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Background: The efficacy of antiarrhythmic drugs (AAD) can vary in patients with atrial

fibrillation (AF), and the PITX2 gene affects the responsiveness of AADs. We explored the

virtual AAD (V-AAD) responses between wild-type and PITX2+/−-deficient AF conditions

by realistic in silico AF modeling.

Methods: We tested the V-AADs in AF modeling integrated with patients’ 3D-computed

tomography and 3D-electroanatomical mapping, acquired in 25 patients (68%

male, 59.8 ± 9.8 years old, 32.0% paroxysmal type). The ion currents for the

PITX2+/− deficiency and each AAD (amiodarone, sotalol, dronedarone, flecainide, and

propafenone) were defined based on previous publications.

Results: We compared the wild-type and PITX2+/− deficiency in terms of the action

potential duration (APD90), conduction velocity (CV), maximal slope of restitution (Smax),

and wave-dynamic parameters, such as the dominant frequency (DF), phase singularities

(PS), and AF termination rates according to the V-AADs. The PITX2+/−-deficient model

exhibited a shorter APD90 (p < 0.001), a lower Smax (p < 0.001), mean DF (p = 0.012),

PS number (p < 0.001), and a longer AF cycle length (AFCL, p = 0.011). Five

V-AADs changed the electrophysiology in a dose-dependent manner. AAD-induced

AFCL lengthening (p< 0.001) and reductions in the CV (p= 0.033), peak DF (p< 0.001),

and PS number (p < 0.001) were more significant in PITX2+/−-deficient than wild-type

AF. PITX2+/−-deficient AF was easier to terminate with class IC AADs than the wild-type

AF (p = 0.018).

Conclusions: The computational modeling-guided AAD test was feasible for

evaluating the efficacy of multiple AADs in patients with AF. AF wave-dynamic and

electrophysiological characteristics are different among the PITX2-deficient and the

wild-type genotype models.
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INTRODUCTION

Atrial fibrillation (AF) is found in 1.6% of the overall population,
and the prevalence is steadily increasing with the aging
population (Kim et al., 2018). Because AF is a progressive chronic
disease, the more AF progresses to the persistent form, the more
difficult it is to control the rhythm (Calkins et al., 2017). On
the other hand, active rhythm control of AF, including catheter
ablation, helps prevent AF complications such as ischemic
strokes, dementia, heart failure, and renal failure (Friberg et al.,
2016; Marrouche et al., 2018; Jin et al., 2019; Noseworthy et al.,
2019; Park et al., 2019). Nevertheless, using drugs for AF rhythm
control is not easy because of the low efficacy and safety of
antiarrhythmic drugs (AAD) (Singh et al., 2005). AF has been
proven to be a heritable disease (Lubitz et al., 2010). Although
it is still disputable, the genetic characteristics might play an
essential role in AAD responsiveness and AF recurrence in de
novo AF or after electrical cardioversion (Parvez et al., 2012).
Previous studies reported that a PITX2+/−-deficient condition
modulated atrial resting membrane potentials and increased
both AF susceptibility and the efficacy of AADs, especially
class IC drugs (Syeda et al., 2016; Bai et al., 2021) and that
dronedarone restored the action potential of myocytes affected
by hERG mutations to that of wild-type (WT) myocytes (Loewe
et al., 2014). Amiodarone has also been found to decrease APD
heterogeneity and to affect AF termination (Varela et al., 2016).
However, it is not clinically possible to predict the efficacy of
toxic AADs prior to dosing. With the development of high-
speed parallel computing hardware system (Boyle et al., 2019),
AF simulation modeling has become more efficient for clinical
applications. In particular, we previously reported that AF
catheter ablation results can be predicted and improved by using
computational modeling before the procedure (Kim et al., 2019).
In this study, we created the realistic atrial model by reflecting
personalized electroanatomy and modulating the specific ion
currents for AADs. We then compared the effects of AADs based
on wild-type and PITX2+/−-deficient AF models. The purpose
of this study was to evaluate whether computational modeling of
AAD study was a useful method for studying AF susceptibility
and dose-dependent responses of virtual AADs.

MATERIALS AND METHODS

Ethical Approval
The study protocol adhered to the Declaration of Helsinki and
approved by the Institutional Review Board of the Severance
Cardiovascular Hospital, Yonsei University Health System. All
participants provided written consent for the researchers to
access their genetic data, CT images, and clinical mapping
data. Patients that participated in the study were included in
the Yonsei AF Ablation Cohort Database (ClinicalTrials.gov
Identifier: NCT02138695).

