AUTHOR=Warner Jeffrey B. , Larsen Ida S. , Hardesty Josiah E. , Song Ying L. , Warner Dennis R. , McClain Craig J. , Sun Rui , Deng Zhongbin , Jensen Benjamin A. H. , Kirpich Irina A. TITLE=Human Beta Defensin 2 Ameliorated Alcohol-Associated Liver Disease in Mice JOURNAL=Frontiers in Physiology VOLUME=12 YEAR=2022 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2021.812882 DOI=10.3389/fphys.2021.812882 ISSN=1664-042X ABSTRACT=
Alcohol-associated liver disease (ALD) is a prevalent liver disorder and significant global healthcare burden with limited effective therapeutic options. The gut-liver axis is a critical factor contributing to susceptibility to liver injury due to alcohol consumption. In the current study, we tested whether human beta defensin-2 (hBD-2), a small anti-microbial peptide, attenuates experimental chronic ALD. Male C57Bl/6J mice were fed an ethanol (EtOH)-containing diet for 6 weeks with daily administration of hBD-2 (1.2 mg/kg) by oral gavage during the final week. Two independent cohorts of mice with distinct baseline gut microbiota were used. Oral hBD-2 administration attenuated liver injury in both cohorts as determined by decreased plasma ALT activity. Notably, the degree of hBD-2-mediated reduction of EtOH-associated liver steatosis, hepatocellular death, and inflammation was different between cohorts, suggesting microbiota-specific mechanisms underlying the beneficial effects of hBD-2. Indeed, we observed differential mechanisms of hBD-2 between cohorts, which included an induction of hepatic and small intestinal IL-17A and IL-22, as well as an increase in T regulatory cell abundance in the gut and mesenteric lymph nodes. Lastly, hBD-2 modulated the gut microbiota composition in EtOH-fed mice in both cohorts, with significant decreases in multiple genera including