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Heart rate variability during
mindful breathing meditation

Aravind Natarajan*

Google LLC, San Francisco, CA, United states

We discuss Heart Rate Variability (HRV) measured during mindful breathing
meditation. We provide a pedagogical computation of two commonly used heart
rate variability metrics, i.e. the root mean square of successive differences (RMSSD)
and the standard deviation of RR intervals (SDRR), in terms of Fourier components. It
is shown that the root mean square of successive differences preferentially weights
higher frequency Fourier modes, making it unsuitable as a biosignal for mindful
breathing meditation which encourages slow breathing. We propose a new metric
called the autonomic balance index (ABI) which uses Respiratory Sinus Arrhythmia
to quantify the fraction of heart rate variability contributed by the parasympathetic
nervous system. We apply this metric to heart rate variability data collected during
two different meditation techniques, and show that the autonomic balance index
is significantly elevated during mindful breathing, making it a good signal for
biofeedback during meditation sessions.
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Introduction

Mindfulness has shown promise as a non-pharmaceutical intervention in the management
of stress, as well as a variety of other conditions [Niazi and Niazi (2011); Khoury et al. (2013);
Goldberg et al. (2018); Spijkerman et al. (2016); Pickert (2014)]. Meditation and mindfulness
practices have the ability to support individuals, especially during difficult times [Behan (2020);
Toniolo-Barrios and Pitt (2021)]. Mindful breathing exercises have been shown to be helpful in
reducing reactivity to repetitive thoughts [Feldman et al. (2010)].

Mindfulness Based Stress Reduction (MBSR) originally introduced by Jon Kabat-Zinn
[Kabat-Zinn (2003)] has proved to be an evidence based technique for the improvement of
health and wellbeing [Grossman et al. (2004a)]. In a metastudy of 7 controlled and randomized
controlled studies which were aggregated, MBSR was shown to have a significant positive non-
specific effect compared to the absence of any treatment when comparing Cohen’s d measures
of stress [Chiesa and Serretti (2009)]. A study involving 75 participants who engaged in an
8 weeks course on MBSR showed a significant (Cohen d = 1.04) decrease in stress as measured
by the 10-item Perceived Stress Scale [Baer et al. (2012)]. Similarly, a study involving 53
participants who attended a 10-day Vipassana meditation retreat showed reductions in overall
distress 3 months following the retreat, encompassing a spectrum of psychological symptoms
(Ostafin et al. (2006)). Mindfulness based treatments are also pursued in the management
of chronic pain [Chiesa and Serretti (2011); Bawa et al. (2015); Veehof et al. (2016)] and
insomnia [Ong and Sholtes (2010); Ong et al. (2012; 2014); Garland et al. (2016); Wang et al.
(2020)]. Mindfulness/Meditation also has the power of neuroplasticity, e.g. Hölzel et al. (2011)
showed changes in regional brain gray matter density after just 8 weeks of an MBSR program.
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Commercially available wearable devices are increasingly popular
in the United States, and many wearable devices offer mindfulness
training [Balconi et al. (2017); Chiovato et al. (2021); Balconi et al.
(2019); Kim et al. (2021); Hao et al. (2017); Bhayee et al. (2016)].
A notable technique for training in mindfulness meditation is the
use of biofeedback signals. Biofeedback can help individuals gain
awareness of physiological processes occurring within the body, and
also to consciously control those processes [Ratanasiripong et al.
(2010)]. A very useful biosignal is the heart rate variability (HRV)
which refers to the beat-to-beat variability in heart rate. A high
HRV usually indicates good health and an increased ability to
adapt to stressful situations. HRV biofeedback has been applied to
the management of stress [Ratanasiripong et al. (2012)], depression
[Siepmann et al. (2008); Economides et al. (2020)], and asthma
[Lehrer et al. (2004)]. In a meta-analytic review of HRV biofeedback,
it was shown that HRV biofeedback produces improvement
in a variety of physical and emotional conditions [Lehrer et al.
(2020)].

HRV is one of the best non-invasive probes of the autonomic
nervous system (ANS) [Shaffer and Ginsberg (2017)]. The ANS
consists of two main branches: the sympathetic branch which
predominates during exercise, and stressful “fight or flight” reactions,
and the parasympathetic branch which predominates during quiet,
resting conditions [McCorry (2007)].The 10th cranial nerve called the
vagus nerve is the main contributor of the parasympathetic nervous
system (PNS) and the provides the main parasympathetic supply to
the heart [Breit et al. (2018); Bonaz et al. (2017)]. A valuable metric
of vagal or parasympathetic activity is Respiratory Sinus Arrhythmia
(RSA) [Berntson et al. (1993); Grossman et al. (2004b); Hayano et al.
(1996); Berntson et al. (1997); Eckberg (1983); Grossman and Taylor
(2007); Porges (1992); Lehrer (2022)] which is the rhythmic
modulation of the heart rate in response to respiration. The heart
rate increases during inhalation, and decreases during exhalation,
and this phenomenon has been associated with the efficiency of
pulmonary gas exchange [Hirsch and Bishop (1981); Hayano et al.
(1996);Giardino et al. (2003)]. PNS activitymay be utilized to quantify
stress by defining stress as a disruption of homeostasis with low PNS
activity [Porges (1992)]. A state characterized by the absence of stress
would therefore be one with high PNS activity [Porges (1992)]. The
PNS activity can be quantified by measuring the RSA which manifests
as excess power in the HRV power spectrum, at the respiratory
frequency.

