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At present, the worldwide prevalence of obesity has become alarmingly high with
estimates foreshadowing a continued escalation in the future. Furthermore, there is
growing evidence attributing an individual’s predisposition for developing obesity to
maternal health during gestation. Currently, 60% of pregnancies in the US are to
either overweight or obese mothers which in turn contributes to the persistent rise
in obesity rates. While obesity itself is problematic, it conveys an increased risk for
several diseases such as diabetes, inflammatory disorders, cancer and cardiovascular
disease (CVD). Additionally, as we are learning more about the mechanisms underlying
CVD, much attention has been brought to the role of perivascular adipose tissue
(PVAT) in maintaining cardiovascular health. PVAT regulates vascular tone and for a
significant number of individuals, obesity elicits PVAT disruption and dysregulation of
vascular function. Obesity elicits changes in adipocyte and leukocyte populations within
PVAT leading to an inflammatory state which promotes vasoconstriction thereby aiding
the onset/progression of CVD. Our current understanding of obesity, PVAT and CVD
has only been examined at the individual level without consideration for a maternal
programming effect. It is unknown if maternal obesity affects the propensity for PVAT
remodeling in the offspring, thereby enhancing the obesity/CVD link, and what role
PVAT leukocytes play in this process. This perspective will focus on the maternal
contribution of the interplay between obesity, PVAT disruption and CVD and will highlight
the leukocyte/PVAT interaction as a novel target to stem the tide of the current obesity
epidemic and its secondary health consequences.

Keywords: maternal programming, perivascular adipose, adipose inflammation, leukocyte, maternal obesity

INTRODUCTION

Approximately 19% of all children and adolescents in the US can be categorized as obese (Sanyaolu
et al., 2019). This is not merely a domestic issue as∼370 million children worldwide are estimated to
be either overweight or obese according to the World Health Organization (Di Cesare et al., 2019).
These figures are expected to increase as the prevalence of childhood obesity has steadily increased
with the recent reports indicating a 23 and 14% rise in developed and developing countries over
the past decade alone. Increased weight gain during childhood has long-lasting consequences as
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overweight children have a 40–80% chance of being either
overweight or obese as adults. The ramifications of obesity
are numerous as it contributes to the development of several
conditions such as type 2 diabetes, cardiovascular disease (CVD)
and cancer, as well as a number of psychiatric disorders (Goldfield
et al., 2010; Basen-Engquist and Chang, 2011; Park et al.,
2014; O’Brien et al., 2016; Leitner et al., 2017; Chobot et al.,
2018; Csige et al., 2018; Stone et al., 2018). For example, in
epidemiological studies blood pressure and body mass index are
positively associated across the lifespan, starting in childhood and
early adolescence and continuing throughout adulthood (Stamler
et al., 1978; Garrison et al., 1987; Jones et al., 1994; Rabkin
et al., 1997; Chen and Wang, 2008; Forman et al., 2009; Ostchega
et al., 2009; Suglia et al., 2013; Crump et al., 2016; Parker et al.,
2016). Weight loss in obese patients leads to decreases in blood
pressure and improved efficacy of anti-hypertensive drugs (Neter
et al., 2003; Jordan et al., 2012). Importantly though not every
obese individual will develop cardiovascular disease, obesity is
an important contributor to cardiovascular disease risk at the
population level. The consequences of obesity are wide-ranging
and the severity of its burden continues to grow both in the
US and abroad with children and adolescents now constituting
a significant number of those afflicted.

There is no singular cause responsible for the development of
childhood obesity. While initially believed to be solely attributed
to a positive energy balance, studies have since elucidated that
the origin and progression of obesity is multifaceted (Grundy,
1998; Chalk, 2004; Jukaku and Williams, 2021). In addition to
energy balance, we now know that that other facets of nutrition
(food refinement, meal timing, etc.) as well as environmental
circumstances convey a compliance/resistance to an obesogenic
state (Hruby and Hu, 2015; González-Muniesa et al., 2017; Xiao
et al., 2019). Though many contributing factors are within an
individual’s control, growing evidence indicates that maternal
health at conception and throughout gestation affects offspring’s
susceptibility to becoming overweight/obese (Smith et al., 2009;
Heerwagen et al., 2010; Desai et al., 2013; Gaillard et al., 2014;
Tie et al., 2014; Chang et al., 2019; Larqué et al., 2019). Indeed,
maternal obesity predisposes offspring to being overweight or
obese during adolescence and adulthood (Williams et al., 2014;
Godfrey et al., 2017). As mentioned previously, the onset and
progression of obesity elicits an increased risk to a number
of maladies later in life, and there is growing evidence to
indicate maternal obesity has an acute and long-lasting impact
on cardiovascular health (Bridger, 2009; Umer et al., 2017; Wühl,
2019; Bashir et al., 2020).

