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Background: The primary phase time constant of pulmonary oxygen uptake

kinetics (V
·
O2 τp) during submaximal efforts is longer inmiddle-aged peoplewith

type 2 diabetes (T2D), partly due to limitations in oxygen supply to active

muscles. This study examined if a high-intensity “priming” exercise (PE)

would speed V
·
O2 τp during a subsequent high-intensity cycling exercise in

T2D due to enhanced oxygen delivery.

Methods: Eleven (4 women) middle-aged individuals with type 2 diabetes and 11

(4 women) non-diabetic controls completed four separate cycling bouts each

starting at an ‘unloaded’ baseline of 10W and transitioning to a high-intensity

constant-load. Two of the four cycling bouts were preceded by priming exercise.

The dynamics of pulmonary V
·
O2 and muscle deoxygenation (i.e. deoxygenated

haemoglobin and myoglobin concentration [HHb + Mb]), were calculated from

breath-by-breath and near-infrared spectroscopy data at the vastus lateralis,

respectively.

Results: At baseline V
·
O2 τp, was slower (p < 0.001) in the type 2 diabetes group

(48 ± 6 s) compared to the control group (34 ± 2 s) but priming exercise

significantly reduced V
·
O2 τp (p < 0.001) in type 2 diabetes (32 ± 6 s) so that

post primingexercise itwas not different comparedwith controls (34±3 s). Priming

exercise reduced the amplitude of the V
·
O2 slow component (As) in both groups

(type 2 diabetes: 0.26 ± 0.11 to 0.16 ± 0.07 L/min; control: 0.33 ± 0.13 to 0.25 ±

0.14 L/min, p < 0.001), while [HHb + Mb] kinetics remained unchanged.

Conclusion: These results suggest that in middle-aged men and women with

T2D, PE speeds V
·
O2 τp likely by a better matching of O2 delivery to utilisation

and reduces the V
·
O2 As during a subsequent high-intensity exercise.
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1 Introduction

Type 2 diabetes (T2D) is a major chronic condition with a

concerning rapidly increasing global prevalence. Importantly,

men and women with T2D demonstrate a consistent impairment

in cardiorespiratory capacity reflected by a decreased peak

oxygen uptake (V
·
O2peak) (Green et al., 2015), that is an

independent predictor of all-cause mortality (Wei et al., 2000).

In addition, at the onset of moderate-intensity exercise a slowed

primary phase time constant of pulmonary oxygen uptake (V
·
O2)

kinetics (V
·
O2 τp) is observed in young and middle-aged people

with T2D (Bauer et al., 2007; Mac Ananey et al., 2011; O’Connor

et al., 2012; Kiely et al., 2015; O’Connor et al., 2015). Similarly,

recent evidence suggests that compared with controls, in middle-

aged individuals with T2D V
·
O2 τp is also slowed during exercise

transitions from a moderate-intensity baseline to high-intensity

(i.e work-to-work transitions) (Gildea et al., 2021b). While V
·
O2

τp is a well-established key determinant of exercise tolerance

(Jones and Poole, 2005; Goulding et al., 2021), the mechanisms

for the constrained V
·
O2 τp in T2D remain to be elucidated, but

accumulating evidence suggests that impairments in oxygen

supply to the active musculature (Padilla et al., 2006;

MacAnaney et al., 2011; Kiely et al., 2014) and a subsequent

mismatch of local O2 delivery to muscle V
·
O2 (Bauer et al., 2007;

Gildea et al., 2019; Rocha et al., 2019; Gildea et al., 2021b) play an

important role.

The impediments in V
·
O2 kinetics in T2D are also apparent

during high-intensity exercise transitions initiated from rest or

‘unloaded’ baseline, with Brandenburg et al. (1999) showing a

significantly slower mean response time (MRT) of the V
·
O2

kinetics in females with T2D compared with BMI-matched

controls. Nevertheless, Mac Ananey et al. (2011) showed a

non-significant tendency for a slower V
·
O2 MRT and V

·
O2 τp

(~13% and ~5% respectively) during high-intensity cycling

transitions initiated from static rest in females with T2D of

similar characteristics, compared with BMI-matched controls

(Mac Ananey et al., 2011). Noteworthy, when transitions are

initiated from static (instead of ‘unloaded’) rest, V
·
O2 τp has been

shown to be ~15% longer when the time delay is not constrained

(Whipp et al., 1982) as was the case therein (Mac Ananey et al.,

2011), potentially influencing their findings.