Realistic AF Modeling
To reflect tissue characteristics in the atrial model, we performed
electroanatomical modeling, fibrosis and fiber orientation
modeling, and simulation setup. Electroanatomical modeling

involved combining personalized CT images with voltage data.
Electroanatomical maps combining clinical voltage data with
CT images were used to obtain personalized 3D LA models
for each study subject. We collected bipolar electrogram data
for over 500 points on the left atrial (LA) surface to produce
interpolated voltage data for 25 AF catheter ablation procedures
(Figures 1A,B). Interpolation of clinical voltage data was used to
create the virtual voltage data (Figure 1A). Such interpolation
was based on the inverse distance weighting method (IDW)
(Ugarte et al., 2015). The voltage data were depicted in
amplitude maps obtained from bipolar electrograms with over
500 points on the left atrial (LA) surface to produce voltage.
The bipolar electrograms consisted of sequential recordings of
clinical electrogram during a paced rhythm with a cycle length
of 500ms. Virtual voltage data were also included in amplitude
maps, which were produced by the interpolation of clinical
voltage data. Interpolation of the voltage data was performed
within a 10-mm radius from the region of interest. IDW was
a signal interpolation method used to determine unknown data
values which were weighted average of the neighboring values.
IDW assumed that the closest neighboring values have the largest
weight. The equation for IDW (Ugarte et al., 2015) was indicated:

Wij =
dij

−a

∑nj
k
dkj

,Rj =

nj
∑

i= 1

wijRij (1)

where W represents the weighted average of neighboring values;
i and j indicate the known and unknown values of points;
dij

−a is the distance between known and unknown points;
Rij represents the value of known point; and Rj indicates the
interpolation value at unknown point j. Next, the voltage data
were combined with CT images to create a 3D LA model map
using the Ensite NavX system (Abbott Inc., Lake Bluff, IL USA).
This 3D LA model map was then matched with coordinates of
personalized clinical maps for accurate representation of voltage
and CT images through transition and rotation. Positioning of
the electroanatomical maps containing clinical voltage data and
3D LA maps onto the CT-based mesh models (Lim et al., 2020a)
was conducted over four steps: geometry, trimming, field scaling,
and alignment. The geometry step reflected the production of
electroanatomical maps using a catheter. After the geometry step,
unnecessary artifacts were removed, and the ostial position was
used for separation of the LA appendage and the pulmonary
vein (PV) regions during the trimming step. The field scaling
step indicated the optimal scaling of interelectrode spacing and
CT images. Lastly, the alignment step involved the registration
of alignment points through coordinate transformation using
an accurately defined ostium, along with the integration of CT
images and anatomical maps. Fiber orientation environment
was created using atlas-based mesh method (Ho et al., 2002) in
two consecutive steps: fiber tracking and visualization. Parallel
tasking was used for fiber tracking step, and visual display
of fiber orientation onto 3D-LA map was conducted during
visualization step. Fiber tracking was handled as an independent
parallel task, which was used to determine the direction of
conduction. A vector following the myocardial fiber direction
could be produced at each location in the heart. The conductivity
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FIGURE 1 | Study method for the 3D left atrial modeling. The voltage map (A), CT images (B), fiber orientation (C), fibrosis (C), and LAT synchronization (D) were

used for the LA modeling. The wild-type and PITX2+/− deficiency ion currents (E,F) was implemented to simulate for wave dynamics analysis. AF pacing protocol (G)

was conducted to analyze the AF initiation and maintenance.

was smaller in the direction perpendicular to the vector than the
conductivity in the vector direction. Fibrosis area was determined
using relationship between probability of fibrosis and bipolar
voltage (Zahid et al., 2016; Hwang et al., 2019) (Figure 1C).
To achieve personalized virtual LA model, synchronization of
clinical local activation time (LAT) map and virtual LAT map
was performed. Diffusion coefficient for virtual LAT map was
adjusted to accurately match conduction velocity (CV) of clinical
LAT map (Lim et al., 2020a). Color scales of clinical and virtual
LAT maps were compared for synchronization (Figure 1D).
Finally, ion currents for sinus rhythm andAF state were set up for
analysis (Figures 1E,F). The detailed protocol of AF mechanism
was indicated in Figure 1G and Supplementary Materials.