The connection between HRV and meditative states of mind
has been well established in the scientific literature. Murata et al.
(2004) collected EEG data and HRV data during Zen meditation,
and analyzed the data in association with trait anxiety. It was
found that slow alpha wave inter-hemispheric EEG coherence in
the frontal lobe increased during meditation, reflecting non-task
related cognitive processes such as attention. Among HRV measures,
this was accompanied by an increase in the relative HF power and
decrease in LF/HF, reflecting an increased parasympathetic response
(the respiratory rate was fixed to 15 per minute, the high frequency
band consists of frequencies between 9 min−1–24 min−1, the low
frequency band consists of frequencies between 2.4 min−1–9 min−1).
Wu and Lo (2008) reported HRV changes among two groups: the
first group consisting of 10 experienced Zen practitioners, while the
other group consisting of non-meditators. They found that when the
ANS was under parasympathetic predominance, the heart rate can

be purely modulated by respiration (their respiratory rate was about
15 per minute). Nesvold et al. (2012) studied HRV changes during
non-directive meditation, and found an increase in both LF and
HF components (the respiratory rate was unchanged, they interpret
the change in HRV as entirely due to meditation, not changes in
respiration). They also found no change in mean heart rate during
meditation. Cysarz and Bussing (2005) investigated the impact of
4 exercises: spontaneous breathing, mental task, seated Zen, and
walkingmeditation, onHRV. Seated Zen andwalkingmeditation both
resulted in a high degree of synchronization between respiration and
heart rate, while spontaneous breathing and themental task showedno
such synchronization.The two kinds of meditation were characterized
by increased LF (due to a much slower breathing rate) and in-phase
RSA. Lo et al. (2019) studied the effect of Zen meditation on subjects
undergoing a drug rehabilitation program, showing significant
improvement in HRV (especially RSA), but no change in mean Heart
Rate.

A popular HRV metric computed by many commercial wearable
devices, and which is often regarded as a measure of the PNS is the
Root Mean Squared value of the Successive Differences (RMSSD) of
the interbeat intervals (henceforth “RR intervals”) [Natarajan et al.
(2020)]. This is indeed the case when the HRV is measured
during sleep, when the respiratory rate is typically in the range
11.8 min−1–19.2 min−1 [Natarajan et al. (2021)] and the RSA appears
as excess power in the high frequency band of the HRV power
spectrum. This is true because the RMSSD is a biased estimator
of HRV, i.e. it preferentially weights high frequency components
and is therefore, sensitive to RSA provided the respiratory rate is
within the high frequency band. The RMSSD is not as informative
about parasympathetic activity during slow paced breathing when the
respiratory rate can be as low as 6 min−1 or even lower, and when the
RSA falls within the low frequency band.

The goals of this article are twofold.

• To provide a pedagogical calculation based on Fourier analysis,
to demonstrate that the RMSSD should only be considered as
a marker of vagal or parasympathetic activity when the HRV is
dominated by Fourier modes in the high frequency band, i.e.
when the respiratory rate is ≳ 12 per min−1, which is commonly
true during sleep.
• To propose an alternate metric to capture parasympathetic

dominance ideally suited for periods of mindful breathing at low
respiratory rates.We demonstrate the efficacy of this metric using
a publicly available dataset of HRV measured during traditional
meditation techniques.

When compared to an unbiased metric such as the Standard
Deviation of the RR intervals (SDRR), we will see that the RMSSD
greatly underestimates the HRV when the respiratory rate is low,
i.e. during slow, paced breathing favored during mindful breathing
meditation. The SDRR is however, a measure of the total ANS, and
not the PNS. We will therefore consider another metric based on
RSA called the autonomic balance index (ABI) which is the ratio of
HRV due to respiration to the total HRV. When RSA is the dominant
source of HRV, the RR interval time series resembles a periodic
sine wave due to a small number of dominant Fourier components,
a condition known as coherence [see for example, McCraty et al.
(2009)]. Our computation of the ABI is qualitatively similar to the
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coherence ratio computation described in McCraty et al. (2009) (but
the ABI is bounded between 0–1). We hypothesize that the ABI
is proportional to the ratio PNS:ANS, and which can therefore be
interpreted as a measure of the absence of stress. Proxies of autonomic
balance have been considered in the literature, e.g. LF/HF or Poincare
S1/S2, however, these measures do not work during slow, mindful
breathing. During slow breathing, the RSA falls within the LF band,
and HF power does not capture PNS activity, rendering the LF:HF
ratio unsuitable.The Poincare S1 and S2 parameters are linearly related
to RMSSD and SDRR and hence, they too cannot be used during slow
breathing. We will provide a simple algorithm to compute the ABI.
We will then apply this computation to a dataset of HRV measured
during meditation, and show that the ABI is largest during mindful
breathing.

