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Calcium mishandling and mitochondrial dysfunction have been increasingly

recognized as significant factors involved in the progression procedure of

cardiomyopathy. Ca2+ mishandling could cause calcium-triggered

arrhythmias, which could enhance force development and ATP

consumption. Mitochondrial disorganization and dysfunction in

cardiomyopathy could disturb the balance of energy catabolic and anabolic

procedure. Close spatial localization and arrangement of structural among

T-tubule, sarcoplasmic reticulum, mitochondria are important for Ca2+

handling. So that, we illustrate the regulating network between calcium

handling and mitochondrial homeostasis, as well as its intracellular

mechanisms in this review, which would be worthy to develop novel

therapeutic strategy and restore the function of injured cardiomyocytes.
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Introduction

Cardiomyopathy leads to a substantially elevated risk for morbidity and mortality

(Lipshultz et al., 2019). A particular pathogenesis and particular genetic variants, clinical

manifestations, alternations in cardiac structures, and changes in heart rhythm are

associated with prognosis and are independent risk factors affecting cardiac geometry

and function. Among all the patients with cardiomyopathy, children cases are always

associated more risk of adverse outcomes. The clinical phenotype of cardiomyopathy is

determined by the risk factors involved. Genetic variants in loci encoding sarcomeres, the

cytoskeleton, mitochondria, gap junctions, and ion channel proteins predominantly

contribute to cardiomyopathy, including Barth syndrome with Taffazzin gene

mutation (Liu et al., 2021), arrhythmogenic cardiomyopathy (ACM) especially with

DSP, DSG2, DSC2 and PKP2mutations (Austin et al., 2019) and dilated cardiomyopathy

(DCM) with LMNAmutation (Yang et al., 2022). Although the primary morphofunctions

of cardiomyopathy vary by classification, they manifest with systolic dysfunction, clinical

heart failure, and arrhythmia at the end stage of disease (Ranjbarvaziri et al., 2021).
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However, there is still a gap in determining children related

cardiomyopathy. Most of researches on cardiomyopathy focused

adult disorders in cardiomyocytes. Recently, the studies on

cardiomyocytes maturation brought new insights into the

mechanisms of cardiomyopathy. Moreover, the application of

induced pluripotent stem cell (IPSC) also provided optimal

models to explore early onset cardiomyopathies.

The contractility of cardiomyocytes is associated with Ca2+

homeostasis and adenosine tri-phosphate (ATP) provided by

mitochondria (Kaasik et al., 2004). Close arrangement and

localization of structures such as transverse tubules

(T-tubules), the sarcoplasmic reticulum (SR), and

mitochondria is favorable for direct functional interactions

between these compartments as dyads. A low concentration of

Ca2+ from T-tubules induces a large release of Ca2+ from the

proximal SR, followed by a transient increase in mitochondrial

Ca2+ (Sharma VR et al., 2000). Ca2+ mishandling and

mitochondrial dysfunction are significant factors involved in

the progression of cardiomyopathy (Dey et al., 2018).

Increased myofilament Ca2+ sensitivity has been identified in

animal models of and patients with cardiomyopathy. This can

lead to changes in intracellular Ca2+ homeostasis and cause

calcium-triggered arrhythmias, which can enhance force

development and ATP consumption. Mitochondrial

disorganization and dysfunction in cardiomyopathy can

disturb the balance of energy catabolism and anabolism.

Emerging evidence demonstrates that crosstalk between

mitochondrial function and calcium handling mediates the

pathophysiology of cardiomyopathies and heart failure, which

is strictly related to clinical outcomes and survival. Thus, it is

critical to understand the regulatory network underlying calcium

and mitochondrial homeostasis as well as its intracellular

mechanisms to develop novel therapeutic strategies and

restore the function of damaged cardiomyocytes.

