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Editorial on the Research Topic

Organization and Functional Properties of the Blood-Brain Barrier

INTRODUCTION

This Editorial provides a brief overview of the organization and functional properties of the
blood-brain barrier, and introduces the foundational information in this book that contributes to
these principles.

THE ORGANIZATIONAL ROLE OF THE BLOOD-BRAIN BARRIER

The blood-brain barrier serves to restrict and control passage of solutes between the general
circulation and brain extracellular fluid (Abbott and Friedman, 2012). Barrier function is due
principally to the presence of specialized endothelial cells that line brain capillaries (Ge et al.,
2005). These endothelial cells possess tight junctions that circumscribe the cells and largely prohibit
extracellular movement of solutes between the cells (Hawkins and Davis, 2005; Tornavaca et al.,
2015; Sweeney et al., 2019). The tight junctions demarcate two distinct plasmalemmal domains
within the endothelium, including the luminal (blood facing) and abluminal (brain facing) plasma
membranes (Sanchez del Pino et al., 1995; Peterson and Hawkins, 2003). Thus, transport across the
blood-brain barrier is primarily transcellular, and net movement of solutes across the endothelium
is determined by transport properties of the respective plasma membrane domains (Peterson
and Hawkins, 1998, 2003; Hawkins et al., 2002). These substances may be altered by degradative
enzymes associated with the barrier (el-Bacha and Minn, 1999), and barrier function is influenced
by adjacent cells including astrocytes and pericytes that have led to the concept of a “neurovascular
unit” (Hawkins and Davis, 2005; Abbott et al., 2006; Armulik et al., 2010; Sweeney et al., 2019).

FUNCTIONS OF THE BLOOD-BRAIN BARRIER

The blood-brain barrier contributes to homeostatic control of the central nervous system by
modifying the volume and composition of brain extracellular fluid (Strange, 1992; Keep et al.,
1998; Abbott and Friedman, 2012; Sweeney et al., 2019). Specific carrier proteins are present
in both the luminal and abluminal plasma membranes of brain capillary endothelial cells

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.796030
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.796030&domain=pdf&date_stamp=2021-12-02
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:darryl.peterson@rosalindfranklin.edu
https://doi.org/10.3389/fphys.2021.796030
https://www.frontiersin.org/articles/10.3389/fphys.2021.796030/full
https://www.frontiersin.org/research-topics/11550/organization-and-functional-properties-of-the-blood-brain-barrier


Peterson et al. Editorial: Organization and Functional Properties of the Blood-Brain Barrier

that allow facilitated passive transport of nutrients from
blood to brain, including glucose and amino acids (Drewes,
1998; Smith and Stoll, 1998; Hawkins et al., 2011; Peterson,
2019). Some amino acid transport systems possess sodium-
dependent (i.e., secondary active) carriers in the abluminal
membrane, thus providing possible mechanisms for regulation
of transport (O’Kane et al., 1999; Peterson, 2019). Although
the blood-brain barrier appears to be largely impermeable
to peptides and proteins, there is evidence that some small
peptides may enter the brain utilizing carrier-mediated processes
(Banks, 2015; Sweeney et al., 2019). Furthermore, it appears that
insulin and transferrin may cross the barrier by receptor-
mediated endocytosis (Duffy and Pardridge, 1987; Pardridge
et al., 1987). Unidirectional (blood-to-brain) fluid movement
across the blood-brain barrier utilizes coordinated transport
of salt and water that appears to be regulated (Strange,
1992; Keep et al., 1998; Peterson and Hawkins, 1998; Abbott
and Friedman, 2012; Peterson, 2019; Sweeney et al., 2019).
Sodium first enters passively into the cells utilizing carriers
(e.g., Na/H antiporter, Na/K/Cl cotransporter, Na/Ca exchanger)
in the luminal membrane of brain capillary endothelial cells.
Intracellular sodium is then actively pumped out across the
abluminal membrane by a Na/K-ATPase. It is generally believed
that water passively follows sodium transport by utilizing water
channels (i.e., aquaporin) in both the luminal and abluminal
membranes (Nagelhus and Ottersen, 2013). There is evidence
that fluid transport is regulated by centrally released peptide
hormones (Strange, 1992; Abbott et al., 2006), and that normal
fluid balance is achieved by its uptake and drainage into and out
of the central nervous system.