PITX2+/– Deficiency Incorporation
The Courtemanche model (Courtemanche et al., 1998) reflecting
the human atrial myocyte model was implemented for the wild-
type sinus rhythm (SR) status while AF status was defined as ion
current remodeling of the Courtemanchemodel (Lee et al., 2016).
For the wild-type AF state, INa, Ito, ICaL, IKur, and ICaup were
decreased by 10, 70, 70, 50, and 20%, and IK1 was increased by
110% compared with the Courtemanche model (Lee et al., 2016).
The Syeda et al. (2016) model was used for the PITX2+/− SR
status, and the PITX2+/− deficiency AF state wasmodulated with
the same proportion as the wild-type SR to wild-type AF. For the
PITX2+/− deficiency AF state, INa, Ito, ICaL, IKur, and ICaup were
decreased by 10, 70, 70, 50, and 20% whereas IK1 and IKr were

increased by 58 and 100% compared with the Courtemanche
model. The same percent change from sinus rhythm to AF for
CRN was applied to normal sinus rhythm to AF for PITX2+/−

deficiency (Table 1). For the PITX2+/− deficiency AF state, INa,
Ito, ICaL, IKur, and ICaup were decreased by 10, 70, 70, 50, and
20%, whereas IK1 and IKr increased by 58 and 100%, compared
with the Courtemanche model.

Virtual AAD Intervention
AADs were applied to wild-type and PITX2+/− deficiency
backgrounds. Sinus rhythm and AF ion current, class III, and
class IC characteristics were defined by blocking potassium
and sodium channels and were compared with baseline values
(Supplementary Figure 1). Ion currents for each AAD in wild-
type and PITX2+/− deficiency models are described in Table 2,
and Supplementary Table 1. Supplementary Table 1 indicated
the complete lists of ion currents for baselines and AADs.
CRN sinus rhythm was set to 100%. Ion currents for AADs
and AF status were modulated based on CRN sinus rhythm.
The decrease in percentage of potassium channels and sodium
channels each resembled the characteristics of class III and
class IC. The references for each AAD ion current setting was
described in Table 2. The degree of blocking varied within
each AAD to resemble low and high dosage. The APD90

and CV were measured using the SR ion currents while the
mean Smax, DF, PS, and AFCL were calculated using AF
ion currents.
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TABLE 1 | Ion currents change for genotypes.

CRN PITX2+/− deficiency

Sinus rhythm

(%)

AF

(%)

Percent change

(%)

Sinus rhythm

(%)

AF

(%)

Percent change

(%)

gNa 111 90 −19 111 90 −19

gK1 95 210 +121 71 158 +121

gto 117 30 −74 117 30 −74

gKr 120 100 −17 240 200 −17

gCaL 150 30 −80 150 30 −80

gKur 100 50 −50 100 50 −50

gKs 160 100 −38 160 100 −38

INaCa (Max) 155 100 −35 155 100 −35

INaK (Max) 100 100 0 100 100 0

Iup (Max) 100 100 0 100 100 0

Krel 100 100 0 100 100 0

Caup (Max) 125 80 −36 125 80 −36

ACh 100 100 0 100 100 0

CRN, Courtemanche Ramirez Nattel atrial model.

TABLE 2 | References for atrial cell ion currents depending on AADs.

AADs References Animal/human model Method Ion current change

Amiodarone

(5µM, 10µM)

Varela et al. (2016) Canine atrial model Microelectrode recording

and patch-clamp

gK1, gKur, gNa, gKr,

gCaL, gKs,

Ach

Sotalol

(60µM, 10mM)

Ducroq et al. (2007)

Lin et al. (2007)

Rabbit/human embryonic kidney

cells

Xenopus oocytes

Bipolar Ag electrode

recoding and patch clamp

2-electrode voltage clamp

gNa, gKr, gKs

Dronedarone

(3µM, 10µM)

Chen et al. (2016)

Gautier et al. (2003)

Ji et al. (2017)

Wegener et al. (2006)

Rat

Guinea pig ventricular

cardiomyocyte

Dog ventricular myocytes

Guinea pig myocytes

Whole cell, perforated patch

voltage clamp

gCaL, gKs, gNa, gK1,

gKr, gCaL

Flecainide

(5µM, 15µM)

Geng et al. (2018)

Yue et al. (2000)

Wang et al. (1993)

Hilliard et al. (2010)11

Human pluripotent stem

cell-derived ventricular

cardiomyocyte

Human right atrial appendage

Human pluripotent stem

cell-derived ventricular

cardiomyocyte

Canine, murine ventricular model

Whole-cell patch voltage

clamp, microscope, and

confocal laser-scanning unit

gNa, gKur, gNa, gto,

gCaL

Propafenone

(5µM, 10µM)

