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Type-B Aortic Dissection (TBAD) is one of the most serious cardiovascular events

characterized by a growing yearly incidence, and the severity of disease prognosis.

Currently, computed tomography angiography (CTA) has been widely adopted for

the diagnosis and prognosis of TBAD. Accurate segmentation of true lumen (TL),

false lumen (FL), and false lumen thrombus (FLT) in CTA are crucial for the precise

quantification of anatomical features. However, existing works only focus on only TL

and FL without considering FLT. In this paper, we propose ImageTBAD, the first 3D

computed tomography angiography (CTA) image dataset of TBAD with annotation of

TL, FL, and FLT. The proposed dataset contains 100 TBAD CTA images, which is of

decent size compared with existing medical imaging datasets. As FLT can appear almost

anywhere along the aorta with irregular shapes, segmentation of FLT presents a wide

class of segmentation problems where targets exist in a variety of positions with irregular

shapes. We further propose a baseline method for automatic segmentation of TBAD.

Results show that the baseline method can achieve comparable results with existing

works on aorta and TL segmentation. However, the segmentation accuracy of FLT is

only 52%, which leaves large room for improvement and also shows the challenge of our

dataset. To facilitate further research on this challenging problem, our dataset and codes

are released to the public (Dataset, 2020).

Keywords: type-B aortic dissection, automatic segmentation, computed tomography, dataset, deep neural

networks

1. INTRODUCTION

Type-B aortic dissection (TBAD) is the surging of blood through a tear in the aortic intima with
separation of the intima and media, and creation of a false lumen (channel) as shown in Figure 1,
which is one of the most serious cardiovascular events. TBAD affecting 3–4 per 100,000 people
per year (Karthikesalingam et al., 2010). Approximately 20% of patients with TBAD die before
admission (Karthikesalingam et al., 2010), without treatment, 1–3% patients die per hour during
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FIGURE 1 | Visualization of TBAD in a 3D model including FLT (yellow), TL (red), and FL (blue), and the corresponding CTA image with axial, coronal, and sagittal views.

the first 24 h, 30% at the first week, 80% at 2 weeks, and 90% at
the first year (Hagan et al., 2000). With the thoracic endovascular
aortic repair (TEVAR) surgery and proper treatment patients are
reportedly yielding an impressively low 30-day mortality rate of
10% or less (Hagan et al., 2000). Recently, TBAD has attracted a
lot of attention due to its growing yearly incidence (Suzuki et al.,
2003), and the severity of disease prognosis.

Computed Tomography Angiography (CTA) is routinely
adopted for the diagnosis, surgical planning, and prognosis
of TBAD. Particularly, quantification assessment of anatomical
features in CTA plays a key role in surgical procedure and
treatment planning for prognosis. And segmentation of true
lumen (TL), false lumen (FL) , and false lumen thrombus
(FLT) is a significant step of the quantification assessment.
However, manual segmentation by slice is time-consuming and
requires expertise, while current computer-aided approaches
focus on the segmentation of the entire aorta, which is unable to
segment TL, FL, or FLT, automatic segmentation of substructures
of TBAD is urgently needed. And there are already some
studies trying to solve this problem. Specifically, Melito et
al. use the adaptive algorithm together and the meta-model
technique of Polynomial-Chaos Kriging define the areas in the
cross-section plane in which a point can be used to enrich
the dissected segmentation for aorta dissection reconstruction.
During establishing the mathematical and computational models
of aorta dissection, the level of uncertainty is extremely high.
They point out that “One of the leading causes of this uncertainty
is the lack of useful datasets” (Melito and Ellermann, 2019).
Gamechi et al. propose a fully automatic method combining
multi-atlas registration, aorta centerline extraction, and an
optimal surface segmentation approach to extract the aorta
surface around the centerline. The fully automatic method they
propose can assess diameters in the thoracic aorta reliably even
in non-ECG-gated, non-contrast CT scans, which could be a
promising tool to assess aorta dilatation in screening and in
clinical practice. However, the method they propose still has no
FLT detection ability mainly due to the lack of FLT enabled
dataset (Gamechi et al., 2019). Particularly, there are already
some works using neural networks to automatically segment
TL, FL, and Aorta (Li et al., 2018; Cao et al., 2019). Li et al.
report a fully automatic approach based on a 3-Dmulti-task deep
convolutional neural network that segments the entire aorta and
true-false lumen from CTA images in a unified framework. The