Methods

Data

The data used for this analysis have been described by
Peng et al. (1999) and may be downloaded from the Physionet
database [Goldberger et al. (2000), https://physionet.org/content/
120 meditation/1.0.0/]. Two specific meditative techniques were
investigated by Peng et al. (1999): 1) Chinese Chi (Qigong)meditation
and 2) Kundalini Yoga meditation. There were 8 Chi meditators (5
female and 3 male, age range 26–35, mean 29 years, with 1–3 months
of prior practice) and 4 Kundalini Yoga meditators (2 female and 2
male, age range 20–52, mean 33 years, advanced meditators). Time
series data of the instantaneous heart rate have been provided from
which we computed the RR interval time series data. Data were
collected during meditation and also during the period prior to
meditation, which serves as a control. Also included were three
additional non-meditating cohorts to serve as an additional control:
3) 14 healthy subjects (9 female, 5 male, age range 20–35, mean
25 years, supine) following metronomic breathing at 15 min−1, 4)
11 healthy subjects (8 female, 3 male, age range 20–35, mean 29 years)
during sleep, and 5) 9 elite triathlon athletes (3 female, 6 male, age
range 21–55, mean 39 years) during sleep. This is summarized in
Table 1, ‘Duration’ refers to the average duration (minutes) of data
per volunteer, and N5 is the total number of 5-min segments we used
in the analysis.

Quantifying respiratory sinus arrhythmia

Let us now investigate a technique for quantifying the autonomic
balance throughRSA.There have beenmultiplemethods suggested for
quantifyingRSA [see for e.g. Grossman et al. (1990)]. In this article, we
consider a different technique similar to well knownHRVmetrics, and
one which is suitable for use during slow, paced breathing, especially
when the condition of coherence is attained. McCraty et al. (2009)
quantify the condition of coherence through the coherence ratio. Here
we will consider a similar approach: We first compute the standard
deviation of the RR intervals due to RSA alone, called the SDRSA,
considered to be a probe of the PNS. We then compute the ratio
(SDRSA/SDRR) which is bounded between 0–1, and which we refer
to as the Autonomic Balance Index (ABI).

A required step in computing the SDRSA is the measurement
of the respiratory rate. A possible complication here is that the
respiratory rate is variable when the subject is awake. We therefore
consider segments that are short enough that we may make the
assumption that the respiratory rate is approximately constant within
that segment. It is also important that the chosen segment is not
too short because 1) a very short time window will admit only
a small number of realizations of each Fourier mode, increasing
the shot noise error, and 2) the resolution in the spectral domain
is inversely proportional to the size of the window in the time
domain. We choose a segment size of 2 min and smooth the signal
with a Hann window. Estimation of SDRSA and ABI follow the
algorithm.

1 Define 2 frequencies f1 and f2 that may be considered the lower and
upper bounds for the respiratory rate within each 2 min segment.

2 Compute the power spectral density (PSD) normalized so that
∫df P( f) = SDRR2. The PSD is interpolated using a cubic spline. Let
f0 be the frequency that corresponds to the peak of the PSD, and let
A0 be the peak value.

3 Fit a Gaussian G( f) = A0 exp−
1
2
( f− f0

σ
)
2

to the peak of the PSD
described by a mean value ( f0), a standard deviation (σ), and
amplitude A0.

4 Construct the residual R( f) = PSD( f) −G( f). From the residual,
identify the largest peak amplitude A1 in the range f1 < f < f2.
Compute the ratio P = A0/A1 which represents the prominence of
the main peak A0. If P is greater than a preset limit Pmin, it validates
our assumption that the PSD is dominated by a single respiratory
frequency. If P < Pmin, no values are returned and the data are
discarded.

5 If P > Pmin, we compute the following two quantities: 1) The
variance due to respiration = SDRSA2, estimated by the area under
the Gaussian curve = √2π A0 σ. 2) The normalized quantity ABI
= [SDRSA/SDRR]. The algorithm returns the estimated respiratory
rate f0 and ABI.

We apply the algorithm above during meditation, metronomic
breathing, and sleep. For the data measured during rest prior to
meditation (Chi (rest) and Yoga (rest)) however, we include an
additional step at the beginning because the respiratory rate is highly
variable, and the algorithm works best when the respiratory range
is fairly small. We compute the frequency f0 corresponding to the
peak of the PSD and set f1 = MAX (12 min−1, f0 − 3 min−1) and f2 =
MIN(22 min−1, f0 + 3 min−1). For the meditation cohorts (Chi (med)
and Yoga (med)), we set f1 = 3 min−1 and f2 = 10 min−1. For the
metronomic, normal, and ironman cohorts, we set f1 = 10 min−1 and
f2 = 20 min−1. In all cases, we set Pmin = 2.

The data are initially divided into non-overlapping
5 min segments. Each 5 min segment is then divided into a number
of 2 min segments with an overlap of 10 s. To ensure sufficient
data for analysis, we estimate the coverage in each 2 min segment
as the number of observed heart beats/expected number of heart
beats, and impose the condition that the coverage > .7. Provided
the coverage condition is met, f0 and ABI are estimated from each
such 2 min segment (starting from 2:00, in increments of 10 s, until
the 5:00 min mark). A total of 19 such estimates can be made from
a 5 min segment of data (from 2:00 to 5:00 in increments of 10 s,
including both endpoints). The median value of these different
estimates is then calculated for f0 and ABI provided there is a
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TABLE 1 Seven cohorts of volunteers: Chi (med) andYoga (med) are the twomeditation cohorts, while Chi (rest) andYoga (rest) are controls prior tomeditation.
Also considered are themetronomic breathing, normal healthy adults during sleep, and elite athletes during sleep. ‘Duration’ refers to the average time per
volunteer (minutes), and N5 is the total number of 5-min segments we used in the analysis.