In both humans and animal models, in utero exposure to
maternal obesity is associated with increased risk of developing
CVD later in life. Likewise, elevated maternal BMI during
pregnancy correlates with early vascular disruptions in the
offspring such as dyslipidemia, hypertension, myocardial fibrosis
and ventricular hypertrophy (Huang et al., 2010; Fernandez-
Twinn et al., 2012; Gambineri et al., 2020). Since approximately
60% of pregnancies in the US are born to either overweight
or obese mothers it is imperative we elucidate the mechanistic
purveyors of CVD progression in relation to maternal nutrition.
Less clear, but likely important to cardiovascular outcomes

associated with obesity, is the role of the perivascular adipose
tissue (PVAT), which is the adipose depot that surrounds
nearly all blood vessels. Over the years the function of PVAT
has been increasingly linked to either the maintenance or
decline of vascular health and function (Huang Cao et al.,
2017). Its close proximity to the vasculature allows for it to
act in a paracrine manner to regulate blood vessel pressure
by eliciting the relaxation or constriction of the surrounding
smooth muscle (Brown et al., 2014). Furthermore, as with other
adipose tissues, PVAT is directly influenced by nutritional quality,
with poor nutrition/weight gain leading to a loss of vascular
relaxation (Qi et al., 2018). So though PVAT is influenced by
individual nutrition, there are still many unknowns regarding
the impact of the maternal environment during pregnancy
on PVAT function. As both maternal nutrition and PVAT
significantly impact an individual’s cardiovascular health, it is
imperative to understand how they interact in an effort to not
only better understand but also combat the growing number
of obesity-related CVDs. As such we will outline the limited
research investigating maternal programming’s impact of PVAT.
Furthermore, as this topic is significantly underdeveloped, we will
speculate the possible role of programming induced modulation
of PVAT by supplementing knowledge gaps with tangential
studies addressing the programming effect on alternate adipose
depots and inflammation. As adipocyte changes and heightened
inflammation are known drivers of PVAT disruption and vascular
dysregulation, these observations will illuminate the possible
interplay of programming/PVAT and serve as a launching point
for future investigations.

PERIVASCULAR ADIPOSE
TISSUE—COMPOSITION AND
FUNCTION

PVAT is the adipose depot surrounding virtually every blood
vessel in the body. Although its existence has been known
for some time, it was often resected and disposed of prior to
any vascular examination or experimentation. The widespread
presumption of PVAT function was that it merely provided
structural integrity to the adjacent vessel and was otherwise
inconsequential. Since then, many studies have illustrated that
PVAT is a significant regulator of vascular tone (Brown et al.,
2014; Nosalski and Guzik, 2017; Cheng et al., 2018; Qi et al.,
2018; Chang et al., 2020). This regulatory function is facilitated
via the production of a milieu of soluble mediators (cytokines,
chemokines, adipokines and small signaling molecules) that
conveys the ability to govern vascular tension by directing the
contractility of both vascular smooth muscle and endothelial
cells of the vessel in a paracrine manner. The ability to generate
such a diverse array of biologically active molecules is due to
the heterogeneous composition of PVAT which includes not only
adipocytes, but leukocytes, neurons and multipotent progenitor
cells (Cheng et al., 2018). Traditionally adipocytes are categorized
as either brown or white, which display either thermoregulatory
or energy storage properties, respectively, while beige cells
exhibit both brown and white characteristics. In our opinion,
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PVAT, however, represents a unique subset of adipose tissue as
their principle function—modulation of vascular tone—deviates
from that of classical brown, white and beige adipose depots.
Interestingly, PVAT adipocyte phenotype varies depending on
the vascular bed in which they reside. For example, in rodents,
the adipocytes of PVAT covering the thoracic aorta have a
predominantly brown adipose tissue phenotype, while those of
abdominal aortic PVAT are composed of beige adipose tissue.
Furthermore PVAT of the mesenteric artery and other arterial
beds primarily contain white adipocytes (Qi et al., 2018). Less
is known regarding PVAT composition in humans but current
evidence indicates that PVAT adipocytes display both white
and brown characteristics (Brown et al., 2014). Despite the
outward appearance of the adipocytes within PVAT, the primary
function of the tissue is the maintenance of vascular tension
which is significantly different from the function displayed by
brown and white adipocytes. This functional delineation could
be attributed to the fact that PVAT adipocytes arise from SM22α+