T-tubule system remodeling in
cardiomyopathy or heart failure

The microarchitecture of cardiac dyads in cardiomyocytes,

which was considered as the structural basis of calcium transits in

cardiomyocytes. The release of calcium from the SR and efficient

ATP production by mitochondria are essential for normal

excitation-contraction (EC) coupling. The increase in cytosolic

calcium is augmented by calcium release at numerous dyads.

T-tubule depolarization is mediated by coupling L-type Ca2+

channels (LTCCs) next to ryanodine receptors (RyRs), which

activates RyR2 channels by a small amount of Ca2+ entry

through LTCCs and leads to the release of a large amount of

calcium mediated by RyR2 (Marks, 2013; Eisner et al., 2017;

Seidel et al., 2019). Dyads of atrial cardiomyocytes (AMs) are

characterized by high-density axial tubules (ATs), whereas

ventricular cardiomyocytes (VMs) in mouse and human have

high-density T-tubules with diameters of 100–300 nm

(Brandenburg et al., 2016).

Left cardiac hypertrophy induced by transverse aortic

constriction leads to the proliferation of AMs and ATs and

increases the phosphorylation of RyR2, thereby maintaining a

higher signal of cytosolic Ca2+ activity (Brandenburg et al., 2016;

Novotova et al., 2020). A remodeling of T-tubules in VMs,

including a change in the number of T-tubule components,

oblique directions, the diameter and length of T-tubules, and

the opening time of T-tubules, has been observed in several

animal models of cardiomyopathies and human samples with

heart disease (Crocini et al., 2017). Hatano et al. (2015)

confirmed that the T-tubule structure is important for the

synchrony of Ca2+ release and suggested that mitochondria in

the sub-sarcolemmal region might serve to cancel Ca2+ inflow

through surface sarcolemma, thereby maintaining equilibrium in

the intracellular Ca2+ environment. Thus, the remodeling of

T-tubules alters the distance to the junctional SR or sarcolemma,

which delays the transduction of calcium. Dyad remodeling is

associated with electrical and contractile defects in

cardiomyocytes. Ultimately, T-tubule remodeling would be an

ideal mechanism for treating heart disease.

Bridging integrator 1 (BIN1; also known as amphiphysin 2)

facilitates LTCC localization to T-tubule membranes and plays a

critical role in recruiting RyRs to the SRmembrane (Figure 1). As

a result, cardiac BIN1 serves as an important protein bridge for

the formation and maintenance of LTCC-RyR couplons, which

are essential for normal EC coupling (Zhou and Hong, 2017).

Reduced myocardial BIN1 in heart failure is also detectable at the

blood level, and plasma BIN1 predicts heart failure and future

arrhythmias in patients with cardiomyopathy. BIN1 recruits

actin to fold the T-tubule membrane, creating a “fuzzy space”

that protectively restricts ion flux. When the amount of

BIN1 decreases in acquired cardiomyopathy, the T-tubule

morphology is altered, which contributes to dyad dysfunction

and impaired EC coupling (Hong et al., 2014; Fu and Hong,

2016). Thus, a significant reduction in coupled RyR2 clusters is a

result of T-tubule remodeling in a failing myocardium; where the

displacement of T-tubules increases the distance to RyR and its

associated protein junctophilin-2 (JPH2) and reduces the

sensitivity of EC coupling and desynchrony of Ca2+

transients, typically resulting in cardiac impairment (Munro

et al., 2018). Dries et al. (2018) observed a significant

reduction in the density of T-tubules in patients with heart

failure, with irregular distribution, and with increased

T-tubule diameter and found that remodeling was associated

with hyperactive spontaneous Ca2+ transient through delayed

opening of non-coupled RyRs. Furthermore, JPH2 clusters attach

to the SR and sarcolemma to form T-system couplons, which is

linked to spatiotemporal heterogeneity of cytosolic calcium

transients. A remodeling of T-tubules and a loss of couplons

in the VMs of patients with heart failure leads to deleterious

alterations in contractile function. Lyu et al. (2021) indicated that
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targeting the sarcolemmal associated JPH2might ameliorate age-

associated deficiencies in heart function. Moreover, variants of

JPH2 in the joint region (mutPG1JPH2) cause T-tubule

remodeling and dyad loss, resulting in asynchronous Ca2+

release (Gross et al., 2021). Thus, T-system couplons are

involved in maintaining heart function by regulating the

homeostasis of calcium handling. The variants of the

molecules formatted T-system couplons would impair the

T-tubule structure. Structural disorders of subdomains of

T-system couplons provoke hyperactive Ca2+ flux, which

disrupts the coordination between electrophysiological and

contractile movement.