DRUG DELIVERY ACROSS THE

BLOOD-BRAIN BARRIER

One of the fundamental challenges to developing drugs that
target the brain is the presence of the blood-brain barrier
(Pardridge, 2012). However, understanding the mechanisms
by which solutes are transported by blood-brain barrier
endothelial cells provides a basis for designing drugs that are
capable of traversing the barrier (Sweeney et al., 2019). For
instance, pharmacological agents that are recognized by transport
carriers that normally deliver nutrients to the brain would
likely cross the blood-brain barrier. Another potential pathway
involves utilization of normally occurring transcytotic pathways
(Pardridge, 2012). Thus, coupling pharmacological agents that
bind insulin or transferrin receptors has been shown to mediate
drug delivery across the blood-brain barrier (Pardridge, 2012).
In addition, procedures designed to loosen tight junctions have
been used to promote intercellular movement of drugs across
the barrier (Rapaport, 2000; Hsu et al., 2018). Nevertheless, each
of these procedures for enabling passage of drugs across the
blood-brain barrier is complicated by the presence of active efflux
transporters in the endothelial cells that may limit or prevent net
influx (Schinkel, 1999; Abbott et al., 2006; Reichel et al., 2011;
Sweeney et al., 2019).

ALTERATIONS OF THE BLOOD-BRAIN

BARRIER IN DISEASE

There is now evidence that dysfunction of the blood-brain
barrier accompanies several diseases involving the central
nervous system (Sweeney et al., 2019). For instance, blood-
brain barrier dysfunction has been associated with Alzheimer’s
disease, amyotrophic lateral sclerosis, epilepsy, multiple
sclerosis, Parkinson’s disease, stroke, and traumatic brain injury
(Papadopoulos et al., 2001; Lo et al., 2003; Marroni et al.,
2003; Minagar and Alexander, 2003; Lee and Bendayan, 2004;
Kortekaas et al., 2005; Peterson and Sukowski, 2019). Alterations
of the barrier include changes in its permeability, transport
properties, and regulatory mechanisms. Thus, understanding
the normal structure and function of the blood-brain barrier,
and defining the properties that are altered during pertinent
neurological disorders, could provide a logical approach to
designing effective therapeutics.

BOOK CHAPTERS

The chapters in this book serve to: (1) review important
discoveries in defining the organization and functional
properties of the blood-brain barrier, and (2) introduce
new concepts regarding its normal function or participation in
disease processes.

The presentation by Partridge describes significant
contributions of using brain microvessels as a model for
investigating the blood-brain barrier and the neurovascular unit.
Isolated brain microvessels consist of endothelial cells, pericytes,
pre-capillary arteriolar smooth muscle cells, astrocyte foot
processes, and nerve endings. They have been used as an in vitro
model of the blood-brain barrier to: (1) produce cDNA libraries
for genomic analyses, (2) quantify the presence of specific
transporters and receptors using proteomics, (3) determine the
cellular location of proteins expressed within the neurovascular
unit by using immunolabeling, (4) study kinetic parameters of
transport carriers, and (5) quantify dissociation constants of
peptide binding involved in receptor-mediated transport.

The article by Locchead et al. focuses on functional
properties of tight junctions in the blood-brain barrier,
and how these are altered during certain pathological
conditions. This presentation also describes how the blood-
brain barrier may be manipulated therapeutically to allow
for intercellular delivery of systemically administered
drugs to the brain. Molecular elements of tight junctional
function, regulation, and potential therapeutic manipulation
are defined.

The paper by Brunner et al. describes a technique to
quantify the contribution of claudins in the seal characterized
by blood-brain barrier tight junctions. Xenopus lauvis
oocytes are used as an expression system for claudins,
and homophilic and heterophilic trans-interactions are
characterized. The effect of hydrostatic pressure on the
stability of cell-to-cell connections and their modulation
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are quantified as a function of claudin expression. This
technique provides a potential basis for a more complete
understanding of tight junction function and control in the
blood-brain barrier.

The review by Zaragozå gives an inclusive over-view of amino
acid transport by the blood-brain barrier. Both facilitative and
secondary active transport processes are described, and the

functional significance of a polarized distribution of amino acid
transporters is discussed.
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