Cohort Description Volunteers Duration (min.) N5

Chi (med) Chi meditation 8 57.1 67

Chi (rest) Prior to meditation 8 58.3 54

Yoga (med) Kundalini Yoga meditation 4 11.1 8

Yoga (rest) Prior to meditation 4 10.1 6

Metronomic Metronomic breathing 14 10.0 25

Sleep—Normal Sleep—healthy individuals 11 352.6 535

Sleep—Ironman Sleep—elite athletes 9 85.9 93

minimum of 9 estimates. If there are fewer than 9 estimates (for
example, due to missing data), we do not store any results for that
5 min segment.

Results

An analytic approximation for the root mean
square of successive differences and
standard deviation of RR intervals

Asmentioned in the Introduction, the RMSSD is influenced by the
respiratory rate and is therefore hard to interpret. Here, we provide
a pedagogical approximation of the RMSSD and SDRR from first
principles, using example data measured during slow breathing.

Let RRi represent the ith value of the RR interval time series
sampled at time intervals ti = [t1, t2, t3,⋯ ], where RRi = ti − ti−1. The
RR time series contains a constant term ⟨RR⟩ and a fluctuating term
R̃R:

RRi = ⟨RR⟩ + R̃Ri. (1)

The standard deviation of the RR intervals (SDRR) is computed as:

SDRR = ⟨R̃R2
i ⟩

1/2, (2)

where the angle brackets represent the mean value. The fluctuating
component is expected to be much smaller than the mean, i.e. SDRR
≪ ⟨RR⟩. The differences between successive RR intervals ΔRRi may be
computed as:

ΔRRi = RRi −RRi−1

=
RRi −RRi−1

Δti
Δti

≈ 〈RR〉
dR̃Ri

dt
[1+

R̃Ri

〈RR〉
]

≈ 〈RR〉
dR̃Ri

dt

≈
60 bpm
〈HR〉

dR̃Ri

dt
, (3)

where we used Δti = ti − ti−1 = RRi, and we ignored term of quadratic
order in R̃Ri. ⟨HR⟩ is the mean heart rate, and “bpm” stands for beats
per minute. The RMSSD is the root mean square of the successive

differences ΔRRi, i.e.

RMSSD = ⟨(ΔRRi)
2⟩1/2. (4)

Let us interpolate and re-sample the R̃Ri sequence at a sampling
frequency N/T0 to obtain an R̃R(t) field with N samples (and where
T0 is the length of the signal under consideration, we will assume that
the end points are identified to mimic periodicity). We may expand
this in a Fourier series:

R̃Ri ≈
nF

∑
n=1

an cos2πn
T0

ti + bn sin2πn
T0

ti

≈
nF

∑
n=1

wn sin[2πn
T0

ti +φn], (5)

where nF ≤ nmax is the total number of Fourier modes to be
included in the approximation, and by Nyquist’s theorem, nmax = N/2.
wn = √a2

n + b2
n, φn = tan

−1 ( an
bn
), and ti are the time intervals at

which the RR intervals are calculated. We have assumed bn ≠ 0
and − π

2
< tan−1 ( an

bn
) < π

2
. The coefficients an and bn may be

computed as:

an =
2
T0
∫
T0

0
dt R̃R (t) cos2πnt

T0

bn =
2
T0
∫
T0

0
dt R̃R (t) sin2πnt

T0
. (6)

The frequencies of the Fourier modes are fn =
n
T0

for n = 1,2,3,⋯nF.
Let SDRR (nF) and RMSSD (nF) be the values of SDRR and RMSSD
estimated usingnF ≤ nmax Fouriermodes, while SDRRandRMSSDare
the exact values. Eq. 5 can be used to estimate SDRR (nF) from Eq. 2.
From Eqs. 3, 5, we find

ΔRRi (nF) ≈
60 bpm
⟨HR⟩

2π
T0

nF

∑
i=1

nωn cos(2πn
T0

ti +φn), (7)

from which we can estimate the RMSSD (nF) using Eq. 4.
Figure 1A shows a 5 min sample of RR intervals fromaparticipant

practicing Chi meditation, exhibiting high HRV and prominent RSA.
Plot b) shows the power spectral density along with the best fit
Gaussian curve. We note that most of the power comes from a
narrow band of frequencies centered around a respiratory frequency
of 3.2 min−1. Plot c) shows the ratios [RMSSD (nF)/RMSSD] and
[SDRR (nF)/SDRR], where the values of RMSSD (nF) and SDRR
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FIGURE 1
(A) describes a 5 min segment of the RR interval time series, from a subject practicing Chi meditation. (B) Shows the power spectral density showing strong
respiratory sinus arrhythmia at a respiratory frequency of 3.2 min−1. The ratios (RMSSD (nF)/RMSSD) and (SDRR (nF)/SDRR) computed from the first nF

Fourier modes are displayed in (C). Many more Fourier modes need to be included for the computation of RMSSD (nF) compared to SDRR (nF) since RMSSD
preferentially weights the higher frequency modes.

