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The various existing measures to quantify upper limb use from wrist-worn

inertial measurement units can be grouped into three categories: 1)

Thresholded activity counting, 2) Gross movement score and 3) machine

learning. However, there is currently no direct comparison of all these

measures on a single dataset. While machine learning is a promising

approach to detecting upper limb use, there is currently no knowledge of

the information used by machine learning measures and the data-related

factors that influence their performance. The current study conducted a

direct comparison of the 1) thresholded activity counting measures, 2) gross

movement score,3) a hybrid activity counting and gross movement score

measure (introduced in this study), and 4) machine learning measures for

detecting upper-limb use, using previously collected data. Two additional

analyses were also performed to understand the nature of the information

used by machine learning measures and the influence of data on the

performance of machine learning measures. The intra-subject random forest

machine learning measure detected upper limb use more accurately than all

other measures, confirming previous observations in the literature. Among the

non-machine learning (or traditional) algorithms, the hybrid activity counting

and gross movement score measure performed better than the other

measures. Further analysis of the random forest measure revealed that this

measure used information about the forearm’s orientation and amount of

movement to detect upper limb use. The performance of machine learning

measures was influenced by the types of movements and the proportion of

functional data in the training/testing datasets. The study outcomes show that

machine learning measures perform better than traditional measures and shed

some light on how these methods detect upper-limb use. However, in the
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absence of annotated data for training machine learning measures, the hybrid

activity counting and gross movement score measure presents a reasonable

alternative. We believe this paper presents a step towards understanding and

optimizing measures for upper limb use assessment using wearable sensors.

KEYWORDS

hemiparesis, machine learning, sensorimotor assessment, upper-limb rehabilitation,
upper-limb use, wearable sensors

1 Introduction

The accurate evaluation of the real-world impact of a

neurorehabilitation intervention is crucial to gauge its true value.

Thus, there is a growing interest in quantifying how much and how

well patients use their affected upper limb(s) outside of therapy; here,

‘howmuch’ refers to the amount of use of the upper-limb, and ‘how

well’ refers to themovement quality during use. The shortcomings of

current questionnaire-based assessments of upper limb use in daily

life (Shephard, 2003) have led to a surge in the use of wearable

sensors for this purpose. Several research groups have explored

different sensingmodalities (Bailey et al., 2014; Friedman et al., 2014;

Laput et al., 2016;Malešević et al., 2019; Lum et al., 2020; David et al.,

2021a; De Lucena et al., 2021; Tsai et al., 2021) and data analysis

techniques (Bailey et al., 2014), (Lum et al., 2020), (Uswatte et al.,

2000; De Lucena et al., 2017; Leuenberger et al., 2017; David et al.,

2021b) for assessing the amount and quality of upper limb use

outside the clinic. The work in the current paper focuses on ‘how

much’ an upper limb is used.

Among the various constructs associated with upper limb

functioning in daily life, the most fundamental one is the upper

limb use—a binary construct indicating the presence or absence of a

voluntary, meaningful movement or posture (David et al., 2021b); it

is essential for deriving the other constructs in upper limb

functioning (David et al., 2021b). Upper limb use assessment

focuses only on measuring willed movements or postures of

functional significance. Identifying such movements is a relatively

trivial task for a human observing a subject performing various

movements. A human’s ability to relate to the movements being

observed allows him/her to make judgements about the nature of a

subject’s movements. However, doing this in an autonomous

manner using technology is challenging.

The information gathered from measurement systems during

everyday life from community-dwelling patients is limited due to

constraints on the sensors’ size, wearability, ergonomics, and

cosmetics. The most popular sensing modality is inertial sensing

using inertial measurement units (IMUs) in the form of wristbands

(Bailey et al., 2014), (David et al., 2021a), (Laput and Harrison,

2019), which measure linear acceleration and angular velocities of

the forearm. Various measures have been developed to quantify

upper limb use from only wrist-worn IMU data (Bailey et al., 2014),

(Lum et al., 2020), (Uswatte et al., 2000), (Leuenberger et al., 2017),

(De Lucena et al., 2017). Measures to quantify upper limb use using

additional inertial measurements from other body segments exist in

the literature (Uswatte et al., 2000), (Regterschot et al., 2021) but this

study restricts its attention to only wrist-worn inertialmeasurements

due to its popularity and practicality. The measures for detecting

upper limb use employing only wrist-worn IMU data can be

grouped into three types: 1) Thresholded activity counting

(Bailey et al., 2014), (Uswatte et al., 2000), (De Lucena et al.,

2017), 2) Gross movement score (Leuenberger et al., 2017), and

3) machine learning (Lum et al., 2020). Currently, thresholded

activity counting-based measures are the most popular approach

for quantifying upper-limb use (Bailey et al., 2014), (Uswatte et al.,

2000), (De Lucena et al., 2017). These measures use quantized linear

acceleration (often gravity-subtracted) to compute ‘activity counts’,

which is then thresholded to quantify the presence or absence of a

functional movement at any given time instant. The gross

movement (GM) measure proposed by Leuenberger et al. (2017)

uses estimates of forearm orientation to decide on the functional

nature of upper limb movements. Bochniewicz et al. (2017) and

Lum et al. (2020) used accelerometer data and tested different

machine learning methods as a measure of upper limb use.