approach they report achieves a mean dice similarity score(DSC)
of 0.910, 0.849, and 0.821 for the entire aorta, true lumen, and
false lumen, respectively. Cao et al. also use a convolutional
neural network to solve the problems and achieves above
90% of the mean Dice coefficients of each lumen of TBAD
when not considering FLT. They provide a promising approach
for accurate and efficient segmentation of TBAD and make
it possible for automated measurements of TBAD anatomical
features. However, existing works nowadays only focus on one
of or both TL and FL (Li et al., 2018; Cao et al., 2019; Gamechi
et al., 2019; Melito and Ellermann, 2019), and FLT information is
poorly explored, partially because of the lack of a dataset. There
are some other works considering thrombus in other diseases
such as an abdominal aortic aneurysm (Lisowska et al., 2017;
Yong et al., 2017; López-Linares et al., 2018), however, TBAD
research has not yet advanced to the quantitative measurement
of FLT like abdominal aortic aneurysm.

In fact, quantification assessment of FLT is also critical for
surgical planning and prognosis. First, the FLT description
in clinical radiology reports plays a pivotal role in guiding
the endovascular intervention surgery (Dohle et al., 2017).
Second, FLT greatly affects patients’ postoperative complications
(Higashigaito et al., 2019) thus is also a significant independent
predictor of post-discharge mortality in prognosis (Trimarchi
et al., 2013; Higashigaito et al., 2019). Automatic, efficient, and
accurate assessment of FLT is particularly useful for doctors to
make a decision on TBAD.

In this paper, we propose ImageTBAD, the first 3D CTA
image dataset of TBAD with annotation of TL, FL , and FLT.
For simplification of discussion, FL is the part of traditional
FL without FLT in our paper. The proposed dataset contains
100 TBAD CTA images, which is of decent size compared
with existing medical imaging datasets. Compared with TL and
FL, FLT can appear in almost anywhere along the aorta with
irregular shapes, which introduces many challenges to accurate
segmentation of it. FLT segmentation represents a wide class
of segmentation problems where targets exist in a variety of
positions with irregular shapes. We further proposed a baseline
method based on 3D U-net (Çiçek et al., 2016) for automatic
segmentation of TBAD. Results show that the baseline method
can achieve comparable results with existing works on the aorta
and TL segmentation. However, the segmentation accuracy of
FLT is the only 52%, which leaves large room for improvement
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TABLE 1 | Characteristics of the ImageTBAD dataset.

Parameters N

Sex = Female (%) 31 (31%)

Age (Mean ± SD) 52.5 ± 11.3

Manufacturer = Philips (%) 77 (77%)

Spacing between slice (mm) 0.75

Size of the images (pixels) 512× 512× (135–416)

Typical voxel size (mm3 ) 0.25 × 0.25 × 0.25

and also shows the challenge of our dataset. To facilitate further
research on this challenging topic, our dataset and codes are
released to the public (Dataset, 2020).

2. THE IMAGE-TBAD DATASET

The ImageTBAD dataset consists of a total of 100 3D CTA
images gathered from Guangdong Provincial Peoples’ Hospital
from January 1, 2013, to April 23, 2015. Images are acquired
from two kinds of scanners (Siemens SOMATOM Force, and
Philips 256-slice Brilliance iCT system), the characteristics of
the ImageTBAD dataset is detailed in Table 1. All the images
are pre-operative TBAD CTA images whose top and bottom are
around the neck and the brachiocephalic vessels, respectively, in
the axial view. The segmentation labeling is performed by a team
of two cardiovascular radiologists who have extensive experience
with TBAD. The segmentation label of each image is fulfilled
by one radiologist and checked by the other. The time to label
each image is around 1–1.5 h. The segmentation includes three
substructures: TL, FL, and FLT. There are 68 images containing
FLT while 32 images are free of FLT.