progenitors, the same subset that yields vascular smooth muscle
cells, while brown and white adipocytes are derived from Myf5+
and PDGFRα+ progenitors (Harms and Seale, 2013; Brown
et al., 2014; Shin et al., 2020). The significance of SM22α in the
development of PVAT adipocytes was confirmed via when the
deletion of PPARγ using a Cre recombinase under the direction
of the SM22α promoter resulted in an complete loss of PVAT
development (Chang et al., 2012). Furthermore, lineage tracing
of different sections from the thoracic aorta PVAT revealed
SM22α+, Myf5+ and UCP1+ progenitors residing within the
tissue (Ye et al., 2019). Though indispensably important to the
overall function of the tissue, it is worth noting that adipocytes
represent but one of many cell types comprising PVAT.

Many leukocyte populations including CD4+ and CD8+
T cells, B cells, natural killer (NK) cells, macrophages,
mast cells, and neutrophils have been localized in PVAT.
Indeed, PVAT depots have greater numbers of immune cells
compared to canonical white and brown adipose depots (Kumar
et al., 2020). PVAT phenotype and anatomical location affect
leukocyte subpopulations, with mesenteric PVAT (white adipose
phenotype) rich in CD68+ macrophages and thoracic PVAT
(brown adipose phenotype) rich in T cells. Under basal
conditions, macrophages of the M2 subtype are present within
PVAT, which attenuates tissue inflammation via IL-10 production
(Weisberg et al., 2003; Murray and Wynn, 2011). Likewise, both
T and B lymphocytes reside within PVAT with regulatory T
cell (Tregs), with B-1 cell subsets constituting the major cell
phenotypes (Feuerer et al., 2009; Ait-Oufella et al., 2014). These
cells aid in maintaining the health of the vasculature by exerting
anti-atherogenic effects since Tregs produce anti-inflammatory
cytokines and B-1 cells secrete IgM, which prevents foam cell
formation. Additionally dendritic and natural killer cells as well
as neutrophils and eosinophils are present but their function
within PVAT is not as well characterized (Elgazar-Carmon et al.,
2008; Wei et al., 2014; Wensveen et al., 2015; Saxton et al., 2020).
There are also sex differences in immune cell subpopulations;
PVAT from female rats have more NK cells and T cells compared
to PVAT from males (Kumar et al., 2020). It is important to note
that the cellular composition of PVAT is not fixed and is capable

of reorganization as a result of disease, where modifications of
the cell population dictate the effect PVAT will exert on the
neighboring vasculature.

As mentioned previously the adipocytes and leukocytes within
PVAT work in concert to maintain vascular tone by acting in a
paracrine fashion, releasing vasoactive molecules that act on the
underlying smooth muscle cells. Adipocytes secrete adiponectin
which diminishes reactive oxygen species (ROS) production,
suppress endothelial cell adhesion molecule expression and
inhibits pro-inflammatory cytokine release (Ouedraogo et al.,
2007; Gustafsson et al., 2013; Jenke et al., 2013). Adiponectin
likewise stimulates endothelial cell production of nitric oxide
(NO) which promotes vasodilation by inducing vascular smooth
muscle relaxation (Sena et al., 2017). Adipocytes are also capable
of generating NO and hydrogen sulfide (H2S) directly which also
contributes to vasorelaxation (Victorio et al., 2016; Xia et al.,
2016; Donovan et al., 2018; Cacanyiova et al., 2019). This delicate
balance is easily susceptible to disruption via dietary changes
such as increased consumption of refined carbohydrates and
saturated fats, which can facilitate phenotypic changes in the
adipocyte and leukocyte populations which has been observed
in both human and rodent arteries (Nosalski and Guzik, 2017;
Stieber et al., 2019).