Edrich et al. (2005)

Paul et al. (2002)

Seki et al. (1999)

Delgado et al. (1993)

Human embryonic kidney cells

Human atrial myocytes

Guinea pig ventricular myocytes

Whole-cell patch voltage

clamp

gNa, gto, gCaL, gKur,

gKr,

Smax Evaluation, AF Induction, and
Dominant Frequency Analyses
Our graphic user interface (GUI)-based customized software
(CUVIA ver. 2.5, Model: SH01; Laonmed Inc., Seoul, Korea) was
utilized to visualize and analyze the action potential duration at
90% repolarization (APD90), conduction velocity (CV), maximal
slope of the restitution curves (Smax), AF cycle length, and
wave-dynamic characteristics such as the dominant frequency
(DF) and phase singularity (PS). We estimated the location of

the highest Smax region by generating the 3D-Smax maps. The
highest Smax location matches to the high wave break points

during fibrillation (Pak et al., 2003). Although precise defining

of the highest Smax location was challenging, considering the

heterogeneity of tissue characteristics, we localized it based on

the digital numbers of Smax values in each node. A pacing

cycle length of 600ms was used to measure the APD90 (Song
et al., 2019) and CV. The region of interest for the APD90 and

CV was from the LA high septum (pacing sites) to the LA

Frontiers in Physiology | www.frontiersin.org 4 May 2021 | Volume 12 | Article 650449

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Hwang et al. Virtual Antiarrhythmic Drug Tests

appendage (Figures 2A,B). Action potential duration (90%) was
measured in the single cell environment. However, at the tissue
level, the values of APD90 were heterogeneous among patients
due to electroanatomical characteristics and tissue curvature
of the left atrial (LA) (Song et al., 2019). The relationship
between the APD90 and diastolic interval was plotted, and
the Smax was calculated after non-linear fitting (Figure 2C)
(Franz, 2003; Shattock et al., 2017). Non-linear fitting involved
an exponential equation comprising a free-fitting variable,
diastolic interval, action potential duration, and time constant:

y
(

Action potential duration
)

= y0 + A1

(

1−
−diastolic interval

τ1

)

.

Details of study protocol and quantification methods for
basic electrophysiologic parameters and wave-dynamic
parameters, such as AF cycle length (AFCL), dominant
frequency (DF), or phase singularity (PS), are available in the
Supplementary Material (Figures 2D–F).

Statistical Analyses
Categorical variables are reported as numbers (percentages),
and continuous variables represent the mean with the standard
deviation. We compared the changes in those parameters after
virtual AADs between the two models using the Student’s t-
test. We compared the changes in the wave-dynamic parameters
between the class IC and class III AADs in the overall, wild-type,
and PITX2+/− deficiency models using the Student’s t-test. To
investigate the dose-dependent effect of AADs in each model, we
used the paired t-test to compare the change in the wave-dynamic

parameters before and after the AADs with different doses. The
effect sizes were calculated using Cohen’s d (Cohen, 1988). The
effect sizes were included along with p-values. Patients without
appropriate AF wave-dynamic parameters due to termination
were excluded from the statistical analysis.

RESULTS

Characteristics of PITX2+/– Deficiency AF
Model
The number of cases on the tables was calculated by multiplying
the number of patients and AADs with the dosage. The classes
were composed of 100 cases for class IC and 150 cases for
class III, and the genotype models consisted of 250 cases
for each model (wild type and PITX2+/− deficiency). Table 3
compares the electrophysiological parameters between the wide-
type AF model and PITX2+/− deficiency model, which reflected
the left atrial anatomy and electrophysiology of 25 patients
(68.0% male, 59.8 ± 9.8 years old, 32.0% paroxysmal AF).
Study group was composed of inclusively Korean population.
One patient refused genetic analysis, and two patients did not
try AAD because of significant bradyarrhythmia. We did not
use AADs in two patients because of associated sinus node
dysfunction. AAD may aggravate their bradyarrhythmia based
on the clinical decision. However, we conducted AF ablation
procedures acquiring clinical electroanatomical maps. Therefore,
we did not have any problem in conducting simulation studies in
those two patients. The total number of patients in the study was

FIGURE 2 | Wild-type vs. PITX2+/− baseline model analysis. (A–F) The baseline APD90, CV, Smax, AF cycle length, and wave-dynamics parameters for wild-type and

PITX2+/− deficiency were measured for a comparison. The PITX2+/− deficiency had a shorter APD90 (A), lower mean Smax (C), and PS number (F) than the wild-type.
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TABLE 3 | Effects of AADs in the wild-type and PITX2+/− deficiency groups.