Importantly, abrupt or sudden transitions to high-intensity

activity (i.e. running, cycling or stair climbing) from rest or very

light activity are akin to those in daily life (such as commuting to

work), so, there is a need to examine interventions that may

enhance the V
·
O2 dynamic response during these exercise

transitions in T2D. In this regard, studies in healthy active

individuals presenting with an initial fast V
·
O2 τp show that

an acute prior bout of heavy-intensity “priming” exercise (PE)

does not alter V
·
O2 τp during subsequent high-intensity upright

cycling exercise initiated from rest (Burnley et al., 2000; Burnley

et al., 2001; Burnley et al., 2002a; Koppo and Bouckaert, 2002;

Sahlin et al., 2005). This is likely because PE appears to facilitate

muscle oxygen delivery rather than specific metabolic pathways

and in these healthy active individuals V
·
O2 τp seems limited by

the later (i.e. intracellular energetics) (Gerbino et al., 1996; Sahlin

et al., 2005; Jones et al., 2006). However, PE accelerates the MRT

of the overall V
·
O2 dynamic response in these healthy

participants typically through an increase in the primary

phase amplitude of the V
·
O2 (V

·
O2 Ap) and/or reducing the

slow component amplitude of the V
·
O2, the latter being

potentially related to the reduced requirement for type II

muscle fiber activation after PE (DiMenna et al., 2008). On

the contrary, when V
·
O2 kinetics are further slowed as a direct

consequence of impaired O2 delivery and reduced perfusion

pressure to active muscles, as is observed during supine or

prone high-intensity exercise (Rossiter et al., 2001; Jones et al.,

2006; Goulding et al., 2017), PE accelerates V
·
O2 τp in the

respective subsequent bouts of high-intensity exercise, possibly

due to improved blood flow distribution, and/or reduced muscle

fatigue to active muscles (DiMenna et al., 2010).

Thus, considering that O2 supply to the muscle seems to be

constrained in individuals with T2D, and high-intensity

priming exercise has been proposed as an intervention that

can augment the delivery of O2 to the muscle, we tested the

hypothesis that PE would reduce V
·
O2 τp in a subsequent bout

of high-intensity exercise initiated from unloaded exercise in

this population. Given that alterations exist in muscle fiber

type in the T2D skeletal muscle, with individuals with T2D

possessing larger proportions of type II and lower proportions

of type I fibers than controls (Marin et al., 1994), we also

hypothesized that in individuals with T2D PE would reduce

the V
·
O2 As. To shed light on contributions of muscle

fractional O2 extraction to any PE-induced changes in V
·
O2

kinetics, this study measured rates of muscle deoxygenation

(i.e., deoxygenated haemoglobin and myoglobin, [HHb +

Mb]) using near-infrared spectroscopy (NIRS). In addition,

the age of participants was limited to less than 60 years to

control for the potential confounding effects of age on the

T2D-induced effects on exercise tolerance (Wilkerson et al.,

2011; O’Connor et al., 2015).

2 Methods

2.1 Participants and recruitment

A total of 22 individuals, 11 with T2D (7 men/4 women) and

11 healthy controls (7 men/4 women) volunteered and provided

written informed consent to take part in this study (Table 1).

Recruitment for the control group was undertaken from the

general population, whilst individuals with T2D were recruited

from outpatient diabetes clinics of two hospitals in Dublin (i.e. St.

Vincent’s University Hospital and St. Columcille’s Hospital).

Four of the women participating in this study were

premenopausal (2 T2D and 2 Control) and four were
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postmenopausal (2 T2D and 2 Control) not undergoing

hormone replacement therapy. All participants were non-

smokers (not smoking during the previous 12 months) and

physically inactive [(≤150 min week−1 of moderate-intensity

(<ventilatory threshold, VT) exercise in the preceding

6 months] (McKay et al., 2022). The latter status was

confirmed by participants wearing RT3 triaxial accelerometers

(Stayhealthy Inc., CA) over a 5-day period (Table 1) (Rowlands

et al., 2004). Participants’ time since diagnosis of T2D was

between 2 and 10 years (mean ± SD = 4.5 ± 3.2 yrs) and had

HbA1c levels below 10%. In addition, exclusion criteria included

the use of β-blockers or insulin, clinical evidence of liver or renal
disease, if they suffered from persistent proteinuria (urine

protein >200 mg/dl) or had high creatinine levels (suggestive

of renal disease, which can alter exercise performance);

autonomic insufficiency/dysfunction, symmetrical neuropathy,

abnormal cardiac function, or evidence of ischaemic heart

disease. Regarding medication, two individuals in the control

group were on statins whilst participants with T2D were treated

with either oral (n = 9) and/or subcutaneous (n = 2)

hypoglycaemic agents (only metformin, n = 5; metformin and

sulphonylurea, n = 1; SGLT-2 inhibitors, n = 1; GLP-1, n = 1), as

well as antihypertensive medication (ACE inhibitor, n = 3; ARBs,

n = 2; CCBs, n = 3) and statins (n = 6). The study received ethical

approval from both Trinity College Dublin (TCD), and St

Vincent’s Healthcare research ethics committees.

2.2 Experimental procedures

2.2.1 Overview
Upon successful completion of a treadmill stress test (Bruce

protocol) at St Columcille’s Hospital, participants attended the

testing laboratories on two separate occasions. The participants

in the control group completed all tests in the University’s human

performance laboratory whilst participants with T2D did so in

the exercise testing facility at St Columcille’s Hospital. Visit one

consisted of participants completing a maximal cycling test to

exhaustion to measure peak oxygen uptake (V
·
O2peak). In visit 2,

participants completed four exercise transitions from a baseline

of 10 W (i.e. unloaded) to high-intensity, of which two were

preceded by PE. Cycling tests were completed in the upright

position on an Excalibur Sport cycle ergometer (Lode B.V,

Groningen, Netherlands). Participants were asked to avoid the

consumption of caffeine, alcohol and non-prescribed nutritional

supplements together with any arduous physical activities during

the 24 h preceding each visit. Menstrual cycle was controlled for

when scheduling the visits of the premenopausal participants in

this study, with testing taking place during the mid-follicular

phase of their menstrual cycle (days 5–12, self-determined).