A comparison of the performance of these different upper

limb use measures has also recently appeared in the literature

(Lum et al., 2020), (Subash et al., 2022). Lum et al. compared the

performance of thresholded activity counting to the different

machine learning measures (Lum et al., 2020) on data collected

from 10 unimpaired and 10 stroke survivors. They found that the

random forest classification algorithm had an overall accuracy of

greater than 90%, compared to about 72% for the activity

counting methods. They observed that activity counting

overestimated upper limb use by indiscriminately picking up

both functional and non-functional movements. In our recent

study, we made a similar observation comparing the activity

counting with the GM measure (Subash et al., 2022) using data

from 10 unimpaired subjects (David et al., 2021a). Activity

counting had good sensitivity but poor specificity, compared

to GM, which had a lower sensitivity but good specificity for

functional movements. One approach to take advantage of the

strengths of the activity counting and GM algorithm is to

combine them into a hybrid algorithm. One such algorithm,

termed GMAC (GM + activity counting), is introduced in the

current study. A direct comparison of all these different measures

(existing ones like the thresholded counts, GM, machine

learning, and new ones like GMAC) of upper limb use is

currently missing in the literature. Such a comparison on the

same dataset can help delineate the pros and cons of these
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different measures. This comparison will also help to verify the

claims made by Lum et al. (2020), and thus, evaluate the

generalizability of their results.

Machine learning methods are data-driven approaches. The

nature of the training data will impact the performance and

generalizability of their result. However, this influence of training

data on upper limb use detection has not been investigated in the

current literature. Factors such as the relative amounts of functional

versus non-functional movements and the types of tasks in a dataset

can significantly impact a model’s training and testing accuracy.

Furthermore, there has also been little work on the interpretability of

machine learning methods used for upper limb use assessment. The

current methods are black boxes that use a set of handcrafted

features based on the authors’ intuition and experience about the

nature of the movements of interest. Understanding the relative

importance of the features could improve the interpretability of

these methods. Comparing classifiers with a reduced number of

features can indicate which features are more important than the

others. Analyzing the relationship between important features and

interpretable features (such as arm orientation) can lend insight into

the basis for the classification.

This study aims to answer the following research questions to

push forward the status quo in upper limb use assessment.

Q1. What is the best measure or algorithm for measuring

upper-limb use, among the existing and the new measures

introduced in this study?

Q2. What information about a subject’s movement do

machine learning algorithms rely on to measure upper-limb use?

Q3. Given that machine learning algorithms need to be

trained and validated a priori to measure upper-limb use, how

does the nature of the training and validation datasets affect a

machine learning algorithm’s performance?

The additional focus on machine learning measures (Q2 and

Q3) is due to the increasing interest in these measures, and the

current lack of understanding of thesemeasures in this application.

This study uses an annotated dataset collected from our

previous study (David et al., 2021a), which consists of data from

10 unimpaired and five stroke survivors performing a set of

activities involving arm and hand movements.

2 Methods

2.1 Data collection

2.1.1 Device
Data from a previous study (David et al., 2021a) (approved by

the institutional review board of Christian Medical College

(CMC) Vellore, IRB Min. No. 12321 dated 30.10.2019; CTRI/

2018/09/015,648) on the in-clinic validation of a wrist-worn

sensor band, dubbed ‘IMU-Watch’, was used for this analysis.

The IMU-Watches log triaxial accelerometer, gyroscope, and

magnetometer data at 50 Hz in synchrony. The directions of the

axes of the accelerometers in the IMU Watches are shown in

Figure 1.

2.1.2 Participants
As part of the study (David et al., 2021a), 10 unimpaired

individuals and five stroke survivors with hemiparesis were

recruited. The inclusion criteria for the patients with

hemiparesis were: 1) no severe cognitive deficits (Mini-Mental

State Examination score (MMSE) higher than 25); 2) Manual

Muscle Test (MMT) grade higher than two of the upper-limb

muscles (shoulder abductors, elbow flexors, elbow extensors,

wrist extensors, finger flexors, hand intrinsics) (Naqvi and

Sherman, 2022); 3) age between 25–70°years; can actively

achieve 4) at least 30 elevation of the arm against gravity in

the shoulder joint with the elbow extended, 5) 20 wrist extension

against gravity, and 6) 10 finger extension (proximal

metacarpophalangeal and interphalangeal) of at least one

finger against gravity; 7) ability to open the hand in any

position to accommodate a small ball (diameter of 1.8 cm) in

the palm; and 8) willingness to give informed consent. Patients

were recruited through the inpatient Occupational Therapy unit

of CMC Vellore.

The inclusion criteria for unimpaired controls were: 1) no

prior history of upper limb movement problems due to

neurological conditions; 2) no current difficulty in upper-limb

movements; 3) age between 25 and 70 years; and 4) willingness to

give informed consent. Subjects who had pain while moving the

upper limb and/or allergy to the plastic material used for the

IMU-watch casing and straps were excluded from the study.