By analyzing all the labels, we find the segmentation of FLT
is challenging due to the following two reasons. First, FLT can
appear almost anywhere along the aorta, with irregular shapes,
although most FLT appear at the top of the aorta. Figure 2 shows
a variety of relative positions of FLT. Figures 2A–C show the
most common locations of FLT, while Figure 2D is also common
in clinic. Figures 2E–H show some typical cases where FLT is
distributed along with the whole FL and discontinued in multiple
locations. Most FLTs exist at the surface of the aorta, but there are
also some located at the center of the aorta and between the FL
and the TF. Within the eight cases in Figure 2, we can notice the
largest variety of the shapes of FLT. Most FLTs are rather thin
and long, while some others are a pile at the top of the aorta.
In addition, some FLTs are small which is relatively difficult to
segment as shown in Figure 2G. Second, the contrast between
FLT and other tissues is rather low. As shown in Figure 3, the
intensity of the FLT and the nearby tissues are almost the same
which is not easy to be visually recognized. By zooming the area
of the boundary in, we can notice some parts of the boundary as
shown in Figures 3A,B, but some are still with high uncertainty
as shown in Figure 3C. The low contrast would bring more
challenges to FLT segmentation.

3. METHOD AND EXPERIMENT

3.1. The Baseline Method
By analyzing the dataset, we discover the following three
phenomenons. First, the segmentation area is usually rather long
in the axial view, which needs to be considered in the design of
the input size. Second, the target segmentation is rather small
compared with the size of the input, and processing the whole
image is not efficient. Third, in most conditions, the combination
of TL, FL, and FLT has a similar shape of the aorta. In fact, the part
corresponding to FLT is a part of the aorta in normal anatomy.
We can also obtain FLT by removing TL and FL from the
combination of the three. This approach is expected to be more
effective than direct segmentation of FLT because the complexity
of shapes and positions of FLT can be avoided. For simplicity
of discussion, the combination of the three parts is donated as
the aorta.

Based on the above observations, we propose a baseline
method which is a processing pipeline shown in Figure 4. The
processing pipeline includes two steps: region of interest (RoI)
extraction, and RoI segmentation.

3.1.1. RoI Extraction
The RoI extraction aims to obtain a precise bounding box of
the target area, which is fulfilled with two croppings. The first
cropping obtains a rough bounding box by segmenting the aorta
on a resized input (original size to 64 × 64 × 64) using 3D
U-net. Based on the rough bounding box, the rough RoI is
cropped from the original input, and then resized to S×S×2S.
The cropping refinement is further proceeded on the rough RoI
for aorta segmentation, and a relatively more precise bounding
box of the RoI is obtained.

3.1.2. RoI Segmentation
The RoI segmentation performs segmentation tasks on
the refined RoI. We discuss two approaches: Approach A,
we combine the TL and FL segmentation, and the aorta
segmentation; Approach B, we perform direct segmentation of
the three. In Approach A, we suppose to easily get FLT once we
obtain both TL and FL and aorta according to our discovery.
Note that all the modules adopt the same 3D U-net structure as
shown in Figure 4. Four resolution levels are adopted each of
which contains two convolutional layers and one pooling/up-
convolutional layer. The number of filters is N, 2N, 4N, and 8N
for the four resolution levels, respectively. N and the input size
vary for different modules as discussed above. Post-processing
only including upsampling to the original size is performed.

3.2. Experiment
3.2.1. Experimental Setup
We implemented our baseline method using PyTorch based on
Isensee et al. (2018). Both Dice loss and cross entropy loss were
used, and the number of training epochs was 5 for all 3D U-
nets. Data augmentation and normalization were also adopted
with the same configuration as in Payer et al. (2017) for 3D
U-net. For both networks and all the analyses, three-fold cross
validation was performed (about 33 images for testing, and 67
images for training). We split the dataset so that the number
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FIGURE 2 | Examples of various relative position including (A) top, (B) middle, (C) top and middle, (D) bottom, (E–G) whole, and (H) multiple position in TBAD. The

red, blue, and yellow parts correspond to TL, FL, and FLT, respectively. Best viewed in color.

FIGURE 3 | Example of low contrast images in the ImageTBAD dataset in three views: (A) coronal view, (B) axial view, and (C) sagittal view. Red and yellow lines

denote to the boundary of TL and FLT, respectively.

FIGURE 4 | Processing pipeline of the proposed baseline method. Best viewed in color.
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TABLE 2 | Mean and standard deviation of Dice score of baseline method, and t-test value between the Approach A and Approach B for four substructures

segmentation in TBAD.