Dysfunction in T-tubules can also impair surrounding ion

channels. Changes in the T-system can serve as efficient

biomarkers for evaluating heart function and related

prognoses. Abu-Khousa et al. (2020) observed a common

feature of T-tubule remodeling in the failing myocardium.

They found that the degree of T-tubule remodeling is

associated with a negative cardiac force-frequency relationship

and decreases contraction by reducing expression of NCX1 and

restricting myocardial relaxation. Moreover, together with NCX,

the T-system may be important for myocardial relaxation

(Figure 1). Seidel et al. (2017) found sheet-like T-system

remodeling with decreased circularity, increased volume/

length ratio, and reduced t-density in patients with heart

failure, which led to increased distance between RyR and

sarcolemma, which also impairs the function of RyR2.

Moreover, they found that the distance between RyR and

sarcolemma at the time of implantation of a left ventricular

assist device (LVAD) was associated with the post-LVAD left

ventricular ejection fraction and contractile reverse during

unloading. Frank et al. (Sachse et al., 2012) also revealed that

remodeling of T-tubules could be a marker of dyssynchronous

heart failure. Thyroid and glucocorticoid hormones are critical

for T-system development of human induced pluripotent stem

cell-derived cardiomyocytes (hiPSC-CMs) when cultured on

physiological conditions (Parikh et al., 2017). Moreover,

dexamethasone increases the density of T-tubules of VMs

from failing human hearts, leading to improved LTCC-RyR

coupling and synchrony of intracellular Ca2+ release (Seidel

et al., 2019). Thus, disorders of the T-system are clinically

significant, and restoring T-tubules improves the function of

failing hearts.

Molecular mechanisms of RyR2 and
SERCA in Ca2+ regulation

Normal EC coupling relies on close cooperation between the

SR network and T-tubule membranes. Most RyR2 clusters are

located on (or close to) T-tubules, which suggests that they

contribute to the generation of Ca2+ wave development

during sarcomere shortening. When RyRs disordered at

diastolic phase in pathological conditions, Ca2+ can leak out

from the SR network and produce a Ca2+ spark. A major adverse

effect of Ca2+ leak is that it reduces the amount of calcium in the

SR and attenuates the amplitude of Ca2+ transient. The Ca2+

released from the SR should be taken up by SR calcium ATPase

FIGURE 1
Cardiomyocyte excitation-contraction (EC) coupling based on the close spatial and arrangement localization of the dyads. Transverse tubule
(T-tubule) depolarization is mediated by coupling L-type Ca2+ channels (LTCCs) next to ryanodine receptors (RyRs), which activates RyR2 channels
by a small amount of Ca2+ entry through LTCCs and lead to a following large amount calcium releasemediated by RyR2. Bridging integrator 1 (BIN1)
facilitates LTCC localization to T-tubule membrane. The released Ca2+ from SR would be reuptake by SR calcium ATPase (SERCA) on every
cardiac cycle to sustain a steady state with stable Ca2+ level.
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(SERCA) in every cardiac cycle to sustain a steady state with a

stable Ca2+ level (Figure 1). Thus, abnormal sustained calcium

leak through RyR2 or impaired reuptake by SERCA can

excessively elevate cytosolic and mitochondrial Ca2+, inducing

increased ROS accumulation, mitochondrial dysfunction, and

even cell death.