2.1.3 Tasks
Participants performed various functional tasks (listed in

Table 1) while wearing an IMU-Watch on each arm. The

recordings for the tabletop and non-tabletop tasks were taken

in two separate sessions, each lasting no more than 15 min.

Control subjects performed all the tasks, but stroke survivors

TABLE 1 Tasks performed while wearing the IMU watches.

Tabletop tasks

Write using a pen Type on a keyboard

Make a call using a mobile phone Button a shirt

Drink from a glass Drink from a teacup with handles

Open a bottle Comb your hair

Wipe a table Fold a towel

Eat from a plate using your hands Eat from a bowl using a spoon

Non-Tabletop Tasks

Walk 25 m Open a door

Hit a light switch
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only completed a subset of these tasks because of difficulty in

performing some tasks. Subjects mimickedmovements 3–4 times

for tasks such as eating or drinking.

2.1.5 Ground truth labelling
The entire experiment was videotaped using a webcam

connected to a PC time-synchronized with the IMU-Watches.

Two therapists annotated the videos twice with 1 week’s gap

between each annotation, using a custom software that allowed

them tomark selected periods in the videos with pre-specified labels.

The annotators were instructed to comply with FAABOS (Uswatte

and Qadri, 2009) a coding scheme designed to quantify amount of

arm activity from video recordings. It has been used in studies to

validate sensor-based methods of classification of functional and

non-functional use (Lum et al., 2020), (Bochniewicz et al., 2017),

(McLeod et al., 2016) or between different activities (Totty and

Wade, 2018). FAABOS provides definitions and examples to classify

movements into four classes, based on the functional nature and

task-relatedness of the movements, namely, task-related functional,

non-task-related functional, non-functional, and no activity or

movement. For this analysis, the annotators were asked to reduce

the four classes to a binary classification indicating functional (e.g.,

reaching, eating, adjusting glasses) and non-functional movements

(e.g., arm swing during walking, tic, tremor, passive movements,

rests). In addition to the FAABOS annotations, the data was also

marked to identify periods of predominantly ‘Hand’ movements

(e.g., writing, typing), ‘Arm’ movements (includes tasks that

involved use of both arms and hands, e.g., wiping, drinking), and

‘Non-Functional’ movements to reflect the type of functional

movements carried out by the participants during the

experiment. The epochs corresponding to the different tasks were

also annotated in the data.

2.1.6 Dataset preparation
The final dataset used for the analysis was prepared in the

form of a table with the columns and rows corresponding to

different features and time stamps, respectively. The different

columns of this dataset include the following for each arm.

Re-sampled sensor data: Triaxial accelerometer, gyroscope,

and magnetometer was recorded approximately at 50 Hz. The

raw data from the watches were re-sampled to 50 Hz using zero-

order hold interpolation to account for any missing data.

Yaw and pitch angles of the IMUs: Yaw and pitch angles of the

forearm are estimated from the raw 50 Hz data with respect to an

earth-fixed reference frame using the Madgwick algorithm

(Madgwick et al., 2011). Offset correction was done on the

raw gyroscope data before using the Madgwick algorithm by

first identifying “rest” and “move” periods. A rest period is at

least 10s long where the signal variance is less than 0.15 deg/s on

each gyroscope axis. The mean angular velocity in each axis

during a rest period was computed as a gyroscope offset value.

This offset value is subtracted from the raw gyroscope data,

starting from the current rest period until the next rest period to

reduce gyroscopic drift. A fifth-order median filter was applied to

the accelerometer data to remove sharp jumps and outliers.

Annotations: Four columns that correspond to functional use

annotation marked twice by the two annotators, were included.

Two other columns indicate the tasks and arm/hand use. All

annotations were saved at the video frequency of 30 Hz. The

annotations were included in the dataset after up-sampling them

to 50 Hz using zero-order hold interpolation.

Each row in the dataset is time-stamped. The dataset also

includes a column with subject identifiers to differentiate data

between different subjects.

2.2 Comparison of Measures

The current study compared different measures (shown in

Table 2) reported in the literature, along with two new measures

(GMACandMLP, described later in this section). The data processing

pipeline (Figure 2) for these algorithms was implemented with an

interest to remain true to the original work.Where the sourcematerial

lacked sufficient detail, the processing steps and their associated

parameters were chosen empirically as detailed below. The outputs

of the differentmeasures were comparedwith themanual annotations

which served as ground truth.

2.2.1 Thresholded Activity Counting (TAC)
The amount of acceleration is thresholded using a measure-

specific threshold to estimate upper limb use. The computational

simplicity of this measure makes it a quick and popular approach

(Bailey et al., 2014), (Uswatte et al., 2000), (De Lucena et al.,

2017). However, while an increased amount of acceleration most

likely correlates with increased upper-limb use, the feature is not

unique to functional movements, and thus overestimates upper

limb use. Two types of TAC measures were evaluated in this

study: activity counting (De Lucena et al., 2017), and vector

magnitude (Bailey et al., 2014).

