AUTHOR=Dong Yingyue , Zhang Dandan , Cao Yingri , Zhang Yanfei , Sun Xiaozhe , Chen Tongsheng , Zhang Yuanyuan , Xu Guoheng TITLE=Mathematical analysis for spatial distribution of vessels, mast cells and adipocytes in superficial fascia JOURNAL=Frontiers in Physiology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2022.1026019 DOI=10.3389/fphys.2022.1026019 ISSN=1664-042X ABSTRACT=
As a novel origin of adipocytes, the superficial fascia, a typical soft connective tissue, has abundant adipocytes and preadipocytes, accompanied by numerous mast cells. Blood vessels pass through the fascia to form a network structure. The more reasonable statistical analysis methods can provide a new method for in-depth study of soft connective tissue by clarifying the spatial distribution relation between cells (point structure) and blood vessels (linear structure). This study adopted the Guidolin et al. statistical analysis methods used by epidemiology and ecology to quantitatively analyze the distribution pattern and correlations among blood vessels, adipocytes, and mast cells. Image-processing software and self-written computer programs were used to analyze images of whole-mounted fascia, and the relevant data were measured automatically. Voronoi’s analysis revealed that the vascular network was non-uniformly distributed. In fascia with average area of 3.75 cm2, quantitative histological analysis revealed 81.16% of mast cells and 74.74% of adipocytes distributed within 60 μm of blood vessels. A Spearman’s correlation coefficient (rs) of >0.7 showed the co-distribution of the two types of cells under different areas. Ridge regression analysis further revealed the spatial correlation among blood vessels, adipocytes and mast cells. The combination of classical epidemiological analysis and extended computer program analysis can better analyze the spatial distribution relation between cells and vessels and should provide an effective analysis method for study of the histology and morphology of fascia and related connective tissues.