RyR2 activity is strongly associated with the Ca2+ level in the

SR, which is also regulated by the phosphorylation of RyR2 by

protein kinase A (PKA), Ca2+/calmodulin-dependent protein

kinase II (CaMKII), and protein phosphatase type 1 and type 2A

(Figure 2). Calcium release through RyR determines the opening

time of the mitochondrial permeability transition pore (mPTP).

The RyR2 channel is also regulated by S-nitrosylation and ROS

production, which are mostly generated by mitochondria

(Hatano et al., 2015). Yan et al. (2008) found that

modification of RyR2s by ROS enhances the activity of

RyR2 and increases the frequency of spontaneous Ca2+

waves. In turn, the mismatch between energy demand and

supply that facilitates their transition to failing cells, and the

altered calcium transfer from the SR to mitochondria, has been

causally linked to the pathophysiology of aging and heart failure.

Impaired mitochondria induce accumulation of glycation end

products, and intracellular glycation damages the function of

RyR2, leading to continuous Ca2+ leak, which in turn damages

the mitochondria (Ruiz-Meana et al., 2019).

The phosphorylation of RyR2 is the dominant mechanism

regulating its function, and several phosphorylation sites have

been confirmed to be involved. RyR2 phosphorylation sites at

S2808 and S2814, which are phosphorylated by PKA and

CaMKII, respectively (Di Carlo et al., 2014), mediate diastolic

SR Ca2+ leak through RyR2. Campbell et al. recently

demonstrated that striated muscle preferentially expressed

protein kinase (SPEG) can phosphorylate RyR2 at S2367, in

contrast with previous RyR2 phosphorylation sites at S2808 and

S2814. SPEG-mediated RyR2-S2367 phosphorylation can

suppress diastolic SR Ca2+ leak in AF patients (Campbell

et al., 2020). Another RyR2 phosphorylation site, Ser-2030,

induced by PKA, is guided by integrin β1D, and integrin β1D
deficiency is a novel mechanism underlying the increased risk for

ventricular arrhythmias in patients with arrhythmogenic right

ventricular cardiomyopathy (Wang et al., 2020).

Activation of CaMKII-mediated phosphorylation of RYR2 at

S2814 can activate the latent arrhythmic potential of

catecholaminergic polymorphic ventricular tachycardia

(CPVT) caused by RYR2 mutations (Park et al., 2019).

CaMKII is a multifunctional serine/threonine protein kinase

with four major isoforms, of which CaMKIIδ is the most

prevalent and relevant cardiac isoform. All CaMKII isoforms

are assembled from subunits that contain three key domains: an

association domain, a regulatory domain controlling enzyme

activation and autoinhibition, and a catalytic domain as the

kinase function of CaMKII. At rest, CaMKII is inhibited by

its autoregulatory domain, which serves as a pseudo-substrate, to

block the catalytic domain. Upon binding Ca2+/calmodulin

(CaM), CaMKII is activated by CaM binding to its CaMKII

binding site leading to T206/T207 autophosphorylation. The

FIGURE 2
Themechanisms crosstalk between calcium andmitochondrial homeostasis. RyR2 activity is regulated by the phosphorylation level of RyR2 by
the protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and protein phosphatase type-1 and type-2A, associatingwith the
Ca2+ level of SR. TOM70 regulates the constitutive of Ca2+ shuttling from ER to mitochondria. Mitochondrial RyR in the IMM could be activated as
soon as Ca2+ released from the ER, and further increasing of mitochondrial Ca2+ would lead inactivation of mRyR1 to prevent mitochondrial
Ca2+ overloading and permeability transition pore opening. Mitochondrial uptake calcium mainly through mtCU, which is a dedicated regulator for
mitochondrial responding different stress to match cardiac workload with ROS and ATP production.
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CaM affinity for CaMKII is increased in the sustained presence of

Ca2+/CaM (Andy Hudmon and Schulman, 2002; Mustroph

et al., 2017). CaMKII can also be activated by oxidation at

M281/282 (Erickson et al., 2008; Yoo et al., 2018), a

downstream signal of ROS modification. In contrast, oxidation

of M308 by molecules interacting with microtubule associated

monooxygenase, calponin, and LIM domain containing 1

(MICAL1), a methionine monooxygenase, can reduce Ca2+/

CaM binding and prevent pathological CaMKII activation

(Konstantinidis et al., 2020).