2.2.2 Visit 1: Maximal cycling test to exhaustion
All participants completed a ramp incremental cycling test to

volitional exhaustion with an initial work rate of 10 W for 2 min

(i.e., ‘unloaded’ cycling) followed by a progressive increase in

power output of 10–25 W/min (based on each individual’s

physical activity level). Participants were required to maintain

a constant cadence throughout the test, self-selecting a pedalling

rate between 60 and 75 rpm. Test termination occurred when

participants had a cadence reduction of 10 rpm for more than 5s.

At the end of the test peak work rate was determined as the

highest power output achieved, whilst V
·
O2 was determined as

the highest V
·
O2 value (15-s average) attained. The V-slope

method was used to determine VT (Beaver et al., 1986).

2.2.3 Visit 2: Four cycling exercise transitions
All participants completed four identical 9-min cycling

exercise bouts transitioning from an ‘unloaded’ power output

of 10 W (3 min) to a constant-load of 50% delta (50%Δ) (6 min).

The latter intensity was determined from the results of the

maximal cycling test by adding the 50% difference between

the power outputs at V
·
O2 and VT to the power output at VT.

All participants completed the four bouts of exercise in the same

order. Two of the bouts (bouts 1 and 3) were carried out without

PE (50%Δ unprimed) and two bouts (bouts 2 and 4) were

completed preceded by PE (50%Δ primed) (Figure 1). The

unprimed 50%Δ bouts were used as PE. A resting period of

TABLE 1 Physical characteristics, peak exercise values, and activity
levels.

Controls T2D p-value

n 11 11

Physical characteristics

Sex (male, female), n 7, 4 7, 4

Age, yr 40 (18) 43 (14) 0.21

Stature, m 1.70 ± 0.08 1.71 ± 0.09 0.77

BMI, kg/m2 30.9 ± 3.9 30.8 ± 4.6 0.97

Body Mass, kg 88 (17) 92 (33) 0.97

Fat layer VL, mm 7.9 (7.4) 6.0 (2.5) 0.25

HbA1c, % 5.1 ± 0.1* 7.4 ± 1.7 0.02

FPG, mmol/L 4.3 ± 0.7* 8.6 ± 3.5 0.01

Time since diagnosis, yr 4.5 ± 3.2

V
·
O2, L/min 2.50 ± 0.52* 1.94 ± 0.49 0.02

V
·
O2, mL.kg−1.min−1 28.4 ± 6.6* 21.3 ± 3.59 0.01

POpeak, W 199 ± 53* 149 ± 43 0.03

Habitual physical activity

Inactive, h/day 19.4 ± 1.6 18.4 ± 0.3 0.19

Light, h/day 3.7 ± 1.3 5.0 ± 0.3 0.06

MVPA, h/day 0.86 ± 0.60 0.69 ± 0.29 0.56

Data are means ± SD, for variables that were normally distributed and median with

interquartile range in parentheses for variables that showed significant skewness and

were not normally distributed in one or both groups. n, no. of participants. BMI, body

mass index; VL, vastus lateralis; HbA1c, glycosylated haemoglobin; FPG, fasting plasma

glucose; MVPA, moderate-to-vigorous physical activity; V
·
O2, oxygen uptake; PO,

power output. *Significantly different from T2D (p < 0.05).
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12 min was used between the first and second bouts, and the third

and fourth bouts; whilst a 45–60 min seated rest period was used

between the second and third bouts. The longer resting period

was important to ensure that participant’s physiological

parameters returned to a baseline state so as not to affect

subsequent V
·
O2 kinetics parameters. This was determined by

measuring these parameters in a subgroup of 11 participants with

T2D, albeit employing a single high-intensity transition which is

consistent with previous reports in healthy active individuals

(Burnley et al., 2006). Participants’ gas exchange/ventilatory

variables, muscle oxygenation/deoxygenation and heart rate

(HR) data were measured continuously throughout each

exercise bout.

2.3 Measures

2.3.1 Pulmonary gas exchange and heart rate
Breath-by-breath data was continuously obtained during

exercise by participants wearing a facemask that was

connected to a metabolic gas analysis system (Innocor,

Innovision A/S, Odense, Denmark). Parameters analysed were

oxygen consumption, carbon dioxide production, respiratory

exchange ratio and minute ventilation. Calibration of

equipment was undertaken before each use according to the

recommendations of the manufacturer. In addition, calibration

of the system’s oxygen and photoacoustic sensors is undertaken

periodically (every 6–12 months) by the manufacturer. A heart

rate monitor was used to measure HR at 5 s intervals (Polar

S610i, Polar Ltd., Finland).