Baseline Changes after AADs (class IC and class III) Class IC Class III

Wild-type

(n = 25)

PITX2+/−

deficiency

(n = 25)

p-value Effect

size

Wild type (n

= 250)

PITX2+/−

deficiency

(n = 250)

p-value Effect

size

Wild type (n

= 100)

PITX2+/−

deficiency

(n = 100)

p-value Effect

size

Wild type (n

= 150)

PITX2+/−

deficiency

(n = 150)

p-value Effect

size

APD90 (ms) 243.7 ±

33.8

184.4 ±

15.5

<0.001 2.553 38.2 ± 37.3 43.4 ± 56.2 0.223 0.109 275.9 ±

43.5

219.0 ±

39.2

<0.001 1.374 284.9 ±

32.8

233.8 ±

71.4

<0.001 0.919

CV, (m/s) 0.78 ± 0.32 0.70 ± 0.21 0.347 0.283 −0.15 ±

0.18

−0.20 ±

0.26

0.033 0.202 0.63 ± 0.32 0.53 ± 0.30 0.027 0.326 0.60 ± 0.36 0.43 ± 0.33 <0.001 0.513

Mean Smax 0.787 ±

0.28

0.531 ±

0.18

<0.001 1.080 0.005 ±

0.26

0.115 ±

0.24

<0.001 0.439 0.828 ±

0.31

0.694 ±

0.32

0.003 0.424 0.768 ±

0.32

0.608 ±

0.27

<0.001 0.539

Mean AFCL

(ms)

146.96 ±

24.61

164.78 ±

22.73

0.011 0.752 22.62 ±

24.55

37.92 ±

32.72

<0.001 0.529 165.44 ±

36.96

190.85 ±

35.61

<0.001 0.664 169.05 ±

25.26

203.35 ±

34.78

<0.001 1.128

Peak DF (Hz) 10.68 ±

2.97

11.82 ±

3.34

0.211 0.358 −2.98 ±

4.94

−5.46 ±

4.66

<0.001 0.517 10.01 ±

4.39

7.23 ± 4.20 <0.001 0.646 6.30 ± 4.32 5.80 ± 4.07 0.301 0.120

Mean DF (Hz) 6.80 ± 0.88 6.22 ± 0.71 0.012 0.737 −1.95 ±

2.44

−2.20 ±

1.99

0.206 0.113 5.75 ± 1.78 4.53 ± 2.00 <0.001 0.645 4.14 ± 2.39 3.69 ± 2.00 0.077 0.205

PS number

(N)

101,086 ±

96,088

14,150 ±

24,778

<0.001 1.239 −59,322 ±

99,288

−7,409 ±

27,856

<0.001 0.712 50,579 ±

65,236

11,568 ±

21,868

<0.001 0.802 32,951 ±

55,864

3,524 ±

8,302

<0.001 0.737

PS life span

(ms)

109.36 ±

113.90

102.24 ±

226.64

0.889 0.040 −24.87 ±

72.06

−41.38 ±

126.35

0.073 0.161 103.36 ±

180.68

68.05 ±

162.79

0.148 0.205 71.91 ±

141.86

55.99 ±

217.97

0.454 0.087

APD90, action potential duration 90%; CV, conduction velocity; Smax, the maximal slope of the restitution curves; AFCL, AF cycle length; DF, dominant frequency; PS, phase singularity; n, number of patient
*AAD* dose.

Patients who did not sustain proper normal sinus rhythm and AF status were excluded from the analysis.
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25. Simulation episodes included 25 cases for baseline and 250
cases with AADs.

In Table 3, we compared electrophysiological parameters at
baseline, after using class IC and class III AADs, and their
changes after using any AADs (including both class IC and
class III AADs) with wild type and PITX2+/− deficiency. During
the baseline conditions without AADs, the PITX2+/− deficiency
group had a shorter APD90 at a pacing cycle length of 600ms
(p < 0.001, effect size = 2.553, Figure 2A), lower mean Smax
during ramp pacing (p < 0.001, effect size = 1.080, Figure 2C),
and lower mean DF (p = 0.012, effect size = 0.737, Figure 2E)
and PS number (p < 0.001, effect size = 1.239, Figure 2F) after
AF induction as compared with the wild type (Table 3).