Approach A Approach B t-value p

S = 64 TL 0.82 ± 0.08 0.79 ± 0.07 2.327 <0.05

FL 0.72 ± 0.20 0.68 ± 0.20 1.166 <0.05

FLT 0.44 ± 0.42 0.50 ± 0.40 0.853 <0.05

Aorta 0.89 ± 0.03 – – –

S = 96 TL 0.86 ± 0.08 0.85 ± 0.07 0.776 <0.05

FL 0.77 ± 0.22 0.78 ± 0.21 0.271 <0.05

FLT 0.44 ± 0.43 0.52 ± 0.40 1.123 <0.05

Aorta 0.91 ± 0.04 – – –

TABLE 3 | Mean and standard deviation of Hausdorff distance of baseline method, and t-test value between the Approach A and Approach B for four substructures

segmentation in TBAD.

Approach A Approach B t-value p

S = 64 TL 298.4 ± 275.2 565.0 ± 222.4 6.213 <0.05

FL 597.5 ± 1117.3 1089.5 ± 1161.8 2.517 <0.05

FLT 1095.1 ± 1879.9 1641.7 ± 1591.8 1.829 <0.05

Aorta 300.2 ± 273.6 – – –

S = 96 TL 516.3 ± 482.5 288.4 ± 426 30.334 <0.05

FL 1273.1 ± 2554.4 643.7 ± 1999.5 1.599 <0.05

FLT 1564.3 ± 3453.5 978.6 ± 2887.3 1.072 <0.05

Aorta 667.4 ± 612.3 – – –

of images containing FLT in each fold were the same. We
implemented two configurations, with S = 64 and S = 96,
respectively. Accordingly, N = 64 and the batch size was 4 when
S = 64, and N = 32 and the batch size was 3 when S = 96.
All the experiments ran on a Nvidia GTX 1080Ti GPU with
11 GB memory.

Dice score and Hausdorff distance were selected as the metrics
for evaluation. For images without FLT, the Dice score is 1 if
there is no FLT in the segmentation result, otherwise 0. As
Approach B in RoI segmentation is similar to the methods that
achieves the SOTA results in the TBAD (Li et al., 2018; Cao et al.,
2019), we compared our method with theirs though their dataset
and methods focused on the segmentation of FLT. Meanwhile,
Hausdorff distance evaluated the shape similarity of propose
method, which is formulated as follow,

H(G, S) = max

{

sup
x∈G

inf
y∈S

‖x− y‖, sup
y∈S

inf
x∈G

‖x− y‖

}

, (1)

where G and S represent ground truth and prediction
segmentation, respectively.

3.2.2. Statistical Analysis
Differences between results are compared using the independent
two-sample t-test. A p-value of <0.05 in the independent two-
sample t-test is considered as statistical significance.

4. RESULTS AND DISCUSSION

4.1. Overall Results
Tables 2, 3 demonstrate that the mean and standard deviation
of Dice score and Hausdorff distance of baseline methods
(Approach A and Approach B), and their t-test value and p-value
for four substructures segmentation in TBAD, respectively. In
terms of different substructures, both Approach A and Approach
B achieves the highest scores on aorta with small Hausdorff
distances. However, both two methods fail to segment the TL,
FL, and FLT well, for the three are parts of the aorta without
remarkable boundaries, thus relatively harder to segment them.
The Dice score and Hausdorff distance of TL beats that of FL,
which may be caused by the low contrast between FL and FLT.
FLT obtains the lowest performance due to its great challenges
discussed in section 2. As for the two methods, though Approach
A with a multi-task segmentation module achieves a bit higher
Dice score with a lower Hausdorff distance than Approach B
using direct segmentation, it fail to achieve higher performance
on the other two parts especially on FLT. Approach B obtains
a large improvement over Approach A on FLT. This may due
to the fact that direct segmentation has more constraint to
more accurately define FLT than multi-task segmentation. On
the other hand, we also notice some impacts from the input
size. The Dice score of S = 96 is slightly higher than that of
S = 64 due to the higher resolution of S = 96. However, the
improvement is small, and there is no improvement for FLT,
which indicates that higher resolution has very limited success on
FLT segmentation. Particularly, for all the 32 images without FLT,
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FIGURE 5 | Examples of good segmentation results (A,B,E,F) with its corresponding ground truth (C,D,G,H). Best viewed in color.