(nF) are calculated from the approximate formula we derived, and
include up to nF Fourier modes. RMSSD and SDRR are the exact
values. Both RMSSD (nF) and SDRR (nF) approach their true
values as nF→ nmax, but the RMSSD (nF) computation made some
simplifying assumptions, and is hence not as accurate as the SDRR
(nF) computation. RMSSD (nF) also converges to the true value
with a far larger number of Fourier modes than SDRR (nF) since
it preferentially weights high frequency modes. SDRR (nF) requires
only 18 Fourier modes (corresponding to a peak frequency of
88/5 = 3.6 min−1) to reach 90% of the true value. This makes
intuitive sense since the peak of the PSD was found to be at 3.2
min−1 and there is very little power at higher frequencies. RMSSD
(nF) on the other hand, requires 88 Fourier modes (corresponding
to a peak frequency of 88/5 = 17.6 min−1) to reach 90% of the
true value. Frequencies above 3.6 min−1 contribute ≲ 10% to the
SDRR, while contributing ≈35% to the RMSSD. This discussion
highlights a major flaw in using the RMSSD to quantify HRV for
slow breathing: A small amount of power at high frequencies is
preferentially weighted by the RMSSD even though the high frequency
Fourier modes in this case are not associated with respiration.
The SDRR being an unbiased HRV estimator does not weight
Fourier modes differently by frequency. The lack of high frequency
content also results in the RMSSD being much lower than the
SDRR. For this example, we find RMSSD = 36.8 ms, while the
SDRR = 102.6 ms.

Figure 1 demonstrates a sample wherein most of the variance is
contributed by a single Fourier mode (or a narrow range of modes).
Let us consider the special case when all the power comes from a single
frequency mode. The RR time series may then be simplified as:

RR = A sin[2π ft+φ] , (8)

where f is the respiratory rate and A is the amplitude of oscillations.
The SDRR is then simply A/√2. We can approximate ΔRR as:

ΔRR ≈ ΔT
d (RR)
dt

≈
60 bpm
〈HR〉

d (RR)
dt
≈

2π f
〈HR〉

A cos(2π ft+φ) , (9)

where f is measured in min−1 and ⟨HR⟩ is measured in beats per
minute. Taking the root mean square of Eq. 9, we get:

RMSSD ≈ 1.05 SDRR (
72 bpm
⟨HR⟩
) (

f
12min−1

). (10)

It is clear from Eq. 10 that the RMSSD increases with respiratory
rate. This metric is therefore best employed in situations when the
respiratory rate is high (i.e. > 12 min−1) and relatively constant, i.e.
during sleep. In the example shown inFigure 1, we find the respiratory
rate = 3.2 min−1, and the mean heart rate is 72 beats per minute. From
our approximate analysis (Eq. 10), we expect a ratio RMSSD:SDRR =
.28, while the true ratio = .36.
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FIGURE 2
(A) and (B) show the mean subtracted RR interval time series data and the power spectral density, from a 2 min segment of data collected prior to
meditation. (C) and (D) show the same quantities for data collected during Kundalini Yoga meditation.

Autonomic balance during meditation

We have seen in the previous subsection that the RMSSD
is unsuitable during periods of slow, paced breathing favored by
mindful breathing meditation. The SDRR, although an unbiased
metric, is also not ideal for biofeedback during mindful breathing
meditation since it captures the total variance, i.e. it is a measure
of the ANS and not the PNS. In this subsection, we apply the
algorithm for computing ABI described in the Methods section, to the
data.

Figure 2 shows the mean subtracted RR interval time series
data for two situations: a) describes a 2 min resting period prior
to meditation, while c) shows the data during meditation (we
used an sample from the Kundalini Yoga cohort for this figure).
b) and d) show the power spectral density plots for the two
situations respectively. Contrasting the two scenarios, we note the
following: 1) The respiratory rate is much lower during the meditation
phase (4 min−1) compared to the resting phase (18.5 min−1), 2)
Most of the power is contained within the respiratory band
during the meditation phase (ABI = .86). In the case of the
resting period prior to meditation, there is considerable power at
frequencies not associated with respiration ABI = .57, some of
this power is likely due to Mayer Wave Sinus Arrhythmia [Julien
(2006; 2020)], 3) The amplitude of oscillations is much larger
during meditation (SDRR = 55.7 m) compared to the resting phase
(SDRR = 26.4 m).