PERIVASCULAR ADIPOSE
TISSUE—DISRUPTION AND
DYSFUNCTION

Studies from animal models demonstrate that improper nutrition
leading to an obesogenic state also causes a “whitening” of
thoracic PVAT wherein the characteristics of white adipocytes
begin predominating (Chang et al., 2020). The whitening of
PVAT results in a reduction in adiponectin and subsequent
increased production of leptin which in turn drives down NO and
H2S levels (Koh et al., 2008). The reduction in vascular relaxants
coupled with leptin-induced increase in ROS production causes
constriction of the adjacent blood vessel (Payne et al., 2014).
Leptin likewise facilitates a transition toward an inflammatory
state by increasing macrophage recruitment and driving the
secretion of pro-inflammatory cytokines such as TNFα and IL-
6 (Chen et al., 2010). Furthermore, dietary excess triggers a
hypertrophic remodeling of adipose tissue wherein adipocytes
rapidly expand in response to increase lipid intake (Jo et al.,
2009; Henninger et al., 2014; Muir et al., 2016). The expansion
of adipocyte size causes the cell to exceed the proper surface
area-to-volume ratio thereby causing hypoxia due to limited O2
diffusion. This hypoxic state also contributes to the onset of an
inflammatory state within PVAT.

In addition to contributing to adipocyte whitening, excess fat
intake invokes changes in the leukocyte composition of PVAT
(Almabrouk et al., 2018; Kumar et al., 2021). As indicated
leptin dramatically enhances macrophage recruitment to PVAT
so that they comprise 40–50% of all cells during obesogenic
conditions whereas normally they represent less than 10% of
the total population (Weisberg et al., 2003; Wynn et al., 2013).
Moreover obesity elicits macrophage polarization toward the
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M1 class which produce the pro-inflammatory cytokines IL-6,
IL-1β, and TNFα (Cancello et al., 2005; Kolak et al., 2007).
Thus, the shift from the M2 to M1 phenotype coupled with
the dramatic increase in macrophage number exacerbates the
progression of an inflammatory state in PVAT. Additionally
a high degree of T cell infiltration occurs alongside that of
macrophages (Henrichot et al., 2005). After the onset of an
inflammatory state, Th1, Th17, and cytotoxic T cells (CTLs)
become the predominant classes of T cells present in PVAT
which release of the potent pro-inflammatory cytokines IFNγ,
TNFα, and IL-17. These and other soluble mediators augment
the inflammatory status of PVAT which results in diminished NO
and increased ROS levels thereby enhancing vasoconstriction and
promoting insulin resistance in neighboring tissues (Wassmann
et al., 2004; Nishimura et al., 2009; Zúñiga et al., 2010; Nguyen
et al., 2013; Revelo et al., 2015). Though highly complex
and entailing many cellular and molecular participants, PVAT
dysregulation is largely the result of shifts in the resident adipose
and immune populations. While great strides have been made
to uncover the mechanisms behind this two-pronged process
of tissue disruption regarding direct dietary changes, there is
a paucity of data concerning the role maternal nutrition has
on the phenotypic and functional modulation of adipocytes
and leukocytes in PVAT. As we’ve discovered that maternal
programming affects offspring health in other areas, it is
possible that it may also influence PVAT adipocyte function or
leukocyte composition in response to dietary stress. Previous
reports highlighting a maternal factor contributing to the
propensity for the onset of obesity in offspring demonstrates the
potency of programming on adipocyte composition. Therefore,
these examples illustrate a conceptual framework by which we
can surmise the downstream effect of maternal nutrition on
PVAT composition.