TABLE 2 Upper limb use measures that were compared.

Measure Proposed by

1 Thresholded Activity Counting

Vector Magnitude (VM) Bailey et al., (2014)

Activity Counts (AC) De Lucena et al. (2017)

2 Gross Movement (GM) Leuenberger et al. (2017)

3 Hybrid GM and TAC (GMAC) This study

4 Machine Learning

Random Forests (RF) Lum et al. (2020)

Support Vector Machine (SVM) Lum et al. (2020)

Multi-Layer Perceptron (MLP) This study
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2.2.2 Activity Counts

This measure was proposed by de Lucena et al. (De Lucena

et al., 2017). The effects of gravity are removed from the

accelerometer data using the 9DOF IMU data with the

Mahony algorithm (Mahony et al., 2008). The magnitude

of the gravity-subtracted acceleration data is then bandpass

filtered between 0.25 Hz and 2.5 Hz using a fourth order

Butterworth filter. The magnitudes are down-sampled to

1 Hz by taking its mean using non-overlapping 1 s bins.

The counts are computed by quantizing the magnitudes by

FIGURE 1
IMU watches with the axes of the accelerometers for each of the two watches.

FIGURE 2
Block diagrams for the different UL use measures. These different blocks depict the essential steps involved algorithm. The details of the
implementation of these steps can be found in the shared code repository.
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0.017 g. A laterality index is calculated using the counts from

both arms and thresholded to produce binary signals that

indicate use and non-use of both arms. Laterality greater

than −0.95 denotes dominant or non-affected arm use, and

an index lesser than 0.95 denotes non-dominant or affected

arm use.

2.2.1.2 Vector Magnitude

This measure proposed by Bailey et al. generates counts at

30 Hz using the Actigraph Activity Monitor (Bailey et al., 2014).

In the current study, the counts were generated from raw

acceleration data re-sampled to 30 Hz to match the

Actigraph sampling rate. This enabled the direct application

of the methods presented by BrØnd et al. (2017). The

proprietary Actigraph filter was substituted for the

Madgwick filter used with 6DOF IMU data. The gravity-

corrected acceleration data were bandpass filtered between

0.25 Hz and 2.5 Hz using a fourth order Butterworth filter

and re-sampled to 10 Hz. The data was then dead-band

filtered using the thresholds ±0.068 g and summed for every

1s bin. The 2-norm of the acceleration vectors was then

computed. A moving average filter with a window size of 5s

with a 4s overlap was applied, resulting in the counts at 1 Hz.

The counts were filtered using a zero threshold to obtain the

binary signal corresponding to upper-limb use.

2.2.2 Gross Movement (GM) measure
GM measure (Leuenberger et al., 2017) is computed for

moving windows of 2s with a 75% overlap, resulting in upper

limb use estimates at 2 Hz. The yaw and pitch angles were

computed using the Madgwick algorithm from the raw

acceleration and gyroscope data. If in a 2s window, the overall

absolute change in yaw and pitch angles is higher than 30° and

the absolute pitch of the forearm is within ± 30°, GM is defined as

1 (indicating functional use), else it is 0. The GM measure

exploits the nature of most functional movements to occur in

this ‘functional space’, i.e., in the region in front of subject around

his/her chest height.

GM n( ) � 1, if Δyaw + Δpitch( )> 30° and pitch
∣∣∣∣ ∣∣∣∣< 30°

0, otherwise
{

2.2.3 Hybrid GM and TAC (GMAC)
The TAC measures are known to be highly sensitive while

having very low specificity, and GM is highly specific but not

sensitive (Subash et al., 2022). To address their individual

shortcomings, we propose a hybrid measure—GMAC—that

combines the essential elements of TAC and GM measures. It

employs counts using the vector magnitude measure with a

modified GM measure; the counts were used instead of the

absolute change in yaw and pitch angles. Counts were

generated at 1 Hz, and the mean pitch is computed for every

1s bin. Upper limb use is defined as one when mean pitch is

within ± 30° and counts is more than 0, else it is 0.

GMAC n( ) � 1, ifAC> 0 and pitch
∣∣∣∣ ∣∣∣∣< 30°

0, otherwise
{

2.2.4 Machine Learning
The TAC and the GM measures are designed to exploit the

differences in functional and non-functional movements as

measured by an IMU and intuited by a human observer. In

contrast, supervised machine learning methods are data-driven

and use an annotated dataset to learn the statistical differences

between functional and non-functional movements. There is

currently limited work using machine learning methods for

detecting upper-limb use. presented a comparative analysis of

supervised machine learning methods and settled on a random

forest method Lum et al. (2020).

The machine learning methods train models using the

ground truth data, i.e., the ‘functional use’ annotations by the

human therapists. At each time instant, a single ground truth

label was derived as the majority of the four ground truth labels

corresponding to two markings by two annotators. In the case of

a tie, the instant was labelled as non-functional. We trained and

tested two types of models, inter-subject and intra-subject

models, with different machine learning methods.

