

After each convolutional layer, we applied batch

normalization (Ioffe and Szegedy, 2015) and a rectified

linear activation. We also applied dropout (Srivastava

et al., 2014) between the skip-connection layers and the

fully-connected layers. We used the Adam (Kingma et al.,

2014) optimizer with default parameters and reduced the

learning rate by 1/t decay, where t denoted the training

step. During optimization, we saved the best model as an

evaluation of the validation set.

2.6 Evaluation index of performance

In our study, we used two dataset evaluation methods to test

performance. One is inter-patient evaluation, which strictly requires

that the training set and testing set data come from different patients

(Nguyen et al., 2019). The other is intra-patient evaluation, which

completely ignores the individual differences. The training set and

testing set can come from the same patient to achieve higher

performance. At this time, the negative impact of individual

differences is the least, as is the difficulty of realization.

For the two different data-set division methods, we used four

main statistical indicators to evaluate this prediction model:

sensitivity (SE), specificity (SP), positive predictive value

(PPV), and accuracy (ACC). These expressions are given as

follows:

SE � TP

(TP + FN) × 100% (8)

SP � TN

(TN + FP) × 100% (9)

PPV � TP

(TP + FP) × 100% (10)

ACC � (TP + TN)
(TP + FN + FP + FN) × 100% (11)

where TP is the amount of AF recurrence samples that were

correctly predicted, TN is the AF non-recurrence samples which

were predicted as non-recurrence, FP indicates the AF non-

recurrence samples that were wrongly predicted as recurrent, and

FN is the recurrence samples that were wrongly predicated as

non-recurrent. Another quality of the prediction model is

measured by the area under curve (AUC) of its receiver

operating characteristic (ROC) curve based on maximized SE

and SP (Fawcett, 2006).

3 Experimental results and discussion

3.1 Cardiac axis

The signal of normal sinus rhythm is selected to calculate the

cardiac axis. The conduction law of cardiac activations in the

BSPMs is that these conduct along the direction of the cardiac

axis, allowing the cardiac electrical signals of different

propagation orders to be extracted through the BSPMs.

According to the electrode distribution of the anterior chest

mapped on the body surface (Figure 4), we use channels 93, 29,

and 37 to approximately calculate leads I and III. Lead I is

approximately the difference between channels 29 and 93 and

lead III is approximately the difference between channels 37 and

29. Its formula is as follows:

UⅠ ~ U29 − U93 (12)
UⅢ ~ U37 − U29 (13)
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FIGURE 4
Position of six electrode reference points.

FIGURE 5
ECG of lead I (29–93) and lead III (37–29) achieved from BSPM. (A) the original BSPM. The blue line is 93 lead (channel); the red line is 29 lead
(channel); and the orange line is 36 lead (channel). (B) The ECG after band-pass filtering. (C) The approximate ECG of lead I and III. The blue line is the
approximate ECG of lead I by subtracting lead (channel) 93 amplitude from lead (channel) 29 amplitude; the red line is the approximate ECGof lead III
by subtracting lead (channel) 29 amplitude from lead (channel) 37 amplitude; (D) The signal after removing the baseline wander.
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Figure 5 shows the approximate ECG of leads I and III achieved

from BSPMs. Figure 5A is the original BSPM, Figure 5B is the ECG

after band-pass filtering at 1–40 Hz, Figure 5C is the approximate

ECG of lead I obtained by subtracting the corresponding lead, and

Figure 5D is the signal after removing the baseline wander using the

low-pass filter of 3 Hz (first-order Butterworth filter).

We calculated the amplitude of positive and negative R waves

in 80 s signals to obtain the patient’s cardiac axis. The sum of the

amplitude of a QRS wave of UⅠ is UⅠ � 383.7130 and the sum of

the amplitude of a QRS wave of UⅢ is UⅢ � 176.5790. The

cardiac axis angle is 47.9516°, which is in normal range.

On the transverse plane, the projection of the vectorcardiographic

loop of the BSPMs is shown in Figure 6. Electrodes 97–33 in the same

row of BSPMs are selected, and the propagation law of BSPMs is

obtained through a two-step projection of a spatial vector cardiogram,

as shown in Figure 6. By comparing the BSPMs collected in Figure 6, it

is evident that the BSPMs follow the pattern of the conduction law of

cardiac activations and that the peak value of the R wave follows the

propagation order from left to right.