Figure 3 shows various metrics evaluated for the 7 different
cohorts: 1) Chi (med), i.e. during Chi meditation, 2) Chi (rest),
i.e. prior to meditation, 3) Yoga (med) during Kundalini Yoga
meditation, 4) Yoga (rest) prior to meditation, 5) Metronomic
breathing, 6) Normal, i.e. healthy individuals during sleep, and 7)
Ironman triathletes during sleep. The Chi cohort (meditation and
rest) is shown in magenta, the Yoga cohort (meditation and rest) in
green, metronomic breathing in red, normal in brown, and ironman
in blue. Subplot a) shows the ABI for the 7 cohorts. The highest
scores are obtained for the two meditation cohorts, followed by
metronomic breathing, sleep, and finally the rest cohort (awake, but
not meditating). Subplot b) shows the RMSSD. Not surprisingly the
meditation cohorts perform poorly in the RMSSD comparison due
to the dependence of RMSSD on respiratory rate. Subplot c) shows
the average heart rate. There is very little difference in heart rate
during Chi meditation. For the Kundalini Yoga cohort however, the
heart rate increases during meditation. The heart rate is lowest during
sleep, especially for the elite athletes. We note the heart rate is not
expected to decrease significantly during mindful breathing [Shaffer
and Ginsberg (2017)], and is therefore not a good metric to use
as biofeedback. Subplot d) shows the respiratory rate. We see that
the two meditation techniques we discuss here encourage very slow
breathing. As expected the metronomic breathing cohort shows very
little variability.

Table 2 shows the mean (standard deviation) computed from the
5-min medians, for the autonomic balance index (ABI), respiratory
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FIGURE 3
A comparison of the autonomic balance index (ABI), RMSSD, Heart Rate, and Respiratory Rate for the 7 different cohorts. ABI shows a very significant
difference between the meditation and rest data, while such a difference is not seen in the RMSSD. The respiratory rate is also substantially decreased
during meditation compared to the rest phase.

rate, RMSSD, SDRR, heart rate (HR), LF power, and HF power for the
seven different cohorts. One can compare a pair of cohorts by means
of the Cohen d effect size [Cohen (1992); Coe (2002)]:

d =
μ2 − μ1

σ
, (11)

where μ1 and μ2 are the means of the two cohorts, and σ is the pooled
standard deviation given by:

σ2 =
σ2
1 (N1 − 1) + σ

2
2 (N2 − 1)

N1+N2− 2
. (12)

One can also define a Z−score

Z =
μ2 − μ1

σz
, (13)

from which one may obtain a p−value to determine statistical
significance. σz is defined as

σ2
z =

σ2
1

N1
+

σ2
2

N2
. (14)

N1 and N2 are the number of samples in the two cohorts.
Table 3 shows the effect size and fractional change, when

comparing two cohorts: The rest cohort (pre-meditation) and the
meditation cohort, for both Chi, and the Yogameditation.TheCohen’s

d−effect size compares rest to meditation, so that when the effect size
is positive, the metric measured for the meditation group is larger
than the same metric measured for the rest group. The fractional
change is defined as: [ metric (med) - metric (rest) ]/metric (rest).
Thus, a positive fractional change implies that the metric is higher
in the meditation group compared to the rest group. The column
for statistical significance tests whether the difference is statistically
significant at the p < .05 level for a 2-tailed test (we used the condition
|Z| > 1.96). The sample sizes are provided in Table I.

The metrics that show the largest difference between rest and
meditative states are the respiratory rate and the ABI. Not surprisingly,
the respiratory rate decreases during meditation. The Cohen’s d−effect
sizes for the respiratory rate are d = −6.1 for Chi, and d = −12.3 for
Yoga.TheABI shows a large positive effect size (d = 3.9 for Chi and d =
5.0 for Yoga). Among the other metrics we considered, only the SDRR
and LF power are statistically significant for both forms of meditation.
For SDRR, we find d = .5 (1.1) for Chi (Yoga), while for LF power,
we find d = 1.1 (1.4) for Chi (Yoga). The HR is statistically significant
for the Yoga cohort, but not for the Chi cohort. Nevertheless, we do
not recommend using HR as a biosignal since it increased during
meditation (Yoga cohort) in this particular example. The cohort with
the lowest heart rate was “Ironman”, i.e. the elite athletes. We note that
the effect size computation for the Yoga (rest) and Yoga (med) cohorts
needs to be treated with caution, due to the small sample sizes.
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TABLE 2 Mean (standard deviation) computed for the 7 cohorts, for different metrics.

Activity ABI Resp. Rate RMSSD SDRR HR LF HF

(min−1) (ms) (ms) (bpm) (ms2) (ms2)

Chi (med) .72 (.17) 3.9 (.8) 35.5 (16.3) 66.9 (22.5) 77.8 (9.7) 3,365 (2,700) 312 (298)

Chi (rest) .19 (.07) 15.8 (2.8) 36.4 (12.8) 56.8 (14.7) 79.7 (10.1) 1,167 (790) 391 (217)

Yoga (med) .80 (.07) 5.4 (1.1) 50.4 (31) 86.6 (32.3) 91.9 (8.5) 6,574 (4,746) 644 (776)

Yoga (rest) .33 (.12) 18.9 (1.1) 41.6 (6.7) 56.8 (16) 66 (2.2) 1,312 (690) 470 (109)

Metron .52 (.15) 14.6 (.1) 59.1 (30.2) 58.1 (20.6) 61.7 (8.1) 828 (572) 1,618 (1,382)

Normal .45 (.18) 14.6 (2.7) 58.1 (32.2) 67.9 (39.8) 62.1 (9.1) 1,676 (1990) 1728 (1994)

Ironman .40 (.18) 14.1 (2.4) 63.5 (25.4) 78.8 (46.5) 49.4 (7.1) 2,176 (4,128) 1933 (3,289)

TABLE 3 Comparison of the rest andmeditation cohorts.When the effect size and fractional change are positive, themetric measured for themeditation cohort is
larger. A negative effect size and fractional change imply that themetric measured for the rest cohort is larger.