2.3.2 Muscle deoxygenation and tissue
oxygenation index

Muscle oxygenation (O2Hb +Mb), deoxygenation (HHb +Mb)

and tissue oxygenation index (TOI) data were acquired using a

continuous wave NIRS system (Niro 200NX; Hamamatsu, Japan).

This device uses the spatially resolved spectroscopy (SRS) technique

and modified Beer-Lambert (MBL) principle. Detailed information

about this technique and its application during exercise is available

elsewhere (Ferrari et al., 2011). In the present study this

measurement was undertaken in the vastus lateralis (VL) muscle

of the participant’s right quadriceps given the VL is the primary

locomotormuscle during leg cycling (Laplaud et al., 2006;Okushima

et al., 2016). In order to ensure good quality signals, necessary skin

preparation was undertaken involving shaving any hair present and

cleaning the area with alcohol. After the skin was dried, the probes in

their rubber holder were securely positioned on the muscle, between

10 and 16 cm above the femoral condyle using transparent adhesive

tape. A dark elastic bandage was also used to further protect the

probes from external light and movement. The depth of the area

being measured is approximately one-half the distance between the

emitter and the receiver probes (~1.5 cm). Therefore, ultrasound

measurements of the skin and adipose tissue at the probe location

were taken in all participants using the B-mode of a 2D ultrasound

(Zonare Ultra Smart Cart, Software version 4.7, United States) to

ensure that data collected was representative of the muscle tissue.

This was confirmed with all participants having less than 1.5 cm of

adipose tissue thickness at the probe location.

2.4 Data analysis

2.4.1 Oxygen uptake kinetics
The linear interpolation method was used to estimate second

by second values from the breath-by-breath V
·
O2 data for each

transition. Data was then aligned to ensure that the start of the

exercise bout was time 0. To achieve a single smoothed averaged

response for each participant, data were ensemble- and time-

averaged into 5s bins. A biexponential (Eq. 1) function was then

used to fit these responses:

_VO2(t) � _VO2baseline + Ap[1 − e−(t−TDp)/τp)]F1
+ As[1–e−(t –TDs)/τs)]F2 (1)

In the above function V
·
O2(t) is V

·
O2 (absolute) at a given time

(t); V
·
O2 baseline represents the mean V

·
O2 in the last 30 s of the

“unloaded” cycling; Amplitudes (A), time delays (TD) and time

constants (τ) for V
·
O2 primary (p) and slow component (s) phases

are represented as Ap, As, TDp, TDs, τp, and τs respectively. Time

constant is the time that V
·
O2 takes to reach 63% of the amplitude of

the corresponding phase. F1 and F2 are two conditional expressions

that ensure the fitting of the phase is restricted to the period at and

beyond the time delay associated with that phase. The initial 20 s of

the V
·
O2 response data from the start of the cycling bout (i.e.

FIGURE 1
Schematic representation of the protocol. Unprimed and
primed cycling step transitions performed at high-intensity cycling
exercise (Δ50%; the sum of the power output at VT and 50% of the
difference between the power output at VT and V

·
O2peak). All

step transitions, each lasting 6 min, were preceded by 3 min of
cycling at 10 W (i.e. ‘baseline’ cycling). Unprimed and primed
transitions were separated by 12 min of passive rest. The 2 step
transitions (unprimed and primed) were repeated following
45–60 min of passive rest within the same laboratory visit.
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cardiodynamic phase) were omitted but the TDpwas allowed to vary

freely so that the fit could be optimised (Murias et al., 2011). A

monoexponential curve was fitted to calculate mean response time

(MRT) and ascertain the overall V
·
O2 kinetics during high-intensity

cycling irrespective of the different V
·
O2 phases. A weighted

nonlinear least-squares regression (TableCurve 2D, Systat,

United States) was used to fit all V
·
O2 response data. During the

initial fit of the model, only data points within the 95% prediction

interval were included. The average of the final 30 s of the V
·
O2 was

calculated to represent the end of exercise V
·
O2 response (i.e. V

·
O2

End A). The latter was then used to calculate the absolute As that is

(V
·
O2 baseline + Ap) subtracted from V

·
O2 End A, while TDs was

constrained. The As was also calculated relative to the entire

response (As/(Ap + As)). The end of exercise V
·
O2 gain,

representing the functional gain of the overall response, was also

calculated by subtracting V
·
O2 baseline from V

·
O2 End A and

normalised to the difference in power outputs between the

unloaded and high-intensity cycling.

2.4.2 [HHb +Mb] kinetics and tissue oxygenation
index

The muscle deoxygenation (i.e. Δ[HHb +Mb]) response during

high-intensity cycling was collected at a frequency of 1 Hz, was

ensemble-averaged and time averaged into 5 s bins for each

participant and was fitted using the same biexponential function

(Eq. 1). TD was determined by visually inspecting a consistent rise

from the pre-transition level since the Δ[HHb + Mb] is known to

present a TD at the start of exercise before increasing in an

exponential manner. This phenomenon has been suggested to

reflect a close association between local oxygen delivery and

muscular oxygen consumption (DeLorey et al., 2003; Grassi

et al., 2003). Muscle deoxygenation data was therefore fitted from

the TD onwards. The sum of TD and t was used to determine the

effective response time (τ′Δ[HHb + Mb]) representing the time

course for the primary phase of the Δ [HHb + Mb] response.