3.2 Verification isopotential map

For postoperative sinus rhythm, a total of 80 s sinus mapping

signals (including 92 heartbeats) are included to verify the

performance of the rendered dynamic mapping data. Six

electrode reference points—nearly consistent with the normal

electrical axis of the heart (Figure 4)—are channels 93, 112, 3, 5,

24 and 36, respectively. These channels are numbered 93 (①),

112 (②), 3 (③), 5 (④), 25 (⑤), and 36 (⑥) from small to large,

and the chronological order of the QRS complex received at these

six electrodes is also counted. Table 2 shows numbers and arrows

being used to indicate the order of the body surface activation

sequence during sinus rhythm. For example,

①→②→③→④→⑤→⑥ indicates that the activation

sequence is conducted from right to left, from the top to

bottom, and from channel 92 (①) to channel 36 (⑥).

The delay time is used to represent the difference between the

time when the electrodes with a different activation sequence

receive the ECG activation and when they receive the ECG

activation under normal conditions. It can be seen from

Table 2 that an activation delay was detected in electrodes ②

and ⑥. The longest activation delay was less than 3 ms. It is

found that the delay time is short and will not have a great impact

on the model rendering. Compared with the 14 times of

activation delay, the difference is not obvious; this indicates

that the isopotential map can approximately represent the

conduction law of cardiac electrical activity on BSPMs.

For preoperative AF, the BSMPs of the five selected

electrode points (channels 2, 12, 23, 25, and 36) in the

normal activation sequence and the rendered isopotential

map are shown in Figures 7 and 8. In Figure 7, the ECG

signals of the five selected channels within 3 s are arranged in

parallel from top to bottom. The dotted line indicates that the

time from channel 2 to the QRS complex peak is 362 ms,

corresponding to the first isopotential map of Figure 8. It is

evident that channel 2 first detected the moment of excitation

and that the other channels also detected excitation after a

certain delay—consistent with the conduction results shown

in Figure 8. It can be seen from Figure 8 that the color of the

place near channel 2 changes first, indicating that the

excitement is first transmitted to this place. Then, along the

FIGURE 6
Projection and waveform formation of the transverse plane vectorcardiographic loop of BSPM.
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electrical axis, the color of the lower-left area of the torso turns

from yellow to red and spreads out, indicating that the

excitement is transmitted to this area later.

3.3 3D-CNN in the intra-patient evaluation

In our study, a 3D isopotential sequence map was used to

predict the recurrence of AF, and the 3D-CNN structure was

used for prediction. In the meanwhile, the classification

performance of four classic network structures of image was

compared. Four common network training models—LeNet

(Lecun et al., 1998), AlexNet (Krizhevsky et al., 2012),

VGGNet-16 (Simonyan and Zisserman, 2014), and ResNet

(He et al., 2016)—were selected for comparison with the 3D-

CNN classification model in this study. The input of LeNet,

AlexNet, and VGGNet-16 was 3D isopotential sequence maps

changed from a traditional 2D image; ResNet was changed from

ResNet 50 and had 16 convolution layers and 1 max average

pooling layer.

In our experiment, different sizes of 3D isopotential sequence

maps were reserved to compare the prediction results. Because

the data size is too large when K = 2000, in order to save training

time and improve network performance, the network input size

W × H × T is 32 × 32 × 128, 64 × 64 × 256, and 64 × 64 × 400,

respectively. We randomly divided the dataset (training set:

validation set: testing set = 7: 2: 1). The results of the

comparison of five different 3D network models and four

different input sizes are shown in Table 3.

It can be seen from Table 2 that the performance of

different models for data differs. Compared with other

models, AlexNet and VGGNet-16 have insufficient

memory when the input size of the model is larger than

64 × 64 × 256. This is because the model parameters are too

large. From the results in the table, we can see that the

training speed of the 32 × 32 × 128 model is obviously

faster than that of other sizes. For the other three

networks, the performance of LeNet and ResNet is

unstable, while the result of 3D-CNN is the best and is

relatively stable.

TABLE 2 Statistics for the excitement sequence of sinus rhythm.

Activation sequence The number of heartbeats Delay time The proportion of the
number of heartbeats in
the delay time

①→②→③→④→⑤→⑥a 78 0 —

②→①→③→④→⑤→⑥ 11 1–3 ms 1 ms 91.67%

3 ms 8.33%

⑥→①→②→③→④→⑤ 2 >3 ms 100.00%

②→①→⑥→③→④→⑤ 1 1 ms 100.00%

a①→②→③→④→⑤→⑥ indicates that activation sequence is conducted from channels 93 (①) to 36 (⑥).