2.2.4.1 Features
Eleven features proposed by Lum et al. (2020) were computed

from the 50 Hz triaxial accelerometer data (Lum et al., 2020), namely

mean and variance for acceleration along each axis, and mean,

FIGURE 3
Depiction of the nested cross validation implemented for the
different machine learning algorithms.
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variance, minimum, maximum, and Shannon entropy of the 2-

norm of the accelerometer data. A non-overlapping time window of

0.25s was chosen for computing the features by iterating through

different window sizes between 0.25s and 8s and choosing the best-

performing window size. The ground truth label for the windowwas

taken from the centre, i.e., the label corresponding to time instant

0.125s from the start of the window. A Gaussian kernel with a

bandwidth 0.2 was used to compute entropy.

2.2.4.2 Machine Learning Methods

A Random Forest (RF), a weighted Support Vector Machine

(SVM) with a Radial Basis Function kernel, and a three-layer

Multi-Layer Perceptron (MLP) were trained on the features and

ground truth. The model parameters for the RF and SVM

(number of estimators for RF, C and gamma for SVM) were

chosen by performing a grid search in a nested cross-validation

approach. In nested cross-validation, the model parameters were

optimized using every fold in the training set as the validation set

(Figure 3). The parameters with the best performance were

chosen and tested on the testing set.

Intra-subject: Stratified 5-fold cross-validation was used to

implement the intra-subject model. To account for the variability

in performance due to the different random splits, the intra-

subject models were generated by iterating through the train-

validate-test process 10 times.

Inter-subject: Leave-one-out cross-validation was used to

implement the inter-subject model.

All classifiers were implemented using the Scikit-Learn

package (Pedregosa et al., 2011).

2.3 Interpretation of the Random Forest
classifier

To get a handle on the features used by the random forest

method, the Gini importance index was computed for the

11 features. The index represents the importance of a feature

relative to the other features used in training the model. This

analysis was carried out only for the random forest because of the

availability of the Gini importance score, and because the

random forest performed the best among all methods. To

further verify feature importance, three reduced models were

trained and validated on the dataset again: 1) mean of ax
(1 feature), 2) mean of ax, ay, and az (3 features), and 3)

mean and variance of ax, ay, and az (6 features).

The Spearman correlation of the mean and variance features

with the variables used by TAC and GM methods (e.g., Euler

angles of the forearm and activity counts) was also computed.

This was done to understand the physical significance of the

features.

FIGURE 4
(A) Sensitivity vs. ‘1-Specificity’ plots depicting the performance of the different measures. The closer a measure is to the top-left corner, the
better its performance. The diagonal dashed gray line depicts the performance of a random classifier. (B) Boxplot showing the Youden indices for the
measures. (C) Statistically significant difference between traditional, inter-subject machine learning and intra-subject machine learning measures.
*Significant difference (p < 0.05).
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2.4 Effect of data-specific factors on
machine learning performance

The nature of the dataset used for developing a machine

learning method is a crucial factor in determining performance,

arguably as important as choosing a classifier itself. The training

dataset used must be a representative sample of the activities and

tasks typically performed by a subject in daily life; failing this can

drastically affect performance. The training data set must contain

sufficient information about the different types of movements of

interest to ensure the measure generalizes well to real-world data.

2.4.1 Proportion of functional and non-
functional data

The variability in patients’ ability to use their affected limbs

resulted in different proportions of functional and non-

functional movements in their datasets. To demonstrate the

effect of the different proportions, the sensitivities and

specificities of the intra-subject random forest models were fit

to the percentage of functional data present in the dataset using a

linear model, and the slope of this model was tested.

2.4.2 Presence/absence of tasks in testing/
training datasets

The current study investigated the effect of presence/absence

of selected tasks in training and testing datasets by comparing the

performance of the classifier if a certain task is 1) present in both

testing and training sets, 2) absent from training set but present

in testing set, 3) present in training set but absent from testing set,

and 4) absent from both training and testing sets. The tasks

chosen for this analysis were opening a bottle, drinking from a

cup, and walking (including walking for 25 m, hitting a switch,

and opening a door); walking tasks were excluded from the

patient data since only two patients had performed them.

Additionally, the data segments in between tasks marked as

unknown tasks were excluded from this analysis.

2.5 Statistical analysis of measures

The performance of the different UL use measures across

different subjects (and different iterations for intra-subjectmodels)

are presented as the ‘sensitivity’ vs. ‘1-specificity’ plots. The

measures were also compared using the Youden index

(Youden, 1950), a measure of the distance between the top-left

corner and the position of the model in the plot, which is given by.

The Youden index for the ideal classifier is one and is 0 for a

random classifier.

The results from the different analyses were compared using

a one-way ANOVA, and t-tests with Bonferroni correction were

performed to examine pairwise differences. The following tests

were performed:

1) Comparison of the Youden indices of different types of

measures was done by grouping them into three categories:

traditional (AC, VM, GM and GMAC), inter-subject machine

learning, and intra-subject machine learning measures.

2) Comparisons of the Youden indices of reduced and full

models using only the random forest inter- and intra-

subject models.

3) Comparison of the sensitivities and specificities of all

combinations of presence/absence of a task using only the

random forest intra-subject models.