Baseline TOI was calculated as the 30 s preceding each transition,

and the End TOI as the final 30 s of exercise.ΔTOIwas calculated by
subtracting baseline TOI from End TOI.

2.4.3 Heart rate kinetics
The heart rate data was fitted using a monoexponential

function (Eq. 2) with the fitting window constrained to V
·
O2 TDs:

HR(t) � HR baseline + A[1 − e−(t−TD)/τ)] (2)

In the above function HR baseline represents the mean HR in

the last 30 s of the “unloaded” cycling.

2.5 Statistical analysis

The Shapiro-Wilk’s test was used to assess the normal

distribution of the data. Between group comparisons of

participants’ characteristics and peak performance data were

undertaken using an unpaired Student’s t-test (for parametric

data) or a Mann-Whitney U test (for non-parametric data). A

two-way mixed model ANOVA [condition (unprimed, primed)

x diabetes status (T2D, Control)] and the post hoc Tukey test

were used to analyse all the dynamic response data for oxygen

uptake, heart rate and muscle deoxygenation as well as TOI

responses. p < 0.05 was used to determine statistical significance.

Results from parametric analyses are presented as mean ± SD

whereas non-parametric results are presented using median and

interquartile ranges.

3 Results

3.1 Participant characteristics

Unsurprisingly, individuals with T2D had significantly

higher HbA1c and fasting plasma glucose levels than healthy

individuals (Table 1). Importantly, the T2D and control groups

were matched according to sex distribution, age, BMI, body mass

and activity levels.

3.2 Peak exercise responses

Individuals with T2D had significantly lower absolute

V
·
O2peak, V

·
O2peak normalised to body mass, and peak power

output than healthy individuals (Table 1).

3.3 Effect of priming exercise on oxygen
uptake kinetics

The primed and unprimed dynamic response characteristics

of V
·
O2 at high-intensity cycling exercise transitions for each

group are presented in Table 2. The V
·
O2 responses for a

representative individual with T2D and a healthy control are

presented in Figure 2. Individual V
·
O2 τp and V

·
O2 As responses

are provided in Figure 3. The unprimed V
·
O2 τp and MRT were

significantly longer in individuals with T2D compared with

healthy controls (p < 0.001 for both parameters). PE

significantly reduced V
·
O2 MRT (p < 0.001) in the T2D and

control groups; however, no group difference was present (p =

0.053) during the subsequent exercise transition (diabetes

status × condition interaction, p < 0.001). PE also elicited a

reduction in V
·
O2 τp in individuals with T2D (p < 0.001) but not

in the healthy controls (p = 0.98) so that V
·
O2 τp was not different

between groups after PE (diabetes status × condition interaction,

p < 0.001). In addition, subsequent to PE, V
·
O2 As was reduced

while baseline V
·
O2 was increased in both the T2D and healthy

control groups (condition effect, p < 0.001 for both parameters).
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3.4 Effect of priming exercise on Δ [HHb +
Mb] kinetics and tissue oxygenation index
responses

Table 3 presents the parameter estimates for Δ[HHb + Mb]

kinetics and TOI responses whereas Figure 4 shows the Δ[HHb +

Mb] responses for representative individuals. No statistical group

difference was observed in the unprimed parameter estimates. PE

resulted in significantly elevated levels of baseline Δ [HHb +Mb]

in T2D (p < 0.001) and a tendency for higher levels in controls

(p = 0.08) (group × condition interaction, p = 0.04). Participants

with T2D showed a larger ratio of the modelled amplitudes of Δ
[HHb + Mb]/ΔV

·
O2 than controls (main effect of group, p =

0.01). None of the remaining [HHb + Mb] kinetics parameters

were affected by PE. Estimates of baseline TOI as well as ΔTOI
were higher during the primed bout in individuals with T2D (p <
0.01 for both) but not controls (p = 0.7 and 0.9 respectively)

(group × condition interaction, p = 0.02 and 0.01 respectively).

3.5 Effect of priming exercise on heart rate
kinetics

The HR τ was significantly longer in individuals with T2D

compared with healthy controls (main effect of group, p < 0.01),

but PE did not affect HR τ in any of the groups (T2D unprimed:

56 ± 3 s, T2D primed: 55 ± 2 s; controls unprimed: 51 ± 3 s,

controls primed: 50 ± 5 s). Baseline HR was higher in T2D (main

effect of group, p = 0.04) and subsequent to PE it increased (main

effect of condition, p < 0.001) in both groups (T2D unprimed:

109 ± 14 beats. min−1, T2D primed: 118 ± 13 beats. min−1;

controls unprimed: 98 ± 9 beats. min−1, controls primed: 106 ±

10 beats. min−1). End-exercise HR was not different among

groups, but it increased following PE (main effect of

condition, p = 0.017) in both groups (T2D unprimed: 157 ±

12 beats. min−1, T2D primed: 159 ± 13 beats. min−1; controls

unprimed: 156 ± 16 beats. min−1, controls primed: 162 ± 15 beats.

min−1).