Metric Chi meditation Yoga meditation

Effect Size Stat. Sig. ? Fractional Change Effect Size Stat. Sig. ? Fractional Change

ABI 3.9 Yes 2.79 5.0 Yes 1.42

Resp. Rate −6.1 Yes −.75 −12.3 Yes −.71

RMSSD −0.1 No −.03 0.4 No .21

SDRR 0.5 Yes .18 1.1 Yes .53

LF 1.1 Yes 1.88 1.4 Yes 4.01

HF −0.3 No −.20 0.3 No .37

HR −0.2 No −.02 3.9 Yes .39

Real time biofeedback

We have shown that the ABI is greatly increased during mindful
breathing. In this subsection, we discuss how the ABI can potentially
be used as a biofeedback tool during meditation, or else, to monitor
stress [for a systematic review of biofeedback and stress management,
see for e.g. Yu et al. (2018)].

HRV biofeedback is often implemented by encouraging slow,
paced breathing at the resonance frequency, resulting in heart rate
oscillations that are much larger than baseline values [Shaffer and
Meehan (2020)]. HRV biofeedback has been shown to be a promising
intervention for reducing anxiety and stress [Goessl et al. (2017)].
In laboratory tests, HRV biofeedback has been shown to improve
cognitive performance,while aiding relaxation [Prinsloo et al. (2011)].
HRV biofeedback may be effectively gamified, i.e. presented in a
visually compelling manner that encourages users to engage in
activities that lower stress [Yu et al. (2017)]. It has also shown promise
in the treatment of trauma and post-traumatic stress disorder [Reyes
(2014)]. Studies have indicated that RSA biofeedback appears to be
more effective in reducing state anxiety and heart rate stress reactivity
compared to passive relaxation techniques [Sherlin et al. (2009)].

Figure 4 shows how the ABI may be used to implement a real
time biofeedback mechanism, providing feedback every 10 s. Plot a)
shows a 10 min segment of RR interval (mean subtracted) data from
a participant in the Chi (rest) cohort, i.e. during rest, while b) shows a
10 min segment from the sameparticipant in theChi (med) cohort, i.e.

during meditation. While sinus arrhythmia is noticeable in both plots,
it is farmore dominant in b) than in a). Plot c) shows theABImeasured
in 2 min windows, and updated every 10 s: The red data points are
plotted for the waveform shown in a) when the participant was at rest,
while the green data points are computed for the waveform in b), i.e.
during meditation. A rough guide that distinguishes meditation from
ordinary daily activities could be ABI = .5, i.e. when the ABI > .5, the
RSA component contributes more than half of the HRV, indicating a
dominance of the PNS.

Two important design criteria regarding biofeedback are: 1)
Window size used for computing the ABI and respiratory rate, and
2) How often the ABI and respiratory rate are computed. In this
example, we computed the ABI using 2 min of data, but updated
the computation every 10 s. The rationale for choosing 2 min for the
window size was discussed in the Methods section. Since the time
between measurements is far smaller than the measurement window,
successive readings are highly correlated. Nevertheless, a trend is
noticeable: in some cases, the measurements show a steady increase,
indicating an increasing contribution due to RSA, while in other cases,
there is a steady decrease, possibly indicating stress or a momentary
distraction. A simple algorithm can then use the instantaneous value
of ABI along with the trend to provide corrective feedback. In this
way, HRV biofeedback could be used to train concentration and
mindfulness of breathing. It is also noticeable that there are gaps in the
plot shown in c), which could be due to a number of reasons. Noisy
data due to motion will impair our ability to measure ABI. In some
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FIGURE 4
RR interval data (mean subtracted) from a participant at rest (A) and during Chi meditation (B). RSA is noticeably present in both plots, but is dominant in (B).
Plot (C) shows the ABI computed from 2 min of data. The red data points are plotted for the waveform in (A), while the green data points are plotted for the
waveform in (B). The ABI = .5 line is an approximate boundary that separates focused meditation from other activities.

cases RSA is not noticeable or too weak for detection. In other cases,
the respiratory rate may be too variable for a measurement to be made
with high confidence. In these situations, the gapsmay be filled though
time series forecasting using data from prior measurements.

Discussion

In this article, we discussed heart rate variability measured during
mindful breathing meditation. We first considered the RMSSD and
SDRR, two popular HRV metrics used by commercial wearable
devices to quantify HRV. We derived an approximate but pedagogical,
analytic expression for SDRR (nF) and RMSSD (nF) using Fourier
decomposition, and including the first nF number of Fourier modes.
This pedagogical exposition made it clear that the RMSSD is a biased
estimator of the HRV in that it preferentially weights higher frequency
Fourier components, with the result that a small amount of power at
high frequencies can contribute a disproportionately large influence
on the RMSSD. Such an effect is not seen in the SDRR which weights
all Fourier modes equally. RMSSD is thus, not a suitable metric to
quantify HRV during slow, mindful breathing.