The full dataset used in this study and the code for the

analysis are available at https://github.com/biorehab/upper-

limb-use-assessment.

3 Results

Five patients with mild-to-moderate hemiparesis (mean age of

35.4 ± 13.21 years) and ten right-handed unimpaired controls (mean

age of 23.3 ± 3.21 years) participated in the study. The demographic

details of the patients are listed in Table 3. The inter- and intra-rater

agreement for the FAABOS annotations measured by Gwet’s

AC1 agreement score were 0.91 ± 0.02 and 0.94 ±

0.02 respectively. The average proportion of data across

participants for each label in each group are listed in Table 4.

3.1Which is the bestmeasure for assessing
upper limb use?

The performance of the different measures computed across

different subjects (and different iterations for intra-subjectmodels)

are presented as the ‘sensitivity’ vs. ‘1-specificity’ plots shown in.

Figure 4A, B shows the Youden indices for the different measures.

A significant difference was observed between the different types of

measures (Figure 4C) (F = 342.5, p < 0.0001).

The thresholded activity counting measures had high

sensitivity but low specificity with a median Youden index of

around 0.07. The GM measure had low sensitivity but high

specificity and a median Youden index of 0.16. Thus,

confirming that thresholded activity counting measures

overestimate, while GM underestimates upper limb use. The

amount of activity that the TAC measures pick up is dependent

on its threshold. The TAC measures demonstrated in this study

have a low threshold of zero that they detect all movements,

including non-functional movements, and therefore overestimate

use. While the pitch thresholds in the GM algorithm results in a

reasonable threshold for functional movements, its threshold for

the total change in yaw and pitch may be too restrictive which

results in the underestimation of use. GMAC was found to be a

reasonable compromise between thresholded activity counting and

GM, resulting in a median Youden index of 0.3.

Themachine learning-based upper limb usemeasures perform

better than the traditional measures; intra-subject measures have
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the best performance (Figure 2C). The RF intra-subject methods

had the highest median Youden index of 0.74 among the machine

learning measures. Similar to the findings by Lum et al. (2020), the

RFmethod seem to perform slightly better than the SVM; theMLP

compared in this study also performs slightly worse than the

random forest method. In general, intra-subject models perform

better than inter-subject models, which is likely due to inter-

subject variability; the inter-subject models for patients are worse

than healthy controls (Figure 5A).

Furthermore, we observed that features from the IMU’s

gyroscope (e.g., mean and variance of gx, gy, gz), when

added as inputs, did not show statistically significant

improvements (p > 0.1) in detection performance of the

different machine learning algorithms.

3.2 What does the random forest classifier do?
The Gini importance index for the mean and variance of ax, ay,

and az was higher than the other features, with themean of ax being

the most important feature. The Youden indices for the reduced

models are depicted in Figure 5A. The intra-subject models and the

inter-subject models for controls using just mean of ax was the only

model worse than the rest (p < 0.05), i.e., using only the mean

accelerations achieved similar performance to the full intra-subject

model (using all 11 features). However, the acceleration variances

were required to achieve similar performance in the inter-subject

models for patients; models using just mean of ax and mean of all

accelerations showed statistically significant difference when

compared to the full model (p < 0.05). The SVM and MLP

methods showed similar trends.

What do the mean and variance features convey? The

Spearman correlation coefficient (shown in Figure 5B)

between the forearm pitch angle and mean of ax was 0.91.

The coefficient between activity counts and change in forearm

yaw angle was around 0.7 with the variance of ax, ay, and az.

Forearm pitch angle indicates forearm’s orientation with

respect to ground, while counts and change in yaw indicate

the amount of movement in a time window. Therefore, it can be

concluded that the random forest method uses a mix of

information used by the traditional TAC and GM measures

to detect upper limb use. The high performance achieved by

only using mean ax suggests the forearm pitch plays a

significant role in determining upper limb use, at least in the

current dataset.

3.3 How does the nature of the dataset affect a machine

learning method’s performance?

There are two data-related aspects that can impact

performance. The first is the effect of the proportion of the

two classes of movements (functional versus non-functional),

and the second is the effect of the tasks present in the dataset.

3.3.1 Proportion of functional and non-
functional data

The performance variance of the machine learning methods

was high for the affected arm of patients due to differences in the

amount of functional use in the data for the different patients.

The sensitivity and specificity of the intra-subject machine

learning models for a patient were proportional to the amount

of functional and non-functional movements in the dataset,

respectively. This is depicted in Figure 6A for the patient data.

Thus, training on a large dataset with an equal amount of

functional and non-functional movement data can

significantly improve performance.

3.3.2 Presence/absence of tasks in testing/
training datasets

Figure 6B shows the sensitivity and specificity of the random

forest method (with all 11 features) employing different train and

test datasets. The presence of a particular task in the train set is

denoted by tr and its presence in the test set is denoted by te; their

absence is denoted by tr and te, respectively. The following

observations were made from the results obtained (Figure 6B).

TABLE 3 Demographic details of patients CVA—Cerebrovascular accident; TBI—Traumatic Brain Injury.