4 Discussion

In agreement with our primary hypothesis, this study presents

for the first-time evidence that in middle-aged individuals with T2D

PE reduces V
·
O2 τp during high-intensity exercise initiated from

unloaded exercise without changes in the dynamic response of Δ
[HHb +Mb]. In addition, consistent with our second hypothesis, PE

significantly reduced the V
·
O2 As during the high-intensity exercise

bout. Together, these priming exercise-induced effects rendered a

reduction in the V
·
O2 MRT response.

4.1 Effect of priming exercise on oxygen
uptake τp

In the present study, V
·
O2 τp responses observed during high-

intensity upright cycling transitions were significantly amplified

in individuals with T2D (48 s) than controls (32 s) leading to a

longer MRT in T2D compared with controls. This is consistent

with previous results from Brandenburg et al. (1999) who showed

a significantly longer MRT during high-intensity cycling

transitions in females with T2D compared with BMI-matched

TABLE 2 Dynamic response characteristics of oxygen uptake (V
·
O2) at high-intensity cycling exercise transitions.

Unprimed Primed

Controls Type 2 diabetes Controls Type 2 diabetes

n 11 11 11 11

Baseline V
·
O2 L/min 1.02 ± 0.23 0.90 ± 0.16 1.18 ± 0.23* 0.96 ± 0.20*

V
·
O2 Ap, L/min 1.04 ± 0.41 0.79 ± 0.28 1.09 ± 0.38 0.80 ± 0.29

V
·
O2 τp, s

34 ± 2† 48 ± 6 34 ± 3 32 ± 6*

V
·
O2 As, L/min 0.33 ± 0.13 0.26 ± 0.11 0.25 ± 0.14* 0.16 ± 0.07*

V
·
O2 As, %

24.5 ± 7.0 25.6 ± 10.5 18.5 ± 7.0* 17.6 ± 6.6*

V
·
O2 TDs, s

121 ± 24 138 ± 35 130 ± 26 139 ± 40

V
·
O2 end A, L/min 2.39 ± 0.61† 1.95 ± 0.40 2.52 ± 0.59† 1.93 ± 0.45

V
·
O2 MRT, s 67 ± 5† 81 ± 13 57 ± 4* 64 ± 9*

End-exercise V
·
O2 gain, mL.min−1.W−1 9.7 ± 1.6 10.1 ± 1.7 9.5 ± 1.2 9.2 ± 1.8

Data are means ± SD; n = no. of participants. A, amplitude; τ, time constant; end A, steady-state oxygen uptake (V
·
O2) response; TD, time delay; p, primary phase; s slow component phase.

*p < 0.05 vs. unprimed within the same diabetes status group (i.e. within controls or within Type 2 diabetes). †p < 0.05 vs. participants with type 2 diabetes within the same condition (i.e.

within unprimed or primed).
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controls (Brandenburg et al., 1999), although Mac Ananey et al.

(2011) only observed a tendency for longer V
·
O2 kinetics in

females with T2D of similar characteristics (Mac Ananey et al.,

2011). Importantly, we have recently reported in a subgroup of

participants who took part in the present study, that T2D slows

V
·
O2 τp during transitions to both, moderate-intensity (Rocha

et al., 2019; Rocha et al., 2020) as well as high-intensity work-to-

work (Gildea et al., 2021b) transitions. Hence, the present study

extends the findings of a blunted V
·
O2 kinetics response to

moderate and high-intensity work-to-work exercise to that of

high-intensity exercise initiated from unloaded exercise, at least

in middle-aged individuals with T2D when compared with

carefully matched healthy controls.

The performance of a PE bout herein resulted in a subsequent

significant reduction in this V
·
O2 τp among individuals with T2Dbut

not in those without, bringing the primed V
·
O2 τp in T2D in line

with the control group. These findings suggest that when the

dynamic response of V
·
O2 is impaired by limitations in O2

delivery, as is the case in T2D (Bauer et al., 2007; MacAnaney

et al., 2011; Kiely et al., 2014), PE speeds V
·
O2 τp in the subsequent

exercise bout. This notion is supported by studies that have explored

these responses when exercising in the prone and supine positions

(Rossiter et al., 2001; Jones et al., 2006; Goulding et al., 2017), thus,

compromising exercisingmuscle perfusion pressure and O2 delivery

(Egaña et al., 2010; Egaña et al., 2013). For instance, an investigation

where healthy participants performed high-intensity cycling bouts

FIGURE 2
Oxygen uptake (V

·
O2) responses for a representative healthy control ((A): absolute values; (B): normalised to the %primary phase V

·
O2 amplitude)

and an individual with type 2 diabetes ((C): absolute values; (D): normalised to the % primary phase V
·
O2 amplitude) during high-intensity cycling

transitions without priming exercise (open circles) and with priming exercise (solid circles). The vertical line illustrates the abrupt transition to the
higher work rate. The continuous lines of best fit illustrate the primary phase of the oxygen uptake (V

·
O2) response. Note the relatively slower

response of the primary phase of the V
·
O2 response in the unprimed compared with the primed bout in T2D.
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with and without PE in the supine posture, Jones et al. (2006)

observed that PE induced a 37% reduction (p < 0.05) in τV
·
O2p

(38 s ± 18 s vs. 24 ± 9, s) in the subsequent bout, that was in line with

that reported in the unprimed upright posture (Jones et al., 2006).