FIGURE 6 | Examples of poor segmentation results (A,B,C,D,E) with their corresponding ground truth, segmentation difference, original CTA image, zoomed, and

labeled CTA images. The original pictures and zoomed area of each cases are accompanied. segment failed part showed the impact of the shape and margin of

thrombus in segmentation process. Especially, case (D) is the same CT scan picture of Figure 3B with 180 degrees flips vertically. Best viewed in color and position.
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the baseline method with both configurations correctly obtain
the results with Dice score of 1, which indicates that the FLT
segmentation accuracy for images with FLT are much lower
(about 20%) than 52%.

Existing works most relevant to ours are the works proposed
by a group from Tsinghua University (Li et al., 2018; Cao et al.,
2019) though the dataset and labels are different. The method
Li et al. (2018) achieves Dice scores of 0.92, 0.85, and 0.85
on aorta, TL, and FL, respectively on the same machine (11
GB GPU memory) as ours. The improved version (Cao et al.,
2019) obtains Dice scores of 0.93, 0.93, and 0.91, on aorta,
TL, and FL, respectively on a more powerful machine (32 GB
GPU memory). Compared with Li et al. (2018), ours achieves
almost the same performance on aorta and TL, but much lower
on FL. While compared with Cao et al. (2019), ours obtains
comparable performance only on aorta, but much lower on
TL and FL.

The comparable results on aorta indicates that our baseline
method is also a powerful one. The gaps in TL and FL
may due to the difference on datasets, labels, and method
details. Though with these difference, we can still notice that
accurate segmentation of FLT is rather challenging. We hope our
dataset and baseline method could help fill the gap and tackle
this challenge.

4.2. Good Segmentation
Examples of good segmentation results are shown in Figure 5.
Overall, the segmentation results have a good match with the
ground truth. However, we can still notice that compared with
TL and FL, FLT has more segmentation flaws, which corresponds
well to the Dice scores in Table 2. There is a tiny FL island at
the top of the aorta which should be FLT as shown in Figure 5A.
Another three tiny FLT islands exist at the similar position
which should be FL as shown in Figures 5F–H, respectively. The
most serious flaw of FLT is the inaccurate segmentation of its
boundaries. As shown in Figures 5B,E,F, there is noticeable error
of the boundary segmentation. The situations in Figures 5G,H

is much worse, and a large part of FLT is misclassified as FL.
Most of the inaccurate boundary segmentation happens at the
descending aorta. Its low performance is usually caused by the
low contrast, which also degrades the segmentation performance
of FL. TL usually has a much better performance as its contrast
is much higher, and there are only some tiny flaws as shown
in Figure 5C.

4.3. Poor Segmentation
Examples of poor segmentation results are shown in Figure 6.
Overall, there exists serious segmentation error especially for
FLT. With the context of TL and FL, the shape of FLT
in Figure 6A can be easily recognized by humans. However,
only part of the shape is correctly segmented because of the
low contrast as shown in the zoomed CTA image. A part
of FLT is lost in Figures 6D,E which is due to the low
contrast. The qualities get worse in both Figures 6B,C in which
LFT are almost totally lost. The boundaries is difficult to
visually tell in Figures 6B,C. There are also some inaccurate
segmentation between TL and FL shown in Figures 6D,E.

The incorrect connection exists between TL and FL in
Figure 6D, and the low contrast in CTA images leads to
the inaccurate segmentation between FL and TL as shown
in Figure 6E.

5. CONCLUSION

In this paper we introduce the ImageTBAD dataset to the
community, which is the first 3D computed tomography
angiography (CTA) image dataset of TBAD with annotation of
true lumen (TL), false lumen (FL), and false lumen thrombus
(FLT). We further propose a baseline method based on 3D
U-net for automatic segmentation of TBAD. Results show
that the baseline method can achieve comparable results with
existing works on aorta and TL segmentations. However, the
segmentation accuracy of FLT is only 52%, which leaves large
room for improvement and proves the challenge of our dataset.
FLT segmentation represents a wide class of segmentation
problems where targets exist in a variety of positions with
irregular shapes. We hope that the open-sourced code of our
baseline method and dataset can encourage the community to
tackle this problem.
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