Sl. No. Age (years), sex Months since injury Paretic side Pre-morbid handedness Cause of injury

1 <30, M 204 Right Right TBI

2 40–50, M 3 Left Right CVA

3 30–40, M 12 Right Right TBI

4 <30, F 7 Left Right TBI

5 50–60, M 3 Right Right CVA

TABLE 4 Average proportion of data corresponding to the different labels

Arm (%) Hand (%) Non-functional (%)

Left 30.24 47.99 21.76

Right 45.89 42.07 12.03

Affected 51.65 9.54 38.81

Unaffected 59.87 16.07 24.07
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1) There aren’t significant changes in the sensitivity under the

different conditions for any of the tasks.

2) Specificities for the functional tasks opening a bottle and

drinking from a cup do not change much under the different

conditions. However, there is a drop in specificity under trte for

drinking from a cup for the intra-subject model for the left-hand

data (F = 19.1, p < 0.0001). This could be because almost all

control participants used only their right hand for this task,

resulting in mostly non-functional data in the left-hand data.

3) There is a significant drop in the specificity for walking tasks

under trte, trte and trte, particularly for trte when compared to

the baseline (trte) (p < 0.0001).

The results obtained for the patient data at the individual

level were varied. Each patient performed different and fewer

tasks, and so, meaningful conclusions about the tasks in the

dataset could not be made.

4 Discussion

The current study compared the sensitivity and specificity of

existing measures for quantifying upper limb use—a

fundamental construct in assessing upper limb functioning

(David et al., 2021b). The results from the comparative

analysis show that the machine learning-based measures are

better than the other measures presented here and are a

promising approach for upper limb use assessment using

IMUs. Our analysis, using an independent dataset, confirms

the results reported by Lum et al. (Lum et al., 2020): 1) the

random forest method is slightly better than SVM in detecting

upper limb use; we also found that it is also slightly better than an

MLP neural network. 2) Intra-subject machine learning models

are better than inter-subject models, which is due to the inter-

subject differences in the movement patterns. Another possible

reason for the reduced performance of the inter-subject models

could be the small number of subjects included for training.

However, it is unclear why random forests perform slightly better

than the other machine learning methods. Similar observations

about random forests are seen in other applications (Biau and

Scornet, 2016).

Although the improved performance in upper limb use

assessment through machine learning methods is valuable in

practice, the black-box nature of these methods obscures their

mechanism of operation. Traditional measures (TAC and GM),

despite their poor performance, offer an intuitive explanation of

their classification since they employ interpretable quantities such as

counts, forearm pitch, and yaw. Previous work by Lum et al.

employed models using 11 accelerometer features and did not

attempt to understand the roles of these different features and

their physical significance. Understanding the most relevant and

important movement features can guide the optimal selection of

sensors for measurements and further improve measure

performance. The current study shows that the random forest

method employs a combination of arm orientation (mean

acceleration features) and the amount of movement (variance of

acceleration) to estimate upper limb use. Either GM or TAC does

not measure up to the random forest method as they do not use all

the relevant information and have relatively simple decision rules.

However, an advantage of these traditional methods is that they do

not require any training, unlike the machine learning methods. The

hybrid GMAC measure performed very closely to the inter-subject

machine learning models, indicating that it might still be useful in

the absence of training datasets required for employing machine

FIGURE 5
(A) Boxplot depicting the Youden indices for the reduced models, *Significant difference (p < 0.05); ‘full’ refers to models trained with all
features—mean and variance of ax , ay , az , mean, variance, maximum, minimum and entropy of ‖a‖2 (11 features), ‘mean of ax ’ are models trained with
only the one feature, ‘all mean’ refers to models trained with mean of ax , ay , az (3 features), ‘all mean and variance’ are models trained with mean and
variance of ax , ay , az (6 features), (B) Correlation coefficients between features of the random forest classifier and parameters of GM (Gross
Movement score) and TAC (Thresholded Activity Counting).
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learning methods. Additionally, GMAC can be computed with only

accelerometers since it only employs pitch and activity counts.

However, the detection ability of the intra-subject models is

unmatched owing to the differences between subjects, especially

in those with hemiparesis.

Most functional movements were performed on top of a table

in the current dataset, while walking formed a significant portion

of the non-functional movements class. Therefore, it is no surprise

that the pitch of the arm (mean acceleration along x-axis) was an

important feature in classifying movements. In another dataset

where only tabletop tasks are included, the pitch may not play as

significant a role, and activity counts could be the determinant in

distinguishing between functional movements and rest.