Thus, findings from the current study expand the recently reported

findings by our group of a significant speeding in V
·
O2 τp following

priming exercise during moderate-intensity (Rocha et al., 2019;

Rocha et al., 2020) as well as high-intensity work-to-work

exercise (Gildea et al., 2021b) to that of high-intensity exercise

initiated from light exercise in individuals with T2D who are

younger than 60 years of age.

The notion that priming exercise enhanced O2 supply in the

subsequent exercise transition in T2D is evidenced by an increased

TOI which suggests an increase in O2 availability, likely mediated by a

PE-induced increased vasodilation and muscle blood flow at the

beginning of the subsequent exercise (Gerbino et al., 1996). However,

given that the NIRS-derived overall muscle deoxygenation kinetics

and/or amplitude were not affected by PE herein, there is the

possibility that the priming-induced reduction in V
·
O2 τp in T2D

was also partly mediated by an improved intracellular O2 utilization,

likely mediated by the upregulation of rate-limiting mitochondrial

oxidative enzymes (Gurd et al., 2006; Gurd et al., 2009) and elevated

mitochondrial calcium concentrations (Wüst and Stienen, 2018). On

the other hand, the fact that HR kinetics were not altered following PE

suggests that central mechanisms (i.e. quicker delivery) did not

influence the priming response.

4.2 Effect of priming exercise on oxygen
uptake slow component

In the present study, PE significantly reduced both V
·
O2 τp,

and As during the high-intensity transition in participants with

FIGURE 3
Individual and mean ± SD (bar graph) changes in time
constant of the primary phase of oxygen uptake (V

·
O2 τp) (A) and

amplitude of the V
·
O2 slow component (V

·
O2 As) (B) in participants

with type 2 diabetes (n = 11) and healthy controls (n = 11)
during high-intensity cycling transitions without priming exercise
(unprimed) and with priming exercise (primed). *p < 0.05 vs.
unprimed within the same diabetes status group (i.e., within
controls or within Type 2 diabetes). †p < 0.05 vs. healthy controls
within the same condition (i.e., within unprimed or primed).

TABLE 3 Dynamic response characteristics of Δ [HHb + Mb] and TOI during high-intensity cycling exercise transitions.

Unprimed Primed

Controls Type 2 diabetes Controls Type 2 diabetes

n 11 11 11 11

Baseline Δ [HHb + Mb], μM*cm −50 ± 36 −61 ± 62 −33 ± 39 −16 ± 50*

Δ [HHb + Mb] Ap, μM*cm 90 ± 84 135 ± 75 87 ± 87 141 ± 87

Δ [HHb + Mb] TDp, s 10 ± 2 10 ± 2 10 ± 2 11 ± 2

Δ [HHb + Mb] τp, s 13 ± 9 12 ± 5 13 ± 7 12 ± 4

Δ [HHb + Mb] τ′, s 23 ± 9 22 ± 5 23 ± 7 23 ± 4

Primary phase Δ [HHb + Mb]/ΔV
·
O2 As, μM*cm (L/min) 83 ± 63† 170 ± 70 83 ± 74† 171 ± 95

Δ [HHb + Mb] As, μM*cm 20 ± 17 21 ± 16 21 ± 17 18 ± 16

Baseline TOI, % 75 ± 6 70 ± 5 76 ± 6 74 ± 5*

Δ TOI % 7.4 ± 4.8 6.5 ± 4.5 7.4 ± 5.5 9.3 ± 6.0*

Values are means ± SD; n = no. of participants. A, amplitude; τ, time constant; TD, time delay; p, primary phase; s slow component phase; τ, time constant; τ′, effective response time (τ +
TD); [HHb + Mb], deoxygenated haemoglobin and myoglobin concentration; TOI, tissue oxygenation index; V

·
O2 oxygen uptake. *p < 0.05 vs. unprimed within the same diabetes status

group (i.e. within controls or within Type 2 diabetes). †p < 0.05 vs. participants with type 2 diabetes within the same condition (i.e. within unprimed or primed).
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T2D. However, in the control group, although PE reduced the

V
·
O2 As subsequently shortening the overall MRT of the V

·
O2

response, V
·
O2 τp remained unaffected. These findings in control

individuals are consistent with the current evidence on the

influence of PE on subsequent transitions to heavy/severe-

intensity upright cycling exercise initiated from an unloaded

baseline in healthy participants (Burnley et al., 2000; Burnley

et al., 2001; Scheuermann et al., 2001; Burnley et al., 2002a;

Burnley et al., 2002b; Fukuba et al., 2002; Burnley et al., 2006;

Jones et al., 2006; Goulding et al., 2017).