AAD Responsiveness Based on the
PITX2+/– Genotypes
We tested five different V-AADs, and the outcomes are
summarized in Table 3. Changes after AADs in Table 3 indicated
the effects of any AADs (including both class IC and III AADs)
compared with baseline. When we compared the effects of the
AADs between the wild-type and PITX2+/− deficiency models
(Table 3), the APD90 changes were similar (p = 0.223, effect size
= 0.109), but the reductions in the CV (p = 0.033, effect size =
0.202), peak DF (p< 0.001, effect size= 0.517), and PS number (p
< 0.001, effect size = 0.712) and AFCL prolongation (p = 0.001,
effect size = 0.529) and change of Smax (p < 0.001, effect size =
0.439) were more significant in the PITX2+/− deficiency model
than in the wild-type AFmodel. For independent analyses of class
IC and class III, class IC lowered APD90 (p < 0.001, Effect size=
1.374), CV (p< 0.027, effect size= 0.326), mean Smax (p= 0.003,
effect size = 0.424), peak DF (p < 0.001, effect size = 0.646),
mean DF (p < 0.001, effect size = 0.645), and PS number (p <

0.001, effect size = 0.802) in PITX2+/− deficiency while mean
AFCL (p < 0.001, effect size= 0.664) was increased with class IC
in PITX2+/− deficiency. Class III decreased APD90 (p < 0.001,
effect size = 0.919), CV (p < 0.001, effect size = 0.513), mean
Smax (p < 0.001, effect size= 0.539), and PS number (p < 0.001,
effect size = 0.737) but increased the mean AFCL (p < 0.001,
Effect size= 1.128) in PITX2+/− deficiency.

Class IC and Class III Virtual AAD Effects
Table 4 summarizes the effects of the virtual AADs, which
included class IC AADs, flecainide, and propafenone, and the
class III AADs amiodarone, sotalol, and dronedarone. At a pacing
cycle length of 600ms, the dose-dependent effect of the AADs
indicated a prolonged APD90 with high-dose AADs (Figure 3A).
The dose-dependent effects of each AAD are summarized in
Supplementary Figures 2–4. APD90, CV, mean DF, peak DF, PS
life span, PS number, Smax, and AFCL were compared for each
AAD between baseline values and those after treatment. Both
class III and class IC AADs changed APD90, CV, and AFCL,
significantly compared with baseline state, regardless of wild-type
or PITX2+/− deficiency model (Figure 3B). In contrast, Smax
was not changed in wild type, but rather increased in PITX2+/−

deficiency model after class III and class IC AADs (Figure 3B).
The class III AADs were more effective in reducing the CV (p
= 0.004, effect size = 0.299), the peak DF (p < 0.001, effect T
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FIGURE 3 | Characteristics of the wild-type and PITX2+/− deficiency with the response to AADs. (A,B) The APD90, CV, Smax, AF cycle length, and wave-dynamics

parameters were compared with baseline after AADs. (B) Both class III and class IC increased APD90, and AFCL in wild-type and PITX2+−− deficiency model. Class III

and class IC decreased CV in wild-type and PITX2+/− deficiency model while both classes increased Smax in PITX2+/− deficiency model.

size = 0.101), mean DF (p < 0.001, effect size = 0.547), and
PS life span (p = 0.020, effect size = 0.213) and prolonging
of AFCL (p < 0.001, effect size = 0.402) than the class IC
AADs (Table 4). APD90 prolongation (p = 0.040, effect size =

0.284), CV reduction (p = 0.003, effect size = 0.444), and AFCL
lengthening (p = 0.002, effect size = 0.498) effects were more
significant, but Smax increase was less significant (p = 0.010,
effect size = 0.333) by class III AADs than by class IC AADs
in PITX2+/− deficiency models but not in wild-type models
(Table 4).

AF Termination Under Virtual AADs
AF termination was determined between 0 and 32 s after
AF induction. Individual-level termination rates of AADs are
described in Figure 4A. AF termination rate was significantly
higher under class III AADs (43.7%) than class IC AADs
(19.0%, p < 0.001, Figure 4B). The class IC AADs in the
PITX2+/− deficiency indicated a higher termination rate than
the wild type (12.0 vs. 26.0%, p = 0.012, Figure 4C). Overall,
the AF termination rate was 36.0% after using virtual AADs.
When we compared the overall AF termination rate, there
was no statistical difference between the wild-type AF (34.4%)
and PITX2+/− deficiency AF (37.6%, p = 0.514, Table 5).
However, the PITX2+/− deficiency AF had a statistically higher
termination response to the class IC AADs (26.0%) than the
wild-type AF (12.0%, p= 0.018, Table 5).