CaMKII can also phosphorylate phospholamban (PLN) to

further activate SERCA, which is important in the uptake of

Ca2+ from the cytoplasm to the SR (Maier and Bers, 2007).

Decreased SERCA activity is associated with impaired diastolic

function. Oxidative modification at cysteine 674 (C674) of

SERCA at the post-translational level can decrease SERCA

activity (Lancel et al., 2009; Qin et al., 2013). The presence of

an oxidation-resistant mutant of SERCA (C674S) can protect

cardiomyocytes from mitochondrial calcium overload and

cardiomyocyte death by mitochondria-dependent pathways

(Goodman et al., 2020). The c-jun N-terminal kinases (JNKs),

which are activated in response to stress, can be activated in

various cardiovascular diseases, including cardiac arrhythmia

and heart failure. JNK2 can activate the transcription factor of

c-jun, which can further activate transcription factor 2 (ATF2)

binding to the proximal promoter region (Gao et al., 2018).

Moreover, the activation of JNK2 can directly phosphorylate

CaMKII (Yan et al., 2018a; Yan et al., 2018b), enhancing the

release of calcium from RyR2 and increasing the risk for

arrhythmia. JNK2 can directly elevate the max velocity of

SERCA2 activity by phosphorylation (Yan et al., 2021),

protecting the heart from arrhythmia and maintaining

calcium regulation. A-kinase anchoring protein (AKAP18δ)
can be an anchor of CaMKIIδ that directly regulates CaMKIIδ
activity which would inhibit the faster Ca2+ reuptake by PLN-

SERCA2 or Ca2+-release through RYR (Carlson et al., 2021).

The mechanism underlying Ca2+ handling is intricate. Ca2+

overload in the cytosol increases the affinity of troponin binding

Ca2+, contributing to arrhythmogenicity and heart failure.

Elucidating the precise mechanisms underlying calcium

handling intracellularly and downstream of mitochondrial

function is important for understanding the causes and

progression of cardiomyopathy and developing novel and

precise strategies for treating cardiomyopathy.

Crosstalk between cardiac dyads and
mitochondrial homeostasis in calcium
handling

The function of cardiac dyads was tightly correlated with

mitochondrial. The metabolic status and ROS regulation

mediated the functional compacts of cardiac dyads. Besides,

communications had been identified between cardiac dyads

and mitochondrial in calcium uptakes and transits.

Cardiomyocytes rely heavily on mitochondria to meet energy

demands during bioenergetic EC coupling and mitochondrial

buffering of Ca2+. Rog-Zielinska et al. (2019) observed T-tubules

and mitochondria were directly connection, the distance between

of them was around 18.05 nm. The molecular mechanisms

between T-tubules and mitochondria are not clarified clearly.

Under a cellular global Ca2+ release from the SR, mitochondria

are frequently exposed to intracellular spatiotemporal increases

in Ca2+, leading to an increase in Ca2+ in mitochondria. A

significant increase in mitochondrial Ca2+ via the mitochondrial

calcium uniporter (mtCU) reduces the mitochondrial membrane

potential, potentially inducing ROS generation via perturbation

of the pH gradient at the inner mitochondrial membrane (IMM),

affecting the rate of mitochondrial energy production,

mitochondrial motility, and morphology (Figure 1). (Garcia-

Perez et al., 2008; Liu et al., 2014; Santulli et al., 2015;

Lesnefsky et al., 2017; Wust et al., 2017) Mitochondrial ROS

can promote SR calcium leak through CaMKII-dependent

RyR2 modification. Thus, ROS regulation is considered as a

dominant feature in mitochondrial related calcium handling.