The bold values represents the optimal result of different algorithms.

FIGURE 7
Original ECG data collected by channels 2, 12, 23, 25, and 36.
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FIGURE 8
Rendering of the isopotential map of preoperative AF (A) Rendering of the isopotential map at different times. The time in this figuremeans each
sampling time of the isopotential map and the color of each isopotential map represents the magnitude of the voltage amplitude: red represents the
maximum relative amplitude, and blue represents theminimum. (B)Conduction order of Torso geometries. Blue circular lines are the location of the
different electrodes; red arrow indicate the order of cardiac activations.

TABLE 3 Comparison of balanced random prediction performance with different network structures.

Size Model PPV(%) SP(%) SE (%) ACC(%) Time s/epoch Batch size

32 × 32×128 LeNet 96.34 96.29 97.53 96.91 5 s/epoch 16

AlexNet 65.85 48.14 100.00 74.07 11 s/epoch 16

VGGNet-16 100.00 100.00 93.82 96.91 26 s/epoch 16

ResNet 100.00 100.00 97.53 98.76 3 s/epoch 16

Proposed 98.77 100.00 100.00 99.38 8 s/epoch 16

64 × 64 × 256 LeNet 92.11 92.59 86.42 89.51 8 s/epoch 16

AlexNet OOMa 16

VGGNet-16 OOMa 16

ResNet 97.18 97.53 85.19 91.36 19 s/epoch 16

Proposed 100.00 100.00 96.30 98.14 52 s/epoch 16

64 × 64 × 400 LeNet 98.77 98.76 98.77 98.77 14 s/epoch 8

AlexNet OOMa 8

VGGNet-16 OOMa 8

ResNet 100.00 100.00 97.53 98.76 31 s/epoch 8

Proposed 100.00 100.00 98.77 99.38 85 s/epoch 8

aOut of memory.

The bold values represents the optimal result of different algorithms.
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3.4 3D-CNN in the inter-patient evaluation

A training set and testing set can be derived from the same

patient, so the accuracy of using neural networks to predict

recurrence is very close. In order to better verify that the

network proposed in this study can effectively distinguish

spatial–temporal features, in the later experiments we used

the inter-patient method: the method of distinguishing

patients to verify the model. The experiment uses five-fold

cross-validation to characterize the experimental results.

Since there are only four recurrent patients, one was

randomly selected for training.

The 3D 32 × 32 × 128 isopotential sequence map was

selected as the input to the network, and LeNet, ResNet, and

3D-CNN were selected for comparison. Table 4 shows that, in

the case of a small amount of data, the accuracy of inter-

patient in predicting the recurrence of AF has reached

81.48%. It can be seen from Table 3 that the 3D-CNN

performs better than the three classic image network

structures with an SE of 67.71%, SP of 95.69%, and PPV of

76.79%, based on the same dataset in inter-patient prediction

of AF recurrence.

3.5 Effectiveness of temporal-attention
block in the inter-patient evaluation

To verify the effectiveness of the proposed components of our

model, we conducted control experiments with fine-tuned models

on the inter-patient dataset using five-fold cross-validation. In the

control experiment, we selected 64 × 64 × 256 as the input size. The

baseline represents the CNN architecture using VGGNet-5. The

3DCNN + F4 represents the proposed model with up-convolution.

The results of the control experiment are shown in Table 5; the

proposed 3DCNN+ F4model outperforms the traditional VGGNet

structure. It can also be seen that up-convolution has excellent

performance on the inter-patient dataset, which demonstrates that

up-convolution can effectively expand the difference between the

recurrence and non-recurrence samples.

To more intuitively show the advantages of fusing the deep

and shallow features model in the full connection layer, we

calculated the performance of the validation set a on five-fold

cross-validation. As shown in Table 6, only adding the fully

connected layer of F2 or F3 could not improve the network

identification accuracy of recurrent AF. We speculate that F2 or

F3 might contain limited information in the middle layer of the

network, so it could not bring gain to the network. However,

when F1 and F4 were concatenated, the model contained the

fusing deep and shallow features and performed better.

Furthermore, when F1–F4 were concatenated, the model

contained features of different depth and achieved best

performance. The focal loss is widely used in class-imbalanced

classification; in our work, the default-loss function is set to focal

loss in a structure containing the F1–F4 methods. Overall, these

results indicate that the network model combined with features

of different depths can perform better.