DISCUSSION

Main Findings
In this study, we invented a highly efficient patient-specific
AF computation modeling system that could be applied to
the virtual AAD test. We conducted a virtual AAD modeling
after integrating the atrial geometry taken from the patient’s
cardiac CT image and electrophysiology acquired from the 3D-
electroanatomical voltage map. We also evaluated the virtual
AAD responsiveness by simulating the effects of five different
AADs according to the PITX2+/− genotypes. The PITX2+/−-
deficient model had a shorter APD90, lower Smax, longer
AFCL, lower mean DF, and lower PS number. The PITX2+/−

deficiency AF was easier to terminate by class IC AADs than
the wild-type AF. Dose-dependent AF termination rates were
significantly higher after using virtual class III AADs than class
IC AADs. Although class III AADs were classified as a potassium
channel blocker, amiodarone is a multichannel blocker and
dronedarone is a modification of amiodarone without the iodine
component. Therefore, amiodarone and dronedarone affect CV
and the tissue excitability (Gautier et al., 2003; Patel et al.,
2009; Saengklub et al., 2016). On the other hand, sotalol is a
relatively pure potassium channel blocker (Roden, 2016), and
it did not alter CV as much as amiodarone or dronedarone
(Supplementary Figure 2B). The virtual AAD test was a feasible
approach for evaluating the efficacy of multiple AADs in patients
with AF.
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FIGURE 4 | Termination rate of the wild-type and PITX2+/− deficiency based on the AADs. (A) Termination rate for different AADs was described. (B,C) Termination

rate was compared between the wild-type and PITX2+/− deficiency and class III and class IC. (B) Class III showed higher AF termination rate compared with class IC.

(C) Class IC AADs in PITX2+/− deficiency indicated the higher AF termination rate compared with the wild type. Class III showed the higher termination rate than class

IC.

TABLE 5 | Termination results based on the wild-type and PITX2+/− deficiency.

Termination

Overall (n = 500) Wild type(n = 250) PITX2+/− deficiency

(n = 250)

p-value

Class IC + Class III (n = 500) 180/500 (36.0%) 86/250 (34.4%) 94/250 (37.6%) 0.514

Class IC (n = 200) 38/200 (19.0%) 12/100 (12.0%) 26/100 (26.0%) 0.018

Flecainide 5µM (n, %) 6 (12.0%) 2 (8.0%) 4 (16.0%) –

Flecainide 15µM (n, %) 11 (22.0%) 4 (16.0%) 7 (28.0%) –

Propafenone 5µM (n, %) 8 (16.0%) 3 (12.0%) 5 (20.0%) –

Propafenone 10µM (n, %) 13 (26.0%) 3 (12.0%) 10 (40.0%) –

Class III (n = 300) 131/300 (43.7%) 66/150 (44.0%) 65/150 (43.3%) 1.000

Amiodarone 5µM (n, %) 21 (42.0%) 10 (40.0%) 11 (44.0%) –

Amiodarone 10µM (n, %) 27 (54.0%) 16 (64.0%) 11 (44.0%) –

Sotalol 60µM (n, %) 12 (24.0%) 4 (16.0%) 8 (32.0%) –

Sotalol 10mM (n, %) 26 (52.0%) 9 (36.0%) 17 (68.0%) –

Dronedarone 3µM (n, %) 22 (44.0%) 11 (44.0%) 11 (44.0%) –

Dronedarone 10µM (n, %) 23 (46.0%) 16 (64.0%) 7 (28.0%) –

n, number of patient *AAD*dose.

AADs in AF Rhythm Control
AADs are the most commonly used first-line therapy for AF
rhythm control. Nevertheless, <50% of AF patients maintain

adequate SR for more than 1 year with AADs, which is
significantly lower than in AF catheter ablation (Singh et al.,
2005). The first obstacle to the proper use of AADs is the
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risk of various adverse effects such as sinus node dysfunction,
proarrhythmias, and an increased mortality, and the second
is the difference in the drug effects, depending on the patient
characteristics (Parvez et al., 2012). Because of this, a sufficient
dose of the AAD carries the potential risk of side effects, while
an excessively careful reduced-dose AAD administration lowers
the effect of the rhythm control. The virtual AAD simulation
test considered the personal and genetic characteristics of the
AF patients, and therefore, it has the potential as an important
breakthrough for more efficient AF drug therapy in the future.