While the Ca2+ communication and transits between cardiac

dyads and mitochondria via transmembranous channels are also

critical for calcium homeostasis. Excessive SR calcium leak

contributes to mitochondrial calcium overload, leading to

mitochondrial dysfunction. There is a maladaptive positive

feedback relationship between these closely associated

organelles when cardiomyocytes are damaged.

Duchen et al. observed that focal SR calcium release results in

calcium microdomains sufficient to promote local mitochondrial

calcium uptake, which suggests a tight coupling of calcium

signaling between SR release sites and nearby mitochondria

(Michael et al., 1998). Studies have proven physical interaction

between the SR and mitochondria and demonstrated that the

distance between the SR and mitochondria is approximately

10–25 nm (Saverio Marchi and Pinton, 2014; Csordas et al.,

2018). The rapid development of biochemical techniques enables

the isolation of SR-mitochondria binding sites, also known as

mitochondria-associated SR membranes (MAMs). Moreover, it

also enables the identification of various proteins that reside

within MAMs and illustrates the functional interaction between

the SR and mitochondria. Mitofusin 2 (MFN2), a mitochondrial

dynamin-related protein, is enriched at the SR-mitochondria

interface. The ablation or silencing of MFN2 suppresses SR-

mitochondria interactions and attenuates the efficiency of

mitochondrial Ca2+ uptake (Olga Martins de Brito and

Scorrano, 2008; Chen et al., 2012). Paillard et al. found CypD

at the MAMs was important in adjusting mitochondrial Ca2+ by

interacting with VDAC1/Grp75/IP3R1 complex (Paillard et al.,

2013). The inhibition of CypD in adult cardiomyocytes decreased

the Ca2+ transfer from SR to mitochondria through IP3R under

normoxic conditions. Moreover, Qi et al. (2021) presented that
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Sphingosine-1-phosphate (S1P) mediated the intracellular Ca2+

signaling, by regulating SR-mitochondria communication via

IP3R2 in cardiomyocyte hypertrophy. Mitochondrial Ca2+

uptake plays an essential role in the regulation of numerous

cellular processes, including energy metabolism and cytosolic

Ca2+ homeostasis interacting with cardiac dyads.

The translocase of the outer membrane (TOM) consists of a

large proportion of the outer mitochondrial membrane (OMM)

proteome. TOM70 puncta are frequently associated with MAMs,

which regulate Ca2+ shuttling from the SR to mitochondria

(Figure 2). Filadi et al. (2018), Beutner et al. (2005) characterized

the mRyR in the IMM of rat heart as RyR1 and found that

mRyR1 can be activated as soon as Ca2+ is released from the SR.

A further increase in mitochondrial Ca2+ leads to inactivation of

mRyR1 to prevent mitochondrial Ca2+ overload and opening of

the permeability transition pore. Additionally, mitochondrial

Ca2+ is a crucial modulator of mitochondrial permeability

transition, and a sudden increase in Ca2+ in IMM

permeability dissipates ΔΨm and releases ROS and

cytochrome C (Hausenloy et al., 2004). The entry of calcium

through the mtCU is the central mediator of mPTP opening,

although the precise molecular makeup of the mPTP remains

elusive. Mitochondria take up calcium mainly through the

mtCU, a multiprotein complex (≈700 kDa) located in the

IMM, which is composed of pore-forming proteins (the

channel subunit MCU and the MCU dominant-negative β
subunit [MCUB]), the short transmembrane regulator EMRE

(an essential MCU regulator), and regulatory proteins

(mitochondrial calcium uptake proteins [MICU] 1, 2, and

3 and mitochondrial calcium uniporter regulator 1 [MCUR1];

Figure 2). (Kaludercic and Scorrano, 2019; Alevriadou et al.,

2021) The uptake of calcium into the mitochondria by MCU is a

dedicated regulator of the mitochondrial response to stress to

match cardiac workload with ATP production (Kwong et al.,

2015).