TABLE 4 Inter-patient prediction performance of the five-fold cross-validation model.

Model Indicator Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

LeNet ACC(%) 51.85 43.30 82.02 70.30 76.27 64.75

SE (%) 0.00 11.79 79.49 63.31 71.43 45.20

SP(%) 100.00 97.89 86.34 76.22 83.34 88.56

PPV(%) 0.00 90.62 90.79 69.29 87.05 67.55

ResNet ACC(%) 51.85 36.60 37.10 93.39 39.47 51.68

SE (%) 0.00 0.00 0.00 94.24 0.00 18.85

SP(%) 100.00 100.00 100.00 92.68 100.00 98.52

PPV(%) 0.00 0.00 0.00 91.61 0.00 18.32

Proposed ACC(%) 51.85 91.75 95.16 95.71 72.94 81.48

SE (%) 0.00 91.87 95.97 90.65 60.07 67.71

SP(%) 100.00 91.55 93.79 100.00 95.69 95.69

PPV(%) 0.00 94.96 96.32 100 92.66 76.79

The bold values represents the optimal result of different algorithms.

TABLE 5 Performance of up-convolution model on five-fold cross-
validation.

Model PPV SP SE ACC AUC

VGG-5 69.82 87.08 56.66 71.48 0.7958

VGG-8 49.79 96.65 11.30 54.27 0.5370

3D-CNN + F4 64.98 82.66 63.27 73.09 0.7634

The bold values represents the optimal result of different algorithms.
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In addition, as shown in Table 7, our experiment analyzed the

network with temporal-attention structure. By comparing the

attention structures of temporal-attention A1 and other

structures, it is found that the 1 × 1 × 1 structure can bring

gain to the network. We can see that the network model

combined with temporal-attention A1 or temporal-attention

block can achieve better results. It can also be seen that

temporal-attention block (proposed) by fusing the features of

global average pooling and max average pooling can effectively

expand the difference between the recurrence samples and non-

recurrence samples. Temporal-attention A3 is the most complex

attention block in our experiment, while the results are not

satisfactory. According to the results for temporal-attention

A2 and A3, it seems that the attention-block parameters need

not be too complex; otherwise, difficulties in network training

will result.

4 Discussion

4.1 Isopotential map and its clinical
significance

Many clinical indicators have been proposed to measure the

recurrence of AF, such as CAAP-AF score (Winkle et al., 2016),

while there is still a lack of a standard to evaluate the recurrence

of AF by preoperative ECG. In this study, a newmethod based on

3D isopotential sequence maps is proposed to non-invasively

evaluate the complex cardiac electrical activity of AF before CA.

The isopotential map shows the difference of the potential

distribution of body surface ECG activity, which is a direct

manifestation of the ECG conduction pathway. Over time, a

series of isopotential maps on the torso geometry form the

fluctuation map that represents the conduction path of

cardiac electrical activity in the torso across the body surface.

The experimental results show that fluctuations in the

isopotential map can reveal some regularities of the

conduction of the cardiac electrical activity. The 3D-CNN

model could extract features of 3D isopotential sequence maps

through the convolution layer. As an isopotential map is rich in

spatial and temporal information, 3D-CNN can combine the

spatial–temporal information using the unique skip-connections.

Through the convolution layer, the detailed features reflecting

the conduction of cardiac electrical activity in the isopotential

map can be extracted to accurately predict the recurrence of AF.

4.2 Comparison with other studies

Based on the same dataset in the intra patient evaluation, the

3D-CNN performed better than the CNN approach of amplitude

of discrete ECG signal, with SE of 83.50% and SP of 95.99% in

predicting AF recurrence (Li et al., 2018), with SE of the proposed

approach increasing by almost 15%.

Due to the lack of a public database for the study of AF

recurrence, we can only make comparison with research in

different datasets. Compared with the traditional approach of the

P wave signal-averaged ECG method (Aytemir et al., 1999) with SE

of 70% and SP of 76%, and based on the different dataset in the inter-

patient evaluation, ourmodel can achieve better prediction results by

inputting 3D isopotential sequence maps that combine temporal

information and spatial characteristics. Our method associates the

TABLE 6 Performance of fusing the deep and shallow features model on five-fold cross-validation.