MATERNAL PROGRAMMING AND
OBESITY

Excessive weight gain in women provides added health
complications not shared by males as obesity hinders conception
while also complicating gestation by increasing the likelihood
of pre-eclampsia, gestational diabetes or a cardiovascular event
(Shah et al., 2011; Moussa et al., 2016). Maternal obesity not
only adversely affects the health of the mother but the offspring
as well. Individuals born to overweight mothers have a high
predisposition for becoming obese as several studies show a
strong correlation between maternal obesity and the prevalence
of obesity in both the childhood and adulthood of the offspring
(Lukaszewski et al., 2013; Gaillard et al., 2014; Tie et al., 2014).
Additionally, offspring born to obese mothers have an increased
risk for coronary heart disease, stroke, diabetes, cognitive
dysfunction and premature death (Reynolds et al., 2013; Godfrey
et al., 2017; Cirulli et al., 2020). Interestingly, women who lost
weight prior to becoming pregnant bore offspring that had
reduced incidences of obesity throughout adolescence and early
adulthood (Kral et al., 2006; Smith et al., 2009). These studies
provide clear evidence of a programming effect in offspring

driven by maternal health during conception and gestation. The
long-term health impact of maternal programming, particularly
with regards to obesity, is increasingly relevant since >60% of
women in the US of reproductive age are overweight and ∼35%
are obese (Flegal et al., 2012). As it stands, CVD is the number
one cause of death in the US and a recent study of 37,000
individuals showed a heightened risk of developing CVD onset
and early death in those born to obese mothers (Reynolds et al.,
2013). Likewise a maternal high fat diet was associated with
vascular hyper-responsiveness to contractile agonists, impaired
endothelial function, and increased arterial blood pressure in
rodents (Zaborska et al., 2016). So while maternal obesity
increases the chances of offspring obesity, which itself contributes
increased CVD risk, it appears that the maternal programming
has a more direct influence on an individual’s cardiovascular
health. Despite this demonstrable link between maternal obesity
and offspring CVD risk, the specific mechanisms that mediate
this programming remain unknown.

Obesity induces metabolic inflammation in adipose tissue, as
well as other tissue systems (Xu, 2013; Wu and Ballantyne, 2020).
Likewise, maternal obesity-induced metabolic inflammation
during pregnancy and critical periods of fetal development
can program inflammation in offspring tissues during fetal
development and later on in life (Segovia et al., 2014; Chang
et al., 2019). Rodent studies have shown that maternal high fat
diet causes an increase in offspring pancreatic inflammation,
as indicated by elevated TNFα levels, but does not have the
same effect in hepatic tissues (Howie et al., 2013; Li et al.,
2013). Similarly, elevated TNFα, IL-6, and IL-1β levels were
observed in the hypothalamus of 90 day old rats born to
mothers fed trans fats (Pimentel et al., 2012). Male mice
exposed to maternal preconception and gestational high fat diet
exhibited an increase in CD11c− macrophages residing within
subcutaneous and gWAT when fed a postnatal high fat diet
(Chang et al., 2019). In a non-human primate model, maternal
obesity was associated with altered transcription of genes related
to antigen presentation, leukocyte transendothelial migration,
and B cell receptor signaling pathways in fetal peripheral blood
mononuclear cell (PBMC) (Farley et al., 2009). In humans,
umbilical cord blood from babies born to mothers with obesity
exhibited reduced esoinophils and CD4+ T cell counts, decreased
monocyte and dendritic cell (DC) response to TLR ligands, and
increased cord blood plasma IFNα2 and IL-6 (Wilson et al.,
2015). However, there was no discernable difference in serum
IL-6 or TNFα from human offspring at 12 or 57 years of age
who born to obese mothers (van der Burg et al., 2016). Clearly,
maternal obesity associated inflammation can developmentally
program metabolic dysfunction in offspring through multiple
physiological systems and mechanisms.

MATERNAL PROGRAMMING AND
PERIVASCULAR ADIPOSE TISSUE

It has been shown that maternal obesity is capable of eliciting
an increased propensity for obesogenic adipogenesis (as opposed
to developmental adipogenesis or organogenesis) in offspring
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(Desai and Ross, 2011; Lecoutre and Breton, 2015; Wu and
Ballantyne, 2020) and there are several excellent reviews
delineating the maternal programming effects on offspring
adiposity (Lukaszewski et al., 2013; Lecoutre and Breton, 2015;
Lecoutre et al., 2018). Though most of these conclusion have
been drawn from observational studies, some investigations have
begun to address the mechanistic cause behind this phenomenon.
A recent rodent study demonstrated that a maternal high fat
diet caused an increase in offspring adipocyte hypertrophy
at 4 and 30 weeks post weaning relative to control diet
offspring (Sellayah et al., 2019). However adipocyte counts
did not vary indicating that adipocyte expansion was due to
altered adipocyte hypertrophy and not modified adipogenesis.
Additionally, the adipocyte progenitor genes Fto and Zfp423
were significantly elevated in gonadal white adipose tissue
(gWAT) in offspring born to mothers fed a high fat diet.
These results corroborate an earlier report which observed
a reduction in Zfp423 promoter methylation in tissue from
offspring born to high fat diet dams (Yang et al., 2013).
Though insightful, these results were derived from investigating
gWAT and general fetal tissue. It is unknown if maternal
obesity has the same effect on PVAT as the limited number of
investigations into maternal programming and PVAT focused
primarily on changes in PVAT function instead of phenotypic
adipocyte changes.