The observations made in this study about the nature of a

dataset are preliminary, largely because of the limited number

and variety of tasks included in the experiment. The observed

results on the impact of the presence/absence of a particular task

on a measure’s performance can be explained by two factors: 1)

how well represented the movements of this particular task are in

that of the other tasks in the dataset, and 2) how much the

proportion of the functional class is affected by the presence or

absence of a particular task in the dataset. Tasks that have similar

movement patterns and similar proportions of functional

movements to other tasks can be removed from the dataset

without losing performance. But tasks with unique movement

patterns and different proportions of functional movements

must be included in the training dataset to ensure good

performance for a machine learning method. It can be safely

concluded that the choice of tasks for the training dataset has an

integral part in determining the performance of machine

learning-based upper limb use measures. Machine learning

methods should ideally be trained on a sample representative

of daily life behavior, consisting of similar tasks and proportions

of functional and non-functional movements. The variability

across subjects in everyday tasks and the amount of functional

activity compels the use of intra-subject models for classifying

upper limb movements. However, training and deploying these

intra-subject models in practice is cumbersome, primarily

because of the arduous process of manual ground truth

labeling. With a much larger dataset with more participants, it

is possible that inter-subject model performance may improve. In

which case, pre-trained, generalized models can be deployed

without tuning for individual subjects.

This work compared upper limb use measures that employed

just two wrist-worn IMU sensors. Continuous and objective

assessment of upper limb use can be done in an unobtrusive

manner using wrist-worn sensors. The use of additional sensors

to filter out walking movements improves performance but is

likely to impact usability and adherence (Leuenberger et al.,

2017). One of the limitations of detecting use with wrist-worn

FIGURE 6
(A) Sensitivity and specificity obtained from intra-subject RF classifiers; ‘full’ refers to models trained with all features—mean and variance of ax ,
ay , az , mean, variance, maximum, minimum and entropy of ‖a‖2 (11 features), ‘mean of ax ’ are models trained with only the one feature, ‘all mean’
refers tomodels trainedwithmean of ax , ay , az (3 features), ‘all mean and variance’ aremodels trainedwithmean and variance of ax , ay , az (6 features),
(B) Sensitivity and specificity obtained when certain tasks were removed from the train and test sets. Changes in sensitivity were found to be
statistically insignificant in all tasks except in intra-subject models for opening bottle task for the left hand (F = 6.05, p = 0.0005). Task labels
‘openbottle’ corresponds to ‘Open a bottle’, ‘drinkcup’ corresponds to ‘Drinking from a teacup with handles’ and ‘walk’ corresponds to ‘Walk 25 m’,
‘Hit a light switch’ and ‘Open a door’.
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IMU sensors is that only functional movements can be detected

but the differences between functional and non-functional

postures cannot be distinguished. For example, resting the

forearm on a table will be indistinguishable from holding

down a book to keep the pages from turning.

The focus of this work is only on upper limb use, a construct

that is useful in evaluating other important usage constructs. Our

previous work (David et al., 2021b) expounds on a framework for

the assessment of upper limb functioning using sensors and

elaborates on other constructs such as intensity of use, functional

workspace, movement quality, etc.

The relatively small dataset size used in this current study is its

main shortcoming. The dataset contained 10 unimpaired and five

stroke survivors with hemiparesis carrying out a set of daily

activities; stroke survivors did not perform some of the tasks due

to difficulty in performing them. There were also variations in the

percentages of functional and non-functional movements within the

dataset. Nevertheless, the agreement of the results with that of Lum

et al. (2020) restores confidence in the results, despite the small

dataset used. Another limitation of the study is that participants were

not given food or drink during the eating and drinking activities. The

nature of the mimicked movements might have been altered since

the risk of spilling food or drink was removed.

The use of machine learning-based measures for quantifying

upper limb use seems to be the way forward. Future work in this

space must focus on improving the performance of machine

learning methods to deploy them in clinical practice efficiently.

We propose the following two activities that are worth pursuing:

1) Developing a large, open, annotated dataset with unimpaired

and people with impaired movement abilities, performing a

wide range of daily activities wearing different types of sensors

(at least wrist worn IMUs). This can stimulate work on

developing and validating optimal classifiers with high

accuracy and reliability. The proposed dataset must have a

good sample of the types of movements expected from

patients in daily life and a good proportion of functional

and non-functional movements of interest.

2) Automatic annotation of functional/non-functional

movements from video recordings using an RGBD camera

must be explored to eliminate the cumbersome manual

labelling process. Recent work has shown that data from

multiple IMUs can detect different functional primitives of

complex upper limbmovements (Parnandi et al., 2021). Thus,

it is likely that pose estimates obtained from an RGBD camera

can be used for automatically classifying functional and non-

functional movements, along with different task types as well.

We believe that exploring these two avenues will help make

sensor-based upper limb use detection highly accurate and

efficient for routine clinical use.

5 Conclusion

This paper presented a detailed comparison of existing

measures to quantify upper limb use and confirms previous

findings that an intra-subject random forest measure

outperforms others. Among the traditional measures, the

hybrid GMAC measure, introduced in this study, outperforms

all other traditional measures. Thus, the GMAC is an appropriate

alternative in the absence of data for training machine learning

measures. The current work also sheds light on the random forest

measure, demonstrating that it uses a combination of arm

orientation and amount of movement to detect upper limb

use. The importance of data-related factors, such as class

proportion and types of tasks, on the performance of machine

learning measures, was also demonstrated. We strongly believe

that this study is a step towards understanding and optimizing

measures for upper limb use assessment using wearable sensors.
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