Model PPV(%) SP(%) SE (%) ACC(%) AUC

3D-CNN + F1+F4 70.37 86.96 60.26 74.19 0.8214

3D-CNN + F4+F2 67.83 88.56 43.58 63.74 0.7757

3D-CNN + F4+F3 67.21 81.37 54.76 67.30 0.7385

3D-CNN + F4+F1+F2+F3 72.48 71.59 62.10 74.81 0.8459

3D-CNN + F4+F1+F2+F3+FOCAL 71.49 85.36 65.80 76.36 0.8766

The bold values represents the optimal result of different algorithms.

TABLE 7 Performance of adding attention block model on five-fold cross-validation.

Model PPV(%) SP(%) SE (%) ACC(%) AUC

Temporal-attention A1 69.86 68.02 70.67 73.24 0.7583

Temporal-attention A2 68.09 80.07 63.70 72.92 0.7798

Temporal-attention A3 65.05 82.41 51.53 66.26 0.7041

Temporal-attention block (Proposed) 76.79 95.69 67.71 81.48 0.8850

The bold values represents the optimal result of different algorithms.
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higher spatial-temporal characteristics complexity of BSPM with

successful CA procedures, even though the interclass has statistically

significant differences which are not verified on the signals we

examined.

4.3 Benefits of the classification method

Experiments show that up-convolution and skip connections

can promote the network compared with the traditional VGG

network. The skip connections between the neural network layers

of the dense layer can also make the network integrate features of

different depth and can improve the accuracy of the network in

identifying the recurrence of AF. Focal loss makes the model

attend better to difficult samples and can solve the problem of

data imbalance, thus improving the accuracy of identifying the

recurrence of AF.

Our research proposes a novel attention block—temporal

attention—which captures the importance of features of the local

space of ECG signals in a period of time. Temporal attention uses an

efficient attention-computation method that does not have any

information bottlenecks. By comparing other attention blocks, we

find that, for long time-series data, the temporal-attention block we

propose can effectively extract temporal information and improve

the accuracy of prediction. Our experiments demonstrate that

temporal attention improves the baseline performance of

architectures like 3D-CNN on tasks like ECG classification or

other physiological signals, while only introducing a minimal

computational overhead. We suggest that this temporal-attention

block can achieve good results for any type of time series.

4.4 General remarks and limitation

Our experiment included 14 patients in the intra-patient

evaluation. We used random shuffling to choose partial segments

of 14 patients to build the network model and another to test it.

This method ignores patient-specific differences because training

segments and test segments are probably from the same

patient—leading to relatively decent results—while other

patients not involved in the network model training (non-

participants) will have very poor test outcomes. In order to

avoid this situation, this study used the inter-patient

evaluation method, where the segments participating in the

network training and the tested segments come from different

patients, thus avoiding the aforementioned situation.

The lack of comparison with endocardial recording has

hampered our research. A global overview of cardiac electrical

activity is provided by BSPMs, while endocardial signals

account for local information. Nevertheless, we propose a

noninvasive analysis method. The superiority of our method

over conventional CA outcome predictors has been

demonstrated. Furthermore, the conclusion of this study is

based on the BSPMs of 1627 segments from 14 patients with

AF, and there is no available public database in regard to

postoperative detailed information for patients with AF. For

further research, we need to gradually collect more clinical

BSPM data of AF patients to further verify the reliability of the

proposed methods.

5 Conclusion

BSPMs combined with 3D isopotential sequence maps can

be used as a tool for the clinical diagnosis and treatment of AF.

Isopotential maps can express the conduction law of cardiac

electrical activity on the body surface. Furthermore, 3D

isopotential sequence maps can obtain the spatial

information of conduction. Temporal-attention block is easy

to use, can be embedded in any layer of the network, and has

fewer parameters. The 3D-CNN with temporal-attention block

can extract the features of 3D isopotential sequence maps, and

the network is shown to be robust. The optimal network

combination confirmed its excellent intra-patient prediction

performance with 99.38% of ACC, 98.77% of SE, 100.00% of SP,

and 100.00% of PPV. In intra-patient evaluation, 3D-CNN

achieved 81.48% of ACC, 67.71% of SE, 76.79% of SP,

95.69% of PPV, and 0.8850 of AUC. A 3D-CNN with

temporal-attention block can provide relevant insights for

selecting patients with low recurrence risk and suitability for

surgery for radiofrequency ablation, thus providing better

treatment for them.
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