Ru360, a specific inhibitor of the mtCU, can decrease

mitochondrial calcium dramatically and prevent mPTP

opening after cardiac ischemia (Garcia-Rivas Gde et al., 2006).

Pan et al. (2013) found a significant reduction in, but not

completely absence of, mitochondrial matrix calcium in mice

lacking MCU, which resulted in a loss of stress-responsive

signaling. A recent study have found that MCUB expression

can displace MCU from the functional mtCU complex, reducing

the association between MICU1/2 and mitochondrial calcium

uptake, a stress-responsive mechanism to limit mitochondrial

calcium overload during cardiac injury (Lambert et al., 2019).

Overexpression of MCUB can inhibit mitochondrial calcium

uptake in cardiomyocytes and partially protect cardiomyocytes

from ischemia-reperfusion injury by reducing mPTP opening

(Huo et al., 2020). However, a loss of MICU3 can reduce calcium

loading during sustained treatment with isoproterenol (Puente

et al., 2020). Moreover, mitochondrial calcium uptake can

regulate the epigenome and influence cellular differentiation

and maturation in an MICU1-dependent fashion

(Shanmughapriya et al., 2018; Lombardi et al., 2019). Barth

syndrome (BTHS), which is caused by a mutation in the

Tafazzin (TAZ) gene, encodes an acyltransferase catalyzing

the remodeling of cardiolipin in mitochondrial membranes

(Clarke et al., 2013). Mice deficient in TAZ have lower

expression of MCU in cardiomyocytes, which suppresses

Ca2+ uptake in mitochondria, resulting in a lack of Ca2+-

induced Krebs cycle activation (Bertero et al., 2021). Joiner

et al. (2012) showed that CaMKII promoted mPTP opening

and myocardial death by increasing the mtCU current and

identified CaMKII activity as a central mechanism for

mitochondrial Ca2+ entry. However, Fieni et al. (2014) found

that the mtCU current is not regulated by CaMKII

directlydirectly. The intricacy of the mtCU and the complexity

of regulation of mtCU calcium uptake require further

elucidation.

In sum, the crosstalk between mitochondria and SR Ca2+

handling in cardiomyocytes is increasingly being recognized. The

mechanism underlying mitochondrial Ca2+ handling and

suitable amounts of mitochondrial Ca2+ on a beat-by-beat

basis in normal and damaged cardiomyocytes are unclear. It

is thought that the structure of dyads plays an important role in

cardiomyocytes, especially in the efficiency of calcium release

during EC coupling.

Treatment basis Ca2+ handling and
mitochondrial homeostasis

Therapeutic strategies have been designed to increase the

contractile force of the heart to directly improve the survival of

patients with severe heart failure. Although a series of genetic

analyses and mechanistic studies have revealed the crosstalk

between calcium handling and mitochondrial homeostasis as

the central mediator of ventricular arrhythmia and heart failure,

the FDA has yet to approve reagents targeting calcium handling

and mitochondrial homeostasis for use by cardiovascular

patients. Coldren et al. (2020) used high-throughput virtual

screening combined with concurrent stopped-flow kinetic

experimental verification to identify a number of sensitizers

that slowed the calcium off-rate; they expected these Ca2+

sensitizers would have therapeutic potential for heart disease

in the near future. Fiedler et al. (2019) invented a small-molecule

inhibitor, DMX-5804, to limit activation of mitogen-activated

protein kinase-4 (MAP4K4), which can reverse mitochondrial

function and calcium cycling to improve the survival of hiPSC-

CMs. Another small molecule of ARM036, which is able to

stabilize the closed conformation of RyR2, helped mitigate the

increased sensitivity of RyR2 under low resting Ca2+ and

maintain normal LV dimensions and ejection fractions in a

young dog model of Duchenne muscular dystrophy (Olivier

Cazorla et al., 2021). Joiner et al. (2012) found exogenous
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expression of a membrane-targeted CaMKII inhibitor in mice