PITX2 Variant Characteristics
AF is already well-known as a heritable disease (Lubitz et al.,
2010). In particular, the PITX2 gene has been known to be
the universal first AF-associated SNP in European, Japanese,
and Korean populations (Lee et al., 2017; Low et al., 2017;
Roselli et al., 2018). Unique electrophysiological changes that
create AF vulnerable conditions are observed in PITX2+/−-
deficient animal models. First, a PITX2+/− deficiency results
in a condition with a shortening of the APD by reducing the
IK1 and ICa−L and by increasing the IKs (Syeda et al., 2016).
Second, it generates a slower CV by raising the atrial cell resting
membrane potential and changing the gap junctional conduction
(Chinchilla et al., 2011). Third, the PITX2+/− deficiency is related
to triggered activity caused by abnormal calcium management
(Denham et al., 2018).

Parvez et al. (2012) reported that rs10033464 in the PITX2
gene is independently associated with the response to the AAD
treatment in patients with AF. This report is in agreement
with a study by Syeda et al. (2016) on the sensitivity to
flecainide, a sodium channel blocker, in the PITX2 deficiency
animal model (Parvez et al., 2012). In this study, we observed
significant electrophysiological changes related to the PITX2
deficiency and its responsiveness to class IC AADs in the AF
computational modeling of 25 patients, which was consistent
with the previous studies (Syeda et al., 2016). Moreover, the AF
wave dynamics, including the Smax also exhibited characteristic
changes according to the genetic traits or specific AADs.

Virtual AAD Modeling in AF
Since the first human AF computational modeling was
presented by Moe et al. (1964), sophisticated simulation
modeling that integrates the patient’s anatomical, histological,
and electrophysiological characteristics have been utilized in
various physiological studies (Trayanova, 2014). The biggest
obstacle to the clinical use of a sophisticated AF computational
modeling so far has been the long computational speed
of a complex simulation. However, recent innovations in
the hardware and software have opened the gate for the
clinical utilization of AF computational modeling (Kwon
et al., 2013). Lim et al. (2020b) used a graphic process unit
to analyze the AF modeling and a wave-dynamics analysis
within 45min while considering the patient’s anatomy (cardiac
computed tomogram), electrophysiology (3D-electroanatomical
map), fibrosis (voltage map), and fiber orientation (LAT map).
In this study, we further clinically applied the computational

modeling by testing five different virtual AADs, depending on the
PITX2 genotypes, in a realistic AF modeling in 25 patients.

Limitations
The LA model used a personalized/realistic electroanatomy,
fibrosis, and fiber orientation; however, the LA model was
designed to be a monolayer. Implementation of epicardial
conduction could provide the endocardial-acquired local
activation pattern and clinical voltage. Including the atrial
wall thickness in the LA model could provide more accurate
representation of the wave-dynamics analyses, thus, the results
would be a more clinically applicable LA model. Bilayers,
including both endocardial and epicardial layers, were not
reflected in the model (Labarthe et al., 2014). The fiber
orientation can be a simplistic version of a rather sophisticated
image or a rule-based approach of the fiber orientation (Krueger
et al., 2013). Multisite induction could be conducted to reflect the
complicated AF dynamics (Prakosa et al., 2018). The majority of
the references for the PITX2+/− deficiency and AAD-induced
changes of the trans-membrane ion currents were based on in
vivo experiments with animal models. In this study, a detailed
analysis of sarcoplasmic reticular calcium leaking and triggered
activity was not performed. There are still obstacles to this
approach, such as the need for invasive mapping data. Invasive
LA modeling was conducted, whereas other modeling using
LDGE MRI (Lopez-Perez et al., 2015) or ECGi (Perez Alday
et al., 2019) could be considered for further study.

Conclusion
We conducted a virtual AAD test with five different AADs,
according to the PITX2+/− genotype, after integrating the
atrial geometry taken from the patient’s cardiac CT image
and electrophysiology acquired from a 3D-electroanatomical
voltage map. The PITX2+/−-deficient model exhibited different
electrophysiology and AF wave dynamics than the wild type.
PITX2+/− deficiency AF was easier to terminate by class IC
AADs than the wild-type AF. Therefore, the virtual AAD test was
a feasible approach for evaluating the efficacy of multiple AADs
in patients with AF.
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