The priming-induced reduction in the slow component of

the present study can likely be attributed to alterations in motor

unit recruitment patterns. For instance, our group has recently

shown (Gildea et al., 2021b) a priming-induced reduction in

iEMG between the end of exercise and the time of the onset of

V
·
O2 As (ΔiEMGend-TDs) upon transition to a subsequent high-

intensity cycling bout, albeit from an elevated baseline (work-to-

work), concomitant with a significant reduction in the V
·
O2 As.

Although, herein, iEMG was not measured, it is possible that PE

induced a decreased requirement for additional type II muscle

fiber activation during the subsequent high-intensity cycling

bout, thereby reducing the associated V
·
O2 cost of muscle fiber

activation (DiMenna et al., 2008). By reducing dependency on

these less efficient muscle fibers, the increase in sustained

metabolic acidosis, a likely mediator of [PCr] and V
·
O2 slow

components, can be slowed (Poole et al., 1988; Poole et al., 1991;

Barstow et al., 1996; Rossiter et al., 2002; Krustrup et al., 2004).

Alternatively, PE could facilitate an increased and more

homogenous muscle perfusion within the active musculature,

which is supported by the observed elevated baseline TOI during

the primed bout in T2D herein. Consequently, the reliance on

[PCr] degradation and glycogenolysis would be reduced,

attenuating the rate of fatigue development and thus, delaying

motor unit recruitment (DiMenna et al., 2010). In addition, this

altered muscle activation response to priming exercise

concomitant with the elevated TOI is consistent with the

‘oxygen-conforming’ effect, which has been demonstrated

under involuntary and voluntary small muscle activation

(Fitzpatrick et al., 1996; Drouin et al., 2022), although the

mechanisms governing the oxygen-conforming response

remain to be elucidated.

The observed PE-induced reduction in the V
·
O2 As during

high-intensity cycling in T2D, is all the more pertinent given

individuals with T2D possess a 2-fold increase in type IIb

fibers (Mogensen et al., 2007), demonstrate attenuated motor

unit firing patterns in the VL compared with healthy controls

(Watanabe et al., 2012; Watanabe et al., 2013) and tend to

have lower dissociating capacity of myoglobin at intensities

above VT (Miyamoto et al., 2020). Nevertheless, it is

important to note that not all studies support the

association between neuromuscular activation and the V
·
O2

slow component (Scheuermann et al., 2001; Garland et al.,

2006; Cannon et al., 2007), and this is possibly due to the

variability associated with measurements and normalization

of iEMG.

With this new physiological insight of impaired V
·
O2 kinetics

during high-intensity exercise transitions in T2D that are affected

by limitations in O2 delivery, future studies should investigate if

exercise training mitigates these impairments. This will be

practically relevant as high-intensity exercise transitions

replicate metabolic transitions akin to those in daily life such

as initiating sudden transitions to rapid walking, running, or stair

climbing. While recent studies have demonstrated that time-

efficient high-intensity interval training as well as longer-

duration moderate-intensity continuous exercise training

FIGURE 4
Changes in deoxygenated hemoglobin and myoglobin
concentration [Δ (HHb + Mb)] for a representative healthy control
(A) and an individual with type 2 diabetes (B) during high-intensity
cycling transitions without priming exercise (open circles)
and with priming exercise (solid circles). The vertical line illustrates
the abrupt transition to the higher work rate. The continuous black
lines of best fit illustrate the primary phase of the Δ (HHb + Mb)
response. Note the time constant of the primary phase of the Δ
[HHb + Mb] response is not affected by prior priming exercise in
any of the 2 groups.
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interventions seem effective in enhancing V
·
O2 τp during

moderate-intensity transitions (Green et al., 2020; Gildea

et al., 2021a) as well as high-intensity work-to-work

transitions (Gildea et al., 2022) in T2D, new studies should

explore if these exercise training interventions of different

doses can influence the V
·
O2 kinetics response during high-

intensity transitions.

5 Limitations

Our results are limited to middle-aged mixed groups of men

and women, hence, further studies should explore sex- and/or

age-related differences in these outcomes. Even if our protocol

did not allow block randomization, the sequence of the unprimed

and primed exercise transitions was the same for all participants;

hence, this likely has a minor impact on the interpretation of the

current findings.

6 Conclusion

The present study showed that a preceding high-intensity exercise

(i.e. warm-up) or priming exercise accelerated the overall MRT of the

V
·
O2 dynamic response during high-intensity transitions in middle-

aged individuals with T2D. This finding was attributed to a speeding

of the primary phase time constant of V
·
O2 and a reduction in the

amplitude of the V
·
O2 slow component while PE did not affect the

dynamic response of muscle deoxygenation. Thus, in the presence of

the likely diminished vasomotor responses in T2D, it is likely that

undertaking a prior high-intensity exercise bout resulted in a more

appropriate distribution of blood flow within the working muscle

microvasculature, serving to alleviate the metabolic debacle to

maintain V
·
O2.
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