was able to mitigate cardiac ischemia-reperfusion injury by

inhibiting IMCU. A recent study found cardiac-specific

overexpression of MCU maintained intracellular Ca2+

homeostasis and contractility, which is a compensatory

mechanism that counteracts stress-induced pathological

cardiac remodeling by preserving Ca2+ homeostasis and

cardiomyocyte viability (Wang et al., 2022). Metformin can

stabilize the structure of MAMs, reduce the expression of

MICU1, and lower the amount of mitochondrial Ca2+, which

enhances the function of respiration chain complex I in dilated

cardiomyopathy (Angebault et al., 2020). Recently, Mustroph

et al. (2022) demonstrated the SLGT2i, Empagliflozin, could

inhibited cardiac late sodium current by CAMKII. Besides,

Zhang et al. (2022) demonstrated the Hesperadin could serve

as the CaMKII specific inbitor to ameliorate cardiac ischemia/

reperfusion injury.

Pu and his colleagues have observed calcium mishandling

and mitochondrial remodeling in BTHS (Liu et al., 2021) and a

CPVT model (Bezzerides et al., 2019). They showed that a

selective CaMKII autocamtide-2-related inhibitory peptide

transducing with adeno-associated virus (AAV) can correct

BTHH and CPVT Ca2+ transient amplitude and reduce

diastolic Ca2+ concentrations to a base level, resulting in the

suppression of arrhythmias in murine models. Schweitzer et al.

(2017) demonstrated that enhanced mitochondrial Ca2+ uptake

after treatment with Efsevin, a synthetic agonist of voltage-

dependent anion channel two in the OMM, suppressed

arrhythmia in a murine model of CPVT. Besides the AAV

vector-based gene therapy, several non-viral vectors or

strategies had been applied for inherit cardiovascular diseases.

Nanoparticles had been introduced to gene therapy for several

years, as it presented advantages in effective compositions,

especially for lipid nanoparticles (LNP) (Godbout and

Tremblay, 2022). Experiments proved LNPs could be delivery

RNAs to brain, lungs, heart, liver and bones. Moreover, the self-

assembled nanostructured particles from natural building blocks,

including polyphenol materials, could also be used for gene

therapy directly or via cell-based modification to delivery

oligonucleotide (Ju et al., 2022).

Evidence of these molecules and their therapeutic impacts on

cardiac diseases reveals two novel methods of delivering these

molecules to cardiomyocytes: viral and non-viral strategies. Viral

strategies involve the use of several vectors, including adenovirus,

AAV, and lentivirus. Non-viral strategies involve using

liposomes or nanoparticles to deliver oligonucleotides to heart

tissue. At present, more than 30 clinical trials of gene therapy are

under way involving diseases of the brain, spinal cord, eye, liver,

and muscle. Taking advantage of various delivery vectors

targeting calcium and mitochondrial homeostasis could

terminate or even reverse pathological remodeling in

cardiomyopathy, which would have the effect of acting as an

isogeneic implantable cardioverter defibrillator (ICD).

Future aspects

Over the last decades, a large amount researches expanded

our knowledge of the Ca2+ handling among the interplays of

T-tubule, ER, and mitochondrial in cardiomyocytes. Yet, there

are also some unsolved queries and conflicting experimental

results. It is urgent to explore the factors involved in

coordinating formation of the T-tubular network, along with

the potential molecular mechanisms in maintaining homeostasis

of intricate architecture between T-tubule and the ER. Moreover,

it is also critical to illustrate the transcriptional regulation

mechanisms of various proteins reside within the MAMs and

the precise mechanisms of calcium handling between ER and

mitochondria. Besides, the balance between sufficient ATP

consumption and acceptable ROS generation is still required

further study. The further understanding of the molecular

mechanisms involved in the crosstalk between Ca2+ handling

and mitochondria in cardiomyocytes may provide newly

concepts on the treatment of cardiovascular disease. And

isogeneic therapeutic strategy would be another alternation to

handle deadly arrhythmia and improve their prognosis.
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