We have suggested a metric that quantifies the fraction of HRV
contributed by the RSA as a HRV metric that is ideally suited to
serve as a biofeedback signal during mindful breathing meditation.

The ABI metric was motivated by the spectral properties of HRV
duringmindful breathing, and is qualitatively similar to the coherence
ratio computation described in McCraty et al. (2009). Duringmindful
breathing, most of the power falls within the respiratory band of
frequencies, with very little power at lower frequencies (note that the
respiratory frequency itself may be as low as∼ 3 min−1) indicating that
most of the HRV is due to respiratory sinus arrhythmia. Unlike other
HRV measures, ABI is less influenced by age, gender, physical fitness
etc as it is a ratio of twoHRVmeasures. Instead, it ismost influenced by
practices that result in PNS dominance, e.g. meditation. We described
a simple algorithm to compute ABI from the power spectral density of
RR fluctuations.

We then applied the ABI to heart rate time series data collected
during meditation, and described in Peng et al. (1999), who found
extremely prominentHRVfluctuations during two specific, traditional
meditation techniques: Chinese Chi and Kundalini Yoga (here
denoted as Chi (med) and Yoga (med) respectively). The data also
included a period of rest prior to meditation (here denoted as Chi
(rest) and Yoga (rest) respectively). As additional controls, the data
also included metronomic breathing (“metronomic”), healthy adults
during sleep (“normal”), and elite athletes during sleep (“ironman”).
The values of ABI and RMSSD for the 7 different cohorts are shown in
Figure 3A; Figure 3B and demonstrate that ABI is a more sensitive
metric than the RMSSD. The mean and standard deviation of ABI,
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Respiratory Rate, RMSSD, SDRR, heart rate (HR), LF power, and HF
power were tabulated for the 7 cohorts in Table 2, while Table 3 listed
the effect size and fractional change for various metrics comparing the
rest andmeditation cohorts for Chi and Yoga forms ofmeditation.The
respiratory rate showed the largest (negative) effect size (d = −6.1 for
Chi and d = −12.3 for Yoga) indicating a very significant decrease in
the respiratory rate. The ABI showed a large (positive) effect size (d
= 3.9 for Chi and d = 5.0 for Yoga) indicating that the ABI increases
significantly. Among the other metrics, only the SDRR [d = .5 (1.1)
for Chi (Yoga)) and LF power (d = 1.1 (1.4) for Chi (Yoga)] showed a
statistically significant change for both types of meditation.

We do not recommend the use of the LF/HF metric to measure
autonomic balance during slow breathing. The LF/HF metric is most
useful during sleep when the respiratory rate is typically high enough
for vagal activity to manifest in the HF band of the HRV power
spectrum. In that case, the LF/HF ratio indeed has useful information,
and values of LF/HF ≲ 1 indicate parasympathetic dominance. From
Table 2, we note that the two cohorts “Normal” and “Ironman”, i.e.
healthy adults and elite athletes showed a mean LF/mean HF ratio
close to 1.0 during sleep. The cohort labeled “Metron”, i.e. metronomic
breathing at ≈ 15 per minute had the lowest value of mean LF/mean
HF = .5 indicating PNS dominance. This reasoning however does
not apply to the two meditation cohorts: The very low respiratory
rates seen in these two cohorts causes vagal activity to appear in the
LF band instead of the HF band. When the breathing rate is lower
than 9 min−1, the HF power should not be interpreted as indicative
of PNS activity and the LF/HF ratio should not be considered for
situations involving slow breathing. From Table 2, we see that HF
≪ LF for the two meditation cohorts, and since the RSA is entirely
contained within the LF band, the HF power is not of any real
physiological significance. The failure of the mean LF:HF ratio to
signify autonomic balance underscores the need for a different metric
that does not depend on respiratory rate. The ABI provides such a
metric.

There are several limitations to this work. The ABI algorithm
interprets power at frequencies outside the chosen range ( f1, f2) of
possible respiratory rates as due to stress, i.e. sympathetic nervous
system activity creates low frequency power. However not all power at
low frequencies is due to stress, e.g. theMayerWave Sinus Arrhythmia
(MWSA) at f ≈ 6 per minute is caused by blood pressure oscillations
[Julien (2006; 2020)], and a pronounced MWSA can cause an
artificially low ABI when the RSA occurs at much higher frequencies.
Another limitation in computing the ABI is that it assumes a constant
respiratory ratewithin a 2 min window.While this is naturally satisfied
during mindful breathing or during sleep, that is less likely to be
the case when subjects are awake. We have also assumed that the
inhalation and exhalation times are the same. ABI also relies on the
presence of respiratory sinus arrhythmia. We were able to compute
ABI in the period prior tomeditation, but we expect it would be harder

to do so at a random time of day, and especially during times of stress
when the respiratory sinus arrhythmia would be subdominant. RSA is
also decreased in older individuals and it would therefore be harder
to compute ABI for older subjects. The algorithm is unlikely to work
in individuals who have heart arrhythmias. ABI would likely not be
computed during normal activities such as working, eating, watching
television, etc, and other HRV metrics would be preferable during
these activities. Wearable devices also have difficulty measuring RR
interval data when subjects are moving.
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