To date, only a few studies have attempted to address the
effect of maternal programming on PVAT. A PubMed search
with the terms “maternal programming” AND “perivascular
adipose” or “maternal obesity” AND “perivascular adipose” yields
only 8 publications. Maternal separation as a model of early
life stress enhances the anticontractile effect of PVAT in male
offspring fed a HFD, presumably through an enhancement of
PVAT adiponectin expression (Loria et al., 2018). In regard
to maternal obesity, PVAT from male offspring from HFD-
fed Sprague Dawley dams exhibited a reduced anticontractile
effect due to changes in NO bioavailability (Zaborska et al.,
2016). Additionally, male offspring (on a high cholesterol diet)
from apolipoprotein E deficient dams fed a HFD had an
exaggerated inflammatory response in thoracic aorta PVAT
with increased mRNA and protein expression of monocyte
chemoattractant protein 1 (MCP-1) and TNFα, as well as
increased number of residing MAC2+ and CD68+ cells
compared to offspring from control-fed dams (Wakana et al.,
2015). As PVAT houses leukocyte in addition to adipocytes which,
depending on the circumstance, can accentuate or interfere
with normal function, it is imperative to consider maternal
programming’s influence on immunity and inflammation as
well. Therefore, previous work establishing a maternal link to
immune/inflammatory changes could provide a basis to intuit
the possible consequences of programming on the phenotype of
PVAT resident leukocytes.

It is worth noting that the majority of these studies did
not investigate the changes in the composition or phenotype
of leukocytes in a particular tissue and instead measured the
levels of a few notable cytokines as a proxy for immune cell
function. Furthermore, studies on maternal programming effects
on adipose depots were chiefly concerned with changes to

adipocytes. This course of investigations has led to a state
where enough evidence has been generated to speculate on
the adipocyte and leukocyte changes that may occur in PVAT
in the presence of a maternal programming HFD insult.
Importantly, the progenitor cells of PVAT differ from traditional
white and brown adipose depots, suggesting that PVAT may
signal and function differently from canonical adipose depots
(Chang et al., 2012; Li et al., 2021). Since PVAT relies on
both the adipocyte and leukocyte population to orchestrate
the tissue’s regulation of vascular tone, it is critical that we
build upon this prior knowledge with experiments designed to
address the maternal programming effect on the phenotypic
and functional changes of both the adipocytes and leukocytes
residing within PVAT. Thus, studies to further our understanding
of the relationship between the maternal in utero environment,
obesity, inflammation, and PVAT constitute an important
future endeavor.

DISCUSSION

For PVAT to maintain the necessary vascular tone to support
cardiovascular health, it needs the proper adipocyte and
leukocyte composition. While it is known that maternal health
can contribute to other facets of the offspring’s health, little
is known about its potential for predisposing an individual
toward PVAT disruption either in the face of or absence of
maternal malnutrition. Though there is some evidence to address
maternal contributions toward adipogenesis, it is still unclear
if this effect also occurs in PVAT. Moreover, we still do not
know if maternal programming changes the basal phenotype
of PVAT adipocytes, or what effect that might have on their
secretory patterns and vascular regulation or what changes might
occur when coupled with poor nutrition. The same questions can
be presented for the resident leukocytes of PVAT. Is maternal
programming capable of shifting either the number of immune
cell subsets within PVAT or the phenotype and polarization of
those cells? Is any potential programming present under normal
circumstances or does it arise following the adoption of an
improper diet by the offspring? By addressing these questions,
we can begin to uncover the mechanisms by which maternal
programming predisposes offspring to obesity and raises the risk
